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Adsorption of neighbor-avoiding walks on the simple cubic lattice
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We investigate neighbor-avoiding walks on the simple cubic lattice in the presence of an adsorbing surface.
This class of lattice paths has been less studied using Monte Carlo simulations. Our investigation follows on from
our previous results using self-avoiding walks and self-avoiding trails. The connection is that neighbor-avoiding
walks are equivalent to the infinitely repulsive limit of self-avoiding walks with monomer-monomer interactions.
Such repulsive interactions can be seen to enhance the excluded volume effect. We calculate the critical behavior
of the adsorption transition for neighbor-avoiding walks, finding a critical temperature of Ta = 3.274(9) and a
crossover exponent of φ = 0.482(13), which is consistent with the exponent for self-avoiding walks and trails,
leading to an overall combined estimate for three dimensions of φ3D = 0.484(7). While questions of universality
have previously been raised regarding the value of adsorption exponents in three dimensions, our results indicate
that the value of φ in the strongly repulsive regime does not differ from its noninteracting value. However, it is
clearly different from the mean-field value of 1/2 and therefore not superuniversal.
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I. INTRODUCTION

The critical phenomenon associated with the adsorption of
polymers in dilute solution onto a surface is a widely studied
problem in statistical physics [1–10]. This topic has applica-
tions to interfacial phenomena such as adhesion and general
applications in biology [11–14]. In the thermodynamic limit
of infinitely long polymers, the adsorbed fraction of the poly-
mer u∞ is zero at high temperatures where the configuration
of the polymer is dominated by entropic repulsion, forming
an expanded phase where the polymer is desorbed from the
surface. If there is an attractive surface-monomer interaction,
then below some temperature Ta there is an adsorbed phase
where u∞ is positive. This transition is continuous and the
polymer ensemble displays a critical phenomenon [2]. For
finite lengths, the scaling of the adsorbed fraction is deter-
mined by a critical exponent φ:

un ∼ nφ−1, (1)

where φ takes on a noninteger value when T = Ta. This
exponent was initially considered to have the same value
in all dimensions, making it superuniversal. This hypothesis
was supported by results for two dimensions where φ = 1/2,
matching the mean-field value predicted for all dimensions
above the upper critical dimension of 4 as well as early
results for three dimensions [15,16]. More recently, numerical
simulations have found that φ �= 1/2 for three dimensions.
Our own estimate φ = 0.484(4) from a study of adsorbing
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self-avoiding walks and trails [17] is in agreement with other
recent Monte Carlo studies finding φ = 0.484(3) [6], φ =
0.492(4) [10], and φ = 0.483(3) [9]. On the other hand,
others have found values of φ that exceed 1/2 [8,18].

These results assume a good solvent so that away from
the surface the polymers have an extended configuration due
to the excluded volume effect, making self-avoiding walks
(SAWs) on a lattice the canonical model. The effect of solvent
quality is usually modeled by adding a monomer-monomer in-
teraction to the self-avoiding walk and varying the interaction
strength. Recently, it has been suggested that φ may not be
universal as a result of this interaction [8]. Plascak et al. [10]
considered a combined model of adsorbing SAWs with vary-
ing strength of monomer-monomer interactions. They found
that φ changes value as the monomer-monomer interaction
strength is changed. In the strongly repulsive regime they
found a small but significant reduction in the critical exponent
φ compared to the noninteracting value. In this paper we
therefore consider the strongly repulsive regime as any change
in this exponent due to repulsive interactions should be most
apparent in this limit.

The canonical representation of a polymer in dilute so-
lution is a self-avoiding path on a lattice. In the context of
lattice paths, altering the excluded volume effect can also be
modeled by different classes of paths. The standard model of
SAWs on a lattice are a subset of self-avoiding trails (SATs)
which have the weaker restriction that bonds may not overlap
but lattice sites may be occupied by multiple steps. Similarly,
neighbor-avoiding walks (NAWs) are a subset of SAWs with
the stronger restriction that nonconsecutive steps in the walk
cannot be adjacent. Compared to SATs and SAWs, NAWs
have received only some attention [19,20] and this has not in-
cluded monomer-monomer or monomer-surface interactions.
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Neighbor-avoiding walks and self-avoiding walks can be con-
sidered as the infinitely repulsive limit of interacting self-
avoiding walks and interacting self-avoiding trails, respec-
tively. Instead of attempting to simulate a combined model
with adsorption and strong repulsive interactions, NAWs can
be simulated directly.

