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Localized mode and nonergodicity of a harmonic oscillator chain
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We present a simple and microscopic physical model that breaks the ergodicity. Our model consists of coupled
classical harmonic oscillators, and the motion of the tagged particle obeys the generalized Langevin equation
satisfying the second fluctuation dissipation theorem. It is found that although the nonergodicity strength, which
is expected to detect the ergodicity breaking, for this model vanishes, the velocity autocorrelation function of the
tagged particle asymptotically oscillates. We analyze the model by using the molecular dynamics and the exact
diagonalization as well as the rigorous mapping to the generalized Langevin equation. Our analysis reveals that
the asymptotic oscillation is caused by a localized mode with an isolated frequency from the continuous phonon
spectrum.
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I. INTRODUCTION

The central question of the statistical physics, how a
system thermalizes, is still irresistible. For the unitary dy-
namics of the quantum mechanical systems, the eigenstate
thermalization hypothesis has been proposed and is being
studied actively [1–3]. In classical statistical systems, the
concept of ergodicity is also one of the most fundamental
problems. Recently, the concept is attracting much attention
in the research of the non-Markovian Brownian motion that
sometimes shows anomalous diffusion behavior. In the non-
Markovian dynamics, the memory effect of the bath, which is
ignored in the Markovian counterpart, is taken into account,
and the dynamics is described by the generalized Langevin
equation (GLE) [4]. Originally, the GLE was considered too
theoretical, but later non-Markovian dynamics following the
GLE have been observed in various numerical simulations as
well as in experiments [5–11]. Also, it has been shown that
the GLE is written explicitly in some cases [12,13]. Even in
the water, surprisingly, the Brownian motion exhibits non-
Markovian dynamics [13]. Furthermore, the GLE has been
applied to the quantum Brownian motion [14,15] as well as
to the molecular dynamics of open systems [16].

Here, we should notice that there is some confusion in
the recent discussion of the ergodicity. One of the causes
is in the definition of the ergodicity. In previous literatures,
there are at least two different definitions of the ergodicity.
The conventional definition of the ergodicity, that is, the long
time average is equal to the ensemble average, is considered
under a particular situation, where the initial configuration
of the system is in the thermal equilibrium. For example, in
Refs. [17–19], they considered the conventional ergodicity
and proposed some criteria for detecting the ergodicity of the
system. Considering the normal, i.e., Markovian, Langevin
equation, on the other hand, the ergodicity under arbitrary
initial conditions of the tagged (or focused) particle is often
considered. The latter ergodicity is differently defined as
follows: the distribution function of the velocity of the tagged

particle relaxes to the equilibrium one irrespective of the initial
condition. This definition is expressed as

lim
t→∞ P (v, t |v0, t0 = 0) = Peq(v), (1)

where P (v, t |v0, t0) is the transition probability of the velocity
of the tagged particle, and Peq(v) is the equilibrium distribu-
tion. The former ergodicity holds in this case as well. In some
recent researches [20,21], they considered the latter ergodicity
and established some criteria. We consider the ergodicity of
the latter definition in the present work.

The GLE is defined as

m
dv

dt
= −m

∫ t

0
�(t − s)v(s) ds + R(t ), (2)

where m is the mass of the tagged particle, �(t ) is the memory
function, and R(t ) is the random force. The last two quantities
are related with each other through the second fluctuation-
dissipation theorem [4,22]

〈R(t )R(0)〉 = mkBT �(t ), (3)

where kB is the Boltzmann constant and T is the temperature
of the bath. The GLE (2) is derived formally by the projection
method [4,23–26] or the continued fraction method [27,28].
For the system described by the GLE, it is known that the
transition probability of the velocity behaves as [29]

P (v, t |v0, t0 = 0) ∝ exp

(
− m

2kBT

[v − v0 a(t )]2

1 − a2(t )

)
, (4)

where a(t ) is the velocity autocorrelation function (VACF) of
the tagged particle

a(t ) := 〈v(t )v(0)〉
〈v2(0)〉 (5)

with v(0) = v0. Here, 〈·〉 means the average over the initial
velocity, v(0), and the random force, R(t ). According to
the projection method, the average over R(t ) is equivalent
to and thus can be replaced by the average over the initial
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configuration of the bath degrees of freedom [4,24,26], where
the initial distribution of the bath is assumed to be in the
thermal equilibrium. In the discussion of the ergodicity of
the latter definition [Eq. (1)], the initial distribution of v(0)
is arbitrary. The VACF is also the Green function that satisfies

da(t )

dt
= −

∫ t

0
�(t − s)a(s) ds. (6)

