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Percolation of sticks: Effect of stick alignment and length dispersity
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Using Monte Carlo simulation, we study the percolation of sticks, i.e., zero-width rods, on a plane, paying
special attention to the effects of stick alignment and their length dispersity. The stick lengths are distributed in
accordance with log-normal distributions, providing a constant mean length with different widths of distribution.
Scaling analysis is performed to obtain the percolation thresholds in the thermodynamic limits for all values of
the parameters. Greater alignment of the sticks leads to increases in the percolation threshold, while an increase
in length dispersity decreases the percolation threshold. A fitting formula is proposed for the dependence of the
percolation threshold both on stick alignment and on length dispersity.
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I. INTRODUCTION

Percolation, i.e., the occurrence of a connected subset
(a cluster) within a disordered medium which spans its
opposite borders, has attracted the attention of the scien-
tific community over several decades [1–5]. Nowadays, two-
dimensional (2D) systems such as transparent electrodes
present examples of where highly conductive particles, e.g.,
nanowires (NWs), nanotubes (NTs), and nanorods (NRs),
form a random resistor network inside a poorly conductive
host matrix (substrate) [6–8]. The appearance of a percolation
cluster in these kinds of systems drastically changes their
physical properties and is associated with an insulator-to-
conductor phase transition. Length dispersity is common for
NWs, NTs, and NRs [9–12]. These works evidenced that the
length distributions of NWs, NTs, and NRs are close to repre-
senting log-normal distributions. Furthermore, the alignment
of such elongated objects may be produced in a variety of
different ways [13–17]. Both length dispersity and alignment
affect the electrical conductivity of the samples [18,19].

Study of the percolation of rodlike particles or sticks in 2D
systems and its connection with the electrical conductivity has
a long history [20–22]. At present, the best known value of the
percolation threshold in the 2D system of randomly oriented
and placed zero-width sticks of equal length is 5.637 285 8(6)
sticks per unit area [23]. The number of objects per unit area
is also known as the number density.

A computer study of the percolation threshold in a two-
dimensional anisotropic system of conducting sticks has been
performed [24]. Here two kinds of angle distributions were
taken into consideration, viz., uniform distribution within an
interval

−θm � θ � θm (1)

and the normal distribution; log-normal distribution of lengths
was assumed. An analytical relationship between the critical
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density of sticks and anisotropy has been proposed. This
relation predicts that the percolation threshold will increase
with increasing anisotropy from its isotropic value. Obviously,
in a system of completely aligned, i.e., parallel, sticks, no
percolation can occur.

The conductivity of stick percolation clusters with
anisotropic alignments has been studied by means of com-
puter simulation and finite-size scaling analysis [25]. The an-
gular distribution of the sticks corresponds to (1). The critical
number density nc does not vary much for θm ∈ (5π/18, π/2],
while it changes rapidly as

nc ∼ θ−0.9
m (2)

for θm < 5π/18. The percolation threshold (critical number
density) increases rapidly as the anisotropy is increased.

The finite continuum percolation of rectangles with differ-
ent aspect ratios has been studied using their angular distribu-
tion [26]

fθ (θ ) = �
(
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)
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2
,
π
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The parameter α controls the degree of anisotropy of the
system. Here α = 0 corresponds to a uniform distribution
fθ (θ ) = π−1 and hence to an isotropic system. The larger the
value of α, the stronger the anisotropy. In addition, α = ∞
corresponds to a full alignment of the sticks along the x axis.

Furthermore, the effect of the length dispersity of sticks
on the percolation threshold has also been studied in several
works. For instance, sticks with log-normal distributions of
lengths were considered in [24]. The effects of length dis-
tribution, angular anisotropy, and wire curvature have been
investigated both numerically and experimentally [27]. Each
of these quantities was assumed to be normally distributed.
The percolation threshold decreases as either the length or
the angle dispersity increases. Furthermore, the cooperative
influence of both effects, simultaneously, on the percolation
threshold may be of special interest.

Percolation in systems of aligned rods with different aspect
ratios has been simulated [28]. Both systems of rods of equal
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length and systems consisting of mixtures of short and long
rods were considered. Alignment of the rods led to increases
in the percolation threshold. For mixtures of long and short
rods, a nonmonotonic dependence of the percolation threshold
on the fraction of short rods was demonstrated.

Numerical simulations of stick percolation have been per-
formed [29] with uniform angular distributions of the sticks
within a given interval as well as with normal distributions,
while the stick lengths corresponded to a log-normal distri-
bution. The probabilities of percolation were presented for
different values of the parameters.

The goal of the present work is to obtain more accurate
values for the dependences of the percolation thresholds on
anisotropy and length dispersity. The rest of the paper is
constructed as follows. In Sec. II, the technical details of
the simulations and calculations are described. Section III
presents our main findings. Section IV summarizes the main
results.