In this work we combine new data for the adsorption onto a
surface of neighbor-avoiding walks on the simple cubic lattice
with our previous results for self-avoiding walks and self-
avoiding trails. We find no evidence that the critical exponent
φ is nonuniversal in these limits. We also confirm that it is
indistinguishable from the 1/δ exponent controlling the shift
of the critical temperature for finite lengths.

II. LATTICE MODELS

To model adsorption we consider lattice paths ψn of length
n restricted to lie on one side of an impermeable surface
defined by z = 0 for the simple cubic lattice. Apart from one
end that is fixed at the origin, each of the m contacts with
the surface contributes an energy −εa and the corresponding
Boltzmann weight κm, where κ = exp(εa/kBT ). This gives
the partition function for lattice paths of length n,

Zn(κ ) =
∑

ψn

κm, (2)

from which we calculate the internal energy

un(κ ) = 〈m〉
n

, (3)

which serves as our order parameter.
The solvent quality of polymers is modeled by monomer-

monomer interactions between nonconsecutive lattice sites
that are adjacent in some way, depending on the lattice model.
For interacting self-avoiding walks (ISAWs) each lattice site
interacts with its adjacent neighbors, while for interacting self-
avoiding trails (ISATs) the interaction is found at multiply vis-
ited lattice sites [see Figs. 2(a) and 2(b)]. In either case, each
of the b pairwise interactions contributes an energy −εmm and
is thus weighted by a factor ωb, where ω = exp(εmm/kBT ).
There is a critical temperature ωc > 0 where the polymer
undergoes collapse from an extended coil to a globule. This
model has been extensively used to study the θ -point collapse
of real polymers. We note however, that while both ISAWs
and ISATs have been used extensively to model the θ -point
collapse of real polymers, they are believed to be in different
universality classes [21–24].

A combined model of interacting paths near an adsorbing
surface has the partition function

Zn(κ, ω) =
∑

ψn

κmωb. (4)

Recently, Plascak et al. [10] investigated this case and found
that the critical exponent φ associated with the adsorption
transition varied with the ratio of the interaction energies
εmm/εa. In particular, they consider that the surface-monomer
interaction is always attractive so as to allow adsorption,
but the monomer-monomer interaction can vary in strength
from attractive through noninteracting and even to strongly
repulsive.

FIG. 1. A neighbor-avoiding walk on the simple cubic lattice
near a surface. Green dashed arrows and red dotted arrows mark valid
and invalid next steps, respectively. Blue circles mark monomers that
are interacting with the surface.

The limit of increasingly repulsive monomer-monomer
interactions, εmm → −∞, is equivalent to ω → 0 for fixed κ .
This is modeled directly by altering the class of lattice paths
we are considering, accomplished by a simple change to the
rules of the lattice path. So, rather than adjacent lattice sites in
an ISAW counting towards the number of monomer-monomer
interactions, the walk is prevented from even occupying a
site that is already adjacent to another occupied site, if the
repulsion is strong enough. We call this subset of SAWs
neighbor-avoiding walks (NAWs), and an example is shown
in Fig. 1. Similarly, in the strongly repulsive limit of an ISAT
model, the monomer-monomer repulsion prevents multiply
visited sites, and the trail simply becomes a noninteracting
SAW. These comparisons are illustrated in Fig. 2.

Specifically, the partition function for NAWs is the same as
the strongly repulsive limit of the partition function of ISAWs.
The same is true for SAWs, in that their partition function
is the same as the strongly repulsive limit of the partition
function of ISATs. That is,

Z(NAW)
n (κ ) = Z(ISAW)

n (κ, ω = 0) and (5)

Z(SAW)
n (κ ) = Z(ISAT)

n (κ, ω = 0), (6)

(a) (b) (c)

FIG. 2. Comparison on the square lattice of (a) an interacting
self-avoiding trail with onsite contact interaction, (b) an interact-
ing self-avoiding walk with near-neighbor interaction, and (c) a
neighbor-avoiding walk where neighboring points are avoided. In
each case, the model to the right can be viewed as the infinitely
repulsive limit of the monomer-monomer interaction.
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where the superscript indicates the class of paths over which
the sum in Eq. (2) or Eq. (4) is taken, and the interaction
variable ω refers to on-site contact interactions for ISATs
and to nearest-neighbor interactions for ISAWs, respectively.
Clearly, the critical adsorption temperature is different for
each class of lattice paths and also depends on ω in the case
of the interacting models.