According to the definition of the ergodicity we consider, if
the tagged particle is ergodic, then

lim
t→∞ a(t ) = 0, (7)

irrespective of the initial condition, v(0).
In the meantime, a quantity that could detect the noner-

godicity of the GLE has been proposed by several authors
[20,30–32]. The quantity, which is denoted by b, is called the
“nonergodicity strength,” and defined by

b :=
[

1 + lim
z→0

�(z)

z

]−1

. (8)

Here, �(z) is the Laplace transform of the memory function
�(t ). According to Refs. [20,31,32], b > 0 (b = 0) would
indicate that the system is nonergodic (ergodic) in the present
definition.

The nonergodicity strength has been introduced by consid-
ering the convergence of the VACF of the tagged particle

lim
t→∞ a(t ) = lim

z→0
za(z) =

[
1 + lim

z→0

�(z)

z

]−1

, (9)

where the first equality is derived from the final value theorem,
and the second one is by using the Laplace transform of a(t )
obtained from Eq. (6):

a(z) = 1

z + �(z)
. (10)

Thus, the vanishing nonergodicity strength would mean the
convergence of the VACF, in other words, the nonergodicity
is attributed to the anomalous diffusion.

Bao et al. showed that the nonergodicity strength (8) can
distinguish the ergodicity breaking in some examples [20,31].
It was pointed out more recently, however, that a particular
class of the GLE has a nonergodic solution, even though the
integral of the memory function is nonzero [33]. In this case,
the VACF of the tagged particle oscillates asymptotically. In
Ref. [33], the memory functions that yield the nonergodic
behavior have been discussed along with a set of conditions
for the GLE to be physical. However, physical models that
have such a memory function have not been known so far.

In this paper, we present a microscopic physical model that
exhibits a nonergodic behavior, even though it has vanishing
nonergodic strength, b = 0. Our model consists of harmonic
oscillators. The total Hamiltonian of our model is given by

H =
∞∑

n=−∞

[
1

2
q̇2

n + 1

2
(qn − qn+1)2

]
+ m

2
ẋ2 + k

2
(x − q0)2,

(11)

where x is the coordinate of the tagged particle, the first term
represents a harmonic chain of infinite particles, the second

FIG. 1. Schematic picture of our model. The harmonic oscillator
chain in the orange dashed box is regarded as the bath, and the
tagged particle is connected to the center of harmonic chain with
the harmonic interaction. The motion of all the particles is restricted
in one dimensional, and they are connected by ideal springs. See
Eq. (11) for the detailed definition of the model.

one is the kinetic energy of the tagged particle, and the third
one denotes the interaction between the chain and the tagged
particle. The mass of the particles and the spring constant
within the chain are set as unity without loss of generality,
while the mass of the tagged particle and the spring constant
between the chain and the tagged particle are m and k, respec-
tively. The schematic image of the present model is given in
Fig. 1. The harmonic chain with infinite length plays a role
of the “thermal bath” for the tagged particle. The harmonic
oscillator systems are widely used in analysis of the GLE
[34–39]. The memory function and the VACF of our model
can be obtained analytically in the thermodynamic limit. We
demonstrate that the VACF of the tagged particle oscillates
asymptotically. We also investigate the model numerically by
the molecular dynamics and the exact diagonalization, and
elucidate that the ergodicity breaking is caused by a localized
mode with an isolated frequency from the continuous phonon
spectrum.

This paper is organized as follows. In Sec. II, we derive the
analytical solution in the thermodynamic limit. In Sec. III, we
introduce our numerical method, the molecular dynamics and
the exact diagonalization, and present the numerical results
for the present model. Finally, in Sec. IV, we summarize
our results and discussion. In the Appendix, we present a
method to make sampling from the Boltzmann distribution for
a harmonic oscillator chain.