II. METHODS

A. Preparation of the film samples

Zero-width (widthless) sticks were deposited randomly
and uniformly with given anisotropy onto a substrate of size
L × L having periodic boundary conditions, i.e., onto a torus.
Intersections of the particles were allowed. The length of the
particles l varied according to a log-normal distribution with
the probability density function

fl (l) = 1

lσl

√
2π

exp

(
− (ln l − μl )2

2σ 2
l

)
. (3)

The mean 〈l〉 and the standard deviation (SD) σ (l) are con-
nected with the parameters of the log-normal distribution μl

and σl as

〈l〉 = exp

(
μl + σ 2

l

2

)
, (4)

σ (l)2 = [
exp

(
σ 2

l

) − 1
]

exp
(
2μl + σ 2

l

)
. (5)

A change of any parameter affects both the mean and the stan-
dard deviation. To avoid a superposition of different effects,
the mean was set as a constant during the simulations. In this
case, we could extract and study the individual effect of the
length dispersity. All our computations were performed for
〈l〉 = 1. For this particular value of the mean, the parameters
of the log-normal distribution are

μl = −σ 2
l

2
, σ 2

l = ln[σ (l)2 + 1].

The anisotropy of the system is characterized by the order
parameter (see, e.g., [30])

s = N−1
N∑

i=1

cos 2θi, (6)

where θi is the angle between the axis of the ith stick and
the horizontal axis x and N is the total number of sticks in
the system. Since for a uniform angular distribution within a

symmetric interval (1)

s = sin 2θm

2θm

,

relation (2) can be rewritten as

nc ∼ (1 − s)−0.45. (7)

Furthermore, the macroscopic anisotropy

A = 〈l| cos θ |〉
〈l| sin θ |〉 (8)

was used [24,29] to characterize the anisotropy of systems
with length dispersity. Here 〈·〉 denotes the mean value.

In our simulations, the angles were distributed according
to a normal distribution [31]

fθ (θ ) = 1√−π ln s
exp

(
θ2

ln s

)
. (9)

For each sample, a sequence of random positions (two coordi-
nates for each stick), orientations, and lengths was generated.
This sequence was used to produce a film with the desired
number density of sticks n,

n = N

L2
. (10)

Since support of the log-normal distribution is l ∈ (0,∞), the
probability that l > L is finite, although very small. All sticks
with l > L were rejected for deposition and excluded from
the sequence. We performed our simulations for different
values of the order parameter and length dispersity, viz., s =
0, 0.1, . . . , 0.9, and SD σ = 0, 0.5, 1.0.

B. Estimation of the percolation threshold

To check for any occurrences of wrapping clusters, we
used the union-find algorithm [32,33] adopted for continuous
percolation [23,34] and paired with the Machta algorithm
[35]. Sticks were added one by one onto the substrate until
a cluster wrapping around the torus in two directions had
arisen. The algorithm treats a cluster as a wrapping cluster if
it intersects itself after wrapping around the torus one or more
times. Figure 1 demonstrates an example of a system under
consideration with intermediate values of the parameters (s =
0.5 and σ = 0.5) exactly at the percolation threshold (the
number of sticks is 4833 and nc ≈ 4.72). The dashed lines
correspond to the borders of the system under consideration.
Periodic boundary conditions are applied to these borders, i.e.,
if a stick intersects a border, and its outer part is transferred
to the opposite border; in other words, the stick transforms
into two shorter sticks with touching opposite borders of the
system from its inside. The resulting critical number density is
averaged over 105 independent runs to obtain the probability
of percolation RN,L.

To obtain the probability R(n,L) of percolation in the
grand canonical ensemble, we convolved RN,L with the
Poisson distribution [23,34]

R(n,L) =
∞∑

N=0

λNe−λ

N !
RN,L. (11)
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FIG. 1. Example of a system under consideration with interme-
diate values of the parameters s = 0.5 and σ = 0.5 for L = 32.
The number density corresponds to the percolation threshold. The
incipient wrapping cluster is shown in black.

Note that
∞∑

N=0

λNe−λ

N !
= 1 ∀λ > 0.

The weights in Eq. (11), wN (λ) = λN/N!, can be calculated
using the recurrent relations [23]

wN̄−k =
{

1 for k = 0,

N̄−k+1
λ

wN̄−k+1 for k = 1, 2, . . .
(12)

and

wN̄+k =
{

1 for k = 0,
λ

N̄+k
wN̄+k−1 for k = 1, 2, . . . .

(13)

FIG. 2. Example of scaling for s = 0.5 and σ = 0.5.

FIG. 3. Dependences of the percolation threshold nc on the order
parameter s for different values of SD σ . The curve corresponds to
the least-squares fit (17).