The great benefit of the restriction to specific noninter-
acting ensembles is that it is much easier to simulate the
adsorption-only model for different classes of lattice paths
than to do a combined interacting model, allowing for sim-
ulation of the adsorption transition for larger system sizes.

III. SCALING LAWS AND CRITICAL EXPONENTS

At the critical point for long chains the order parameter
scales as un ∼ nφ−1, but for finite n it is necessary to also
include finite-size scaling correction terms:

un ∼ nφ−1f (0)
u (x)

[
1 + n−�f (1)

u (x) + · · · ], (7)

where the f (i) are finite-size scaling functions of the scaling
variable x = (Ta − T ) n1/δ and � � 1 is the first correction-
to-scaling term. The exponent 1/δ therefore describes the
crossover around the adsorption critical point. It can also be
described as the shift exponent associated with the deviation
of temperature from the critical point. That is, the finite-length
critical temperature differs from the infinite-length critical
temperature according to

T (n)
a ∼ Ta + n−1/δf

(0)
T (x)

[
1 + n−�f

(1)
T (x) + · · · ]. (8)

Conventional scaling arguments show that the exponents φ

and 1/δ are the same and one can be derived from the other
[1,17]. Recently, however, Luo [8] conjectured that φ and 1/δ

may be different in three dimensions. Under this assumption,
other numerical work has been carried out to test this hypoth-
esis, finding different numerical values for φ and 1/δ on top
of the dependence on monomer-monomer interaction strength
[10,25].

The first step is to extract 1/δ directly from the log deriva-
tive of un,

�n(κ ) = d log un

dT
= (log κ )2 〈m2〉 − 〈m〉2

〈m〉 . (9)

which is expected to have the critical scaling form

max �n ∼ n1/δf
(0)
� (x)

[
1 + n−�f

(1)
� (x) + · · · ]. (10)

The quantity �n is related to the specific heat, whose peaks are
often used to locate second-order transitions. However, this
approach is known to be inaccurate for locating the adsorption
transition [26]. It is usually assumed that x is small enough to
use Eq. (10) to determine 1/δ, but we will see that this is not
generally a good approximation.

The main way to estimate φ is to determine the finite-size
critical temperatures T (n)

a and then use Eq. (8) and the value
of 1/δ to find Ta. As before, the scaling variable x is small
and φ can be found by fitting the data to Eq. (7). The accuracy
of this method depends on how we locate T (n)

a . We use four
methods of calculating T (n)

a , which we list here for reference.
For further details and comments on the accuracy of each
method, see Ref. [17].

The first method, labeled “�”, is to consider the locations
of max �n, used to estimate 1/δ from Eq. (10), as estimates of
T (n)

a . Second, we calculate the Binder cumulant

U4(κ ) = 1 − 1

3

〈m4〉
〈m2〉2

, (11)

which tends toward a universal constant value at the critical
point in the limit of large n [27]. Intersections of curves of
U4 at different n with the curve at fixed nmin = 128 are used
to locate the finite-size critical temperatures. This method is
labeled “BC”.

The third method, labeled “R2”, uses the mean-squared
end-to-end radius. In the presence of a surface we distinguish
between the transverse and perpendicular components, with
respect to the surface. For either component i =‖ or ⊥,

〈
R2

i

〉
n

∼ n2νi , (12)

and the Flory exponent νi depends on the phase and dimension
of the system and is calculated by simply inverting Eq. (12):

νi = 1

2
log2

〈
R2

i

〉
n〈

R2
i

〉
n/2

. (13)

In the desorbed phase both perpendicular and transverse com-
ponents of 〈R2〉n scale as per the d-dimensional bulk. In the
adsorbed phase the components of ν differ, ν‖ takes on the
(d − 1)-dimensional bulk value and ν⊥ vanishes. At interme-
diate temperatures the components of ν cross and in fact the
intersections locate the finite-size critical temperatures T (n)

a .
The fourth method, labeled “ratio”, is to calculate the

exponent φ from the leading term of the order parameter. That
is, we invert Eq. (1) to obtain

φ = 1 + log2
un

un/2
, (14)

which is evaluated over a range of n. As a function of
temperature, φ vanishes at high temperatures and tends to
unity far below the critical temperature. Similar to the R2
method, curves of Eq. (14) cross over between these regimes
and intersect near the critical temperature. The position of
these intersections for different values of n are estimations of
T (n)

a .
As well as locating T (n)

a for use in the finite-size scaling
ansatz of Eq. (7), we can view Eq. (14) as a “direct” estimate
of φ over a range of finite n. In the limit n → ∞, these values
extrapolate to an alternative estimate of φ without reference to
the scaling form, Eq. (7), and its dependence on locating the
critical temperatures.