II. ANALYTICAL SOLUTION

A. Laplace transform of generalized Langevin equation

First of all, we consider the GLE of the present model,
where the memory function and the VACF can be obtained
analytically from the microscopic Hamiltonian (11). In this
paper, we derive the GLE by the method used in Ref. [37].

The Laplace transform of a function f (t ) is defined as

f (z) :=
∫ ∞

0
f (t )e−zt dt. (12)
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As for the Laplace transform of derivatives, it is well known
that the following relations hold:

df

dt
= zf (z) − f (0), (13)

d2f

dt2
= z2f (z) − ḟ (0) − zf (0). (14)

By taking the Laplace transform, the left-hand side of Eq. (2)
becomes

m
dv

dt
= m

d2x

dt2
= m(z2x(z) − ẋ(0) − zx(0)). (15)

On the other hand, since the first term in the right-hand side
of Eq. (2) is a convolution of �(t ) and v(t ), the result of the
Laplace transform of the right-hand side becomes

−m�(z)v(z) + R(z) = −mz�(z)x(z) + m�(z)x(0) + R(z).

(16)

B. Memory function

The analytic solution for the memory function is derived
in the form of Laplace transform. First of all, the equations of
motion are derived from the Hamiltonian (11) as

m
d2x

dt2
= −k(x − q0), (17)

d2q0

dt2
= −k(q0 − x) − (q0 − q1) − (q0 − q−1), (18)

d2qn

dt2
= −(qn − qn−1) − (qn − qn+1) for n �= 0. (19)

We apply the Laplace transform to these equations. By taking
the Laplace transform of the both sides of Eq. (19), and using
the relation (13), we obtain

(z2 + 2)qn(z) = qn−1(z) + qn+1(z) + q̇n(0) + zqn(0). (20)

Here, we assume the following relation between qn(z) and
qn+1(z):

qn+1(z) = A(z)qn(z) + Bn+1(z) (21)

for n � 0. Note that we assume that A(z) does not depend on
n. If this relation is satisfied, we can rewrite Eq. (20) as

qn(z) = qn−1(z)

z2 + 2 − A(z)
+ q̇n(0) + zqn(0) + Bn+1(z)

z2 + 2 − A(z)
. (22)

By comparing with Eq. (21) for qn−1(z) and qn(z), we have

A(z) = 1

z2 + 2 − A(z)
, (23)

Bn(z) = q̇n(0) + zqn(0) + Bn+1(z)

z2 + 2 − A(z)
for n > 0. (24)

By solving Eq. (23), we obtain

A(z) = z2 + 2 − z
√

z2 + 4

2
, (25)

where we choose one of the two solutions so that the Laplace
transform of the memory function becomes positive. Other-
wise, it gives an unphysical result. For n � 0, we can consider

the similar relation

qn−1(z) = A(z)qn(z) + Bn−1(z) (26)

with the same A(z) and

Bn(z) = q̇n(0) + zqn(0) + Bn−1(z)

z2 + 2 − A(z)
for n < 0. (27)

Next, let us consider the Laplace transform of Eq. (18):

z2q0(z) − q̇0(0) − zq0(0)

= −k(q0(z) − x(z)) − (q0(z) − q−1(z))

− (q0(z) − q1(z)). (28)

By inserting Eqs. (21) and (26) for n = 0, we have

q0(z) = k

k + z
√

z2 + 4
x(z) + B0(z), (29)

where B0(z) is defined as

B0(z) := q̇0(0) + zq0(0) + B1(z) + B−1(z)

k + z
√

z2 + 4
. (30)

Note that according to the recursion relations, Eqs. (24) and
(27), B0(z) is a linear combination of the initial condition
{qn(0), q̇n(0)}∞n=∞, but it depends on neither x(0) nor ẋn(0).

Then, we can write down the Laplace transform of Eq. (17)
as

m(z2x(z) − ẋ(0) − zx(0))

= −k(x(z) − q0(z)) = − kz
√

z2 + 4

k + z
√

z2 + 4
x(z)+kB0(z).

(31)

By comparing with Eq. (16), we obtain

�(z) = k
√

z2 + 4

m(k + z
√

z2 + 4)
(32)

and

R(z) = −m�(z)x(0) + kB0(z). (33)

From Eq. (32), we conclude

lim
z→0

�(z) = 2

m
, (34)

i.e., b = 0. Thus, the nonergodic strength indicates that the
motion of the tagged particle is ergodic.