Here the relation
∑∞

N=0 wN (λ) = eλ should be borne in mind.
In addition, N̄ = 
λ�. Therefore, the convolution can be cal-
culated as

R(n,L) =
∞∑

N=0

w∗
N (λ)RN,L, (14)

where

w∗
N (λ) = wN (λ)∑∞

N=0 wN (λ)
. (15)

Since
∞∑

N=0

wN (λ) = eλ

∞∑
N=0

w∗
N (λ),

e−λ is absent in the master equation (14).
Unfortunately, conformal field theory gives exact values

for the wrapping probabilities at the transition in the limit

FIG. 4. Dependences of the percolation threshold nc on the
macroscopic anisotropy A for different values of SD σ .
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FIG. 5. Dependences of the percolation threshold nc on the SD
of the length dispersity σ for different values of the order parameter
s. The curve corresponds to the least-squares fit (18).

L → ∞ only for isotropic systems [32,33,36]. The most
effective method to estimate the percolation threshold [23,32–
34] does not work when the system is anisotropic. This is the
reason why a different, less efficient, approach is used in our
study. For each particular value of L, the equation R(nc, L) =
0.5 is solved numerically using bisection. Then the scaling
relation [1] is applied to find the percolation threshold in the
thermodynamic limit

nc(∞) − nc(L) ∝ L−1/ν, (16)

where ν = 4/3. We use L = 16, 32, 64 to perform the scaling
analysis; an additional size L = 128 is used for the set of pa-
rameters s = 0 and σ = 0. Figure 2 demonstrates an example
of scaling for s = 0.5 and σ = 0.5. All results presented in
Sec. III correspond to the thermodynamic limit. The error bars
are of the order of the marker size.

III. RESULTS

Figure 3 demonstrates the dependence of the percolation
threshold nc(s, σ ) on the order parameter s for different values
of SD σ . For any value of SD, the critical number density
increases as the order parameter increases. The curves are
fitted by

nc(s, σ ) = nc(0, σ )√
1 − sα

, (17)

where the fitting coefficient α depends on SD σ (see Table I).
From the nature of this case, nc(1, σ ) = ∞, since percolation

TABLE I. Fitting parameter α in (17) and nc(0, σ ) for different
values of SD σ .

σ nc(0, σ ) α R2

0.0 5.63724(18) 1.8449(26) 0.99998
0.5 4.756(3) 1.880(5) 0.99993
1.0 3.21(1) 1.9371(12) 1

TABLE II. Fitting parameters a and b in (18) and nc(s, 0) for
different values of the order parameter s.

s nc(s, 0) a b R2

0.0 5.63724(18) −4.59(3) 2.16(3) 0.99995
0.5 6.6076(4) −5.57(4) 2.69(4) 0.99996
0.9 13.422(4) −11.72(9) 5.78(9) 0.99994

of parallel zero-width sticks is impossible for any finite value
of the number density. The asymptotic behavior nc(s → 1, 0)
corresponds to (7).

Figure 4 shows the dependences of the percolation thresh-
old nc on the macroscopic anisotropy A for different values
of SD σ . For the values of the macroscopic anisotropy A � 3,
the dependences look almost linear. However, any conclusion
regarding their asymptotic behavior (A → ∞) is not really
possible.

Figure 5 demonstrates the dependences of the percolation
threshold nc(s, σ ) on the SD σ for different values of the order
parameter s. For any value of s, the critical number density
decreases as the order parameter increases. This behavior
is not unexpected, since long sticks may appear when the
length dispersity is large. These long sticks may assist the
development of a percolating cluster even at low number
densities. The curves are fitted by

nc(s, σ ) = nc(s, 0) + aσ 2 + bσ 3, (18)

where the fitting parameters a and b depend on s (see
Table II).

IV. CONCLUSION

By means of computer simulation and scaling analysis,
we studied the percolation of zero-width sticks on a plane,
paying special attention to the cooperative effects of both the

FIG. 6. Dependence of the percolation threshold nc on both the
order parameter s and the SD σ .
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alignment of sticks and their length dispersity on the percola-
tion threshold. The dependences of the percolation threshold
on the alignment of the rods and their length dispersity have
been obtained in the thermodynamic limit. Figure 6 demon-
strates the dependence of the percolation threshold nc on both
the order parameter s and on the SD σ . The highest values
of the percolation threshold correspond to highly anisotropic
systems with equal-sized sticks, while the lowest values cor-
respond to isotropic systems with high length dispersity. The
percolation threshold can be fitted as

nc(s, σ ) = nc(0, 0) + aσ 2 + bσ 3

√
1 − sα

,

where the coefficients a and b should be taken from the first
row of Table II and α = 1.8449 + 0.0493σ + 0.04289σ 2. An
obvious drawback of our study is its consideration of only one
particular kind of angular distribution and only one particular
kind of length distribution. Nevertheless, we consider the
chosen distributions as the most natural. For other kinds of
physically reasonable distributions, similar behavior of the
percolation threshold is expected.
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