IV. RESULTS

We simulated SATs, SAWs, and NAWs using the FLAT-
PERM algorithm [28], an extension of the pruned and enriched
Rosenbluth method (PERM) [29]. FLATPERM is a chain-growth
algorithm so at each step in the simulation a lattice path of
length n is grown to length n + 1 by choosing an available site
adjacent to the current endpoint. The rule set for what qualifies
as an available site determines the class of lattice model that
is grown. SATs have the restriction that bonds between sites
may not overlap, although individual lattice sites may be
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TABLE I. Details of FLATPERM simulations. In all cases the num-
ber of samples and effectively independent samples is the average of
ten independent runs.

Max Samples at Ind. samples
Model length Iterations max length at max length

NAW 1024 4.4 × 105 3.6 × 1010 5.1 × 108

SAW 1024 4.4 × 105 3.5 × 1010 5.4 × 108

SAT 1024 4.4 × 105 3.4 × 1010 5.9 × 108

multiply occupied. SAWs have the additional restriction that
each lattice site may be occupied at most once. Finally, NAWs
are like SAWs but with the extra restriction that a valid next
step must not only be unoccupied but it must also have no
adjacent occupied sites (refer to Fig. 1). This is achieved by
checking the neighbors of each point in the atmosphere of the
endpoint of a walk and incurs very little extra computational
cost. In this work we used the FLATPERM algorithm to simulate
walks and trails on the simple cubic lattices up to length 1024.
We run 10 completely independent simulations for each case
to estimate the statistical error of thermodynamic averages.
Details of the simulations run in this work are summarized in
Table I.

The main output of the simulation is the density of states
Wn,m of walks and trails of length n with m contacts with the
surface, for all n � Nmax. All thermodynamic quantities given
in Sec. III are then given by the weighted sum

〈Q〉(κ ) =
∑

m QmκmWn,m∑
m κmWn,m

. (15)

We now compare results for NAWs with our previous data
for SAWs and SATs [17]. First, we show in Fig. 3 values of
T (n)

a for the four finite-size scaling methods and the fits to
Eq. (8) to determine the critical temperature Ta. For NAWs
the extrapolated values for each method are listed in Table II.
For specific values for SAWs and SATs, see Table II in
Ref. [17]. For all lattice models and methods, the inclusion
of the correction to scaling term is a significant improvement
over a power-law only approach and is not dependent on the

TABLE II. Exponents and critical temperatures for NAWs for
each method. All values are from fits with correction-to-scaling
terms.

Method 1/δ Ta φ

� 0.4688(13) 3.7557(85)
BC 3.707(12) 0.4922(17)
R2 3.7294(53) 0.4805(28)
Ratio 3.726(11) 0.4767(25)
Direct 0.4955(25)

precise value of �, provided that 0.5 � � � 1. In the limit
of long chains, all methods are in good agreement and we find
an average value of Ta = 3.274(9) for NAWs. This is less than
the critical temperature for SAWs, Ta = 3.520(6), indicating
that NAWs have an enhanced excluded volume effect, and
is in accordance with the estimate of Plascak et al. [10] for
SAWs with large repulsive monomer-monomer interaction. In
turn, the critical temperature for SAWs is less than the critical
temperature for SATs, Ta = 3.720(12).

The results for NAWs reaffirm a few issues with some of
the methods of analysis. In all cases it is clear that the peaks
of �n are a poor way to locate the critical temperature at finite
n compared to the other methods. That is, the assumption that
the scaling variable x is small breaks down for Eq. (10). While
the extrapolation to large n matches the other methods, this
raises the question of the validity of estimating the exponent
1/δ from max �n.

Another issue is with the Binder cumulant (BC) method
(red markers in Fig. 3), where there is a strong dependence
on the minimum value of n used to find the intersections of
Eq. (11). This dependence accounts for the different location
of the red curve relative to the other estimates for NAWs
compared to SAWs and SATs in Fig. 3.

Also, the estimates from this method diverge at larger
n, where small inaccuracies in the simulation weights are
amplified when calculating the fourth-order moment 〈m4〉. For
this method to be accurate at a given value of n would require
simulating walks to lengths larger than n.
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FIG. 3. Finite-size critical temperatures for three-dimensional lattice models (a) NAWs, (b) SAWs, and (c) SATs on the simple cubic lattice.
For each of the four methods the solid lines are fits with correction to scaling and dotted lines are power-law only. Data for SAW and SAT
models are from Ref. [17].
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FIG. 4. Exponents for each lattice model. The dashed gray line
marks the average estimate of the 3D crossover exponent φ =
0.484(7). Data for SAW and SAT models are from Ref. [17].