C. Second fluctuation dissipation theorem

Next, we confirm the second fluctuation dissipation theo-
rem. The second fluctuation dissipation theorem for the GLE
is written as

〈R(t )R(0)〉 = mkBT �(t ), (35)

and the Laplace transform of the relation yields

〈R(z)R(0)〉 = mkBT �(z). (36)

By using Eq. (33), the left-hand side of Eq. (36) is evaluated
as

〈R(z)R(0)〉 = −m�(z)〈x(0)R(0)〉 + k〈B0(z)R(0)〉. (37)
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From the GLE (2), R(0) should satisfy

m
d2x

dt2

∣∣∣∣
t=0

= R(0), (38)

while from the equation of motion we have

m
d2x

dt2

∣∣∣∣
t=0

= −kx(0) + kq0(0). (39)

These relations yield

R(0) = −kx(0) + kq0(0). (40)

We assume the initial condition is in the thermal equi-
librium. Since the Hamiltonian is translational invariant, one
of the coordinates can be fixed to a constant. Here, we set
q0(0) = 0 without loss of generality. Then, the Boltzmann
distribution function is factorized as

P (x(0), ẋ(0), {qn(0), q̇n(0)})

= N (x(0); kBT/k)δ(q0(0))Pq ({qn(0)}n�=0)

×N (ẋ(0); kBT/m)
∏
n

N (q̇n(0); kBT ), (41)

where kB is the Boltzmann constant, T is the temperature,
N ( · ; σ 2) is the Gaussian distribution with mean zero and
variance σ 2, and

Pq ({qn(0)}n�=0) ∝ exp

[
− 1

2kBT

∑
n

(qn(0) − qn+1(0))2

]
(42)

with q0(0) = 0. Since x(0) decouples with other degrees of
freedom and q0(0) = 0,

〈ẋ(0)R(0)〉 = 〈qn(0)R(0)〉 = 〈q̇n(0)R(0)〉 = 0 (43)

holds for all n, and the second term in Eq. (37) vanishes.
Finally, from

〈x(0)R(0)〉 = −k〈x2(0)〉 = −kBT (44)

we obtain the second fluctuation dissipation relation, Eq. (36).

D. Velocity auto correlation function

Finally, we derive the velocity auto correlation function
(VACF) of the tagged particle. From the GLE (2), the velocity
auto correlation function,

a(t ) := 〈v(t )v(0)〉
〈v2(0)〉 , (45)

satisfies

da(t )

dt
= −

∫ t

0
�(t − s)a(s) ds. (46)

We apply the Laplace transform to the equation, and obtain

za(z) − a(0) = −�(z)a(z). (47)

By definition, a(0) = 1, then we have

a(z) = 1

z + �(z)
. (48)

We substitute the Laplace transform of the memory function
[Eq. (32)] to Eq. (48), and then we finally arrive at the explicit
form of the VACF:

a(z) = m(k + z
√

z2 + 4)

(mz2 + k)(
√

z2 + 4) + mkz
. (49)

By the relation between the Fourier and the Laplace transfor-
mations, the Fourier transform of the VACF, ã(ω), is obtained
as

ã(ω) = Re a(−iω) = Re

[
(mk2)

√
4 − ω2

(k − mω2)2(4 − ω2) + (mk)2ω2

− iω
m(k − mω2)(4 − ω2) − m2k2

(k − mω2)2(4 − ω2) + (mk)2ω2

]
. (50)

The first term in the right-hand side of Eq. (50) is real
for |ω| � 2. It should be noted that not only the first term,
which gives a continuous spectrum, contributes to ã, but
also the second term may have a nonvanishing contribution
when the denominator becomes zero. Indeed the denominator
in the right-hand side of Eq. (50) can be zero for any value
of k > 0, which causes a Dirac δ function in the spectrum
through the Cauchy principal value. Eventually, the spectral
density ã(ω) is given by

ã(ω) = (mk2)
√

4 − ω2

(k − mω2)2(4 − ω2) + (mk)2ω2
�(2 − |ω|)