Following the method for SAWs and SATs outlined in
Ref. [17] we then use the critical temperatures and other
methods to calculate the exponents. The results are shown in
Fig. 4 and listed in Table II alongside those for SAWs and
SATs. We stress that the error bars are due to statistical error,
primarily from the curve fitting for the methods in Sec. III
and to a lesser extent from the simulation data. Since each
method is physically motivated based on known properties
of the critical point, it is the spread in values that provides
a complete estimation of the exponent φ. This spread is
larger for NAWs than for the other lattice models, but not
significantly so. Despite the issues just mentioned, no single
method stands out as better than the others. Nor are we able
to infer a trend between results for NAWs, SAWs, and SATs.
If we understand that NAWs are infinitely repulsive SAWs
and that SAWs are infinitely repulsive SATs then there is no
clear indication that φ is not universal with respect to repulsive
monomer-monomer interactions.

Finally, we can combine the results for all three lattice
models for an estimate of the exponent for three dimensions.
This is done in a few steps. First, we average the estimates of
φ for the R2, BC, and ratio methods together because, while
they are different ways to estimate the critical temperatures
T (n)

a , they all use the finite-size scaling form, Eq. (7), to deter-
mine the exponent. This makes them separate from the direct
estimation of φ from Eq. (14) and the 1/δ exponent. Then
for each lattice model these three estimations of the critical
exponent are averaged, under the assumption that φ = 1/δ.
Table III lists, for each lattice model, the critical temperatures
Ta, the value of φ averaged over only the finite-size scaling
methods, and the value of φ using all methods. Within error
bars, all three lattice models agree on the value of φ, and

TABLE III. Best results for the adsorption temperature and the
finite-size scaling estimates of φ for each lattice model. Bold values
are the combined result for the crossover exponent for each lattice
model and dimension. Data for SAW and SAT models are from
Ref. [17].

Tc FSS φ φ (= 1/δ)

NAW 3.274(9) 0.483(8) 0.482(13)
SAW 3.520(6) 0.484(4) 0.485(6)
SAT 3.720(12) 0.482(9) 0.484(2)
3D 0.484(7)

we report a value of φ = 0.484(7) for adsorption in three
dimensions.

V. CONCLUSION

We have simulated the adsorption of neighbor-avoiding
walks on the simple cubic lattice up to length 1024 using the
FLATPERM algorithm. In addition to the further study of NAWs
in their own right, the resulting critical behavior is in line
with expectations from finite-size scaling theory. We estimate
the critical exponent for the adsorption transition to be φ =
0.482(13) and the transition temperature is Ta = 3.274(9). At
first glance this value appears to be slightly lower than that for
SAWs or SATs but consistent within the error bar. As was the
case in our previous work [17], what is not apparent in this
final result is that there is a significant systematic error in any
individual estimate of φ due to the variety of valid methods of
analysis. This error is greater than the statistical error reported
and has been shown to be consistent with analogous studies
for the two-dimensional case where the value of the critical
exponent is not in doubt. With that in mind, we conclude that
the value of φ is in agreement with our previous values for
SAWs and SATs on the simple cubic lattice. Taken together,
we have a value of φ = 0.484(7) for three dimensions, which
is in good agreement with other estimates [6,10]. It also
further confirms that φ deviates from the mean-field value of
1/2 and is not superuniversal.

In addition, the variety of methods includes a direct esti-
mate of the 1/δ exponent and as was the case for SAWs and
SATs we find that it does not deviate from other methods of
analysis as a means of estimating the critical exponent φ. This
is further evidence against the case that the shift and crossover
exponents are different in three dimensions.

Considering NAWs as a different class of lattice path, the
smaller critical temperature in comparison to SAWs follows
from a reduction in entropy due to the stronger restriction on
the allowed configurations. Similarly, the critical temperature
of SAWs is lower than that of SATs. Considering NAWs as
the infinitely repulsive limit of ISAWs, φ has the same value
as the noninteracting regime. The same can be said for SAWs
as the infinitely repulsive limit of ISATs, so we do not see
any evidence that the critical exponent φ is not universal
with respect to monomer-monomer interactions. This is not
a surprising result when considering that we are really mod-
eling solvent quality and so the only effect of considering
NAWs as opposed to SAWs is an enhanced effective excluded
volume.
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