+α δ(ω − ωiso), (51)

where �(x) is the Heaviside step function, ωiso is the solution
of (

k − mω2
iso

)2(
4 − ω2

iso

) + (mk)2ω2
iso = 0, (52)

and α is the residue of the pole at ω = ωiso:

α = lim
ω→ωiso

2πi(ω − ωiso)a(−iω). (53)

It is straightforward to show that a(−iω) has a simple pole
at ω = ωiso > 2. First, the left-hand side of Eq. (52) takes
4m2k2 (>0) at ω2

iso = 4 and k(1 ± m)/m, and becomes nega-
tive for ω2

iso 	 4. Therefore, k(1 − m)/m > 4 is a necessary
condition for Eq. (52) to have multiple solutions for ω2

iso >

4. However, if k(1 − m)/m > 4 holds, the discriminant of
Eq. (52) as a cubic equation of ω2

iso is always negative. Thus,
Eq. (52) has just one simple zero at ω = ωiso > 2.

Hereafter, the parameters are set as m = k = 1. The posi-
tion of the pole is evaluated as

ωiso = 2.09355577 . . . (54)

which is isolated from the continuous spectrum given by the
first term in Eq. (51). Thus, the VACF of the tagged particle
has a contribution of the δ function with an isolated frequency
in addition to the continuous spectrum function, which means
that the VACF does not decay even in the long time limit, and
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FIG. 2. VACF and its spectrum (inset) obtained by the molecular
dynamics simulation N + 1 = 104. The spectrum is obtained by
the discrete Fourier transformation. In the inset, the divergence
around ω 
 ωiso (indicated by the vertical dashed line) manifests the
existence of a δ function. The analytic solution for ã(ω) [Eq. (50)] is
plotted by the dashed curve in the inset.

oscillates asymptotically. We conclude that the present model
breaks the ergodicity, even though the nonergodicity strength
vanishes.

III. NUMERICAL SIMULATION

A. Molecular dynamics

The inverse Fourier transformation of Eq. (51) is not easy
numerically nor analytically. In order to observe the behavior
of the VACF as a function of time in more detail and confirm
the validity of our analytic solution, we analyze the present
model with a finite chain length, N , by using the molecu-
lar dynamics simulation. We consider the periodic boundary
conditions, qn+N = qn is imposed. The total number of the
time step is 105, the step size is 10−2, and thus the total
simulation time is 103. For the numerical integration scheme,
we adopt the velocity Verlet method. The initial configuration
is sampled from the Boltzmann distribution at temperature
kBT = 1 by using the total shift sampling method (see the
Appendix). We take the average of the time series data over
106 initial configurations.

The result of simulation is given in Fig. 2. It exhibits a clear
oscillation for t > 20 in the VACF. The inset in Fig. 2 shows
the spectrum of the VACF, i.e., the discrete Fourier transform
of a(t ). Near ω = 2, we observe a singular behavior, which
manifests a δ peak in the long time limit. The frequency is
close to ωiso obtained from the exact solution [Eq. (54)]. Thus,
we numerically confirm that the VACF oscillates asymptoti-
cally, which is consistent with the analytic solution.

B. Exact diagonalization

In order to reveal the origin of the oscillation, we further
analyze the system by using the exact diagonalization. The
total Hamiltonian with m = k = 1 can be written in the fol-
lowing quadratic form:

H = 1
2 q̇ t q̇ + 1

2 q t Lq, (55)

FIG. 3. Density of states of the normal modes obtained by the
exact diagonalization N + 1 = 104 (filled boxes). The phonon mode
of a simple harmonic chain is represented by the solid line. The arrow
(labeled as ω0) represents the position of the isolated normal mode
with the largest frequency, ω0. The inset shows the size dependence
of ωi − ωi+1 for i = 0 (blue circles), 1 (purple squares), 2 (green
downward triangles), 3 (red upward triangles). The gap between ω0

and ω1 in the N = ∞ limit is estimated as 0.09355570(4) by the least
squares method.

where q = {q0, · · · , qN−1, x} and L is the (N + 1) × (N +
1) Laplacian matrix. The square root of the eigenvalue of
the Laplacian matrix gives the the frequency of each nor-
mal mode, denoted as ωi (i = 0, 1, . . . , N ). The eigenvec-
tors represent the amplitude of the eigenmodes, denoted as
{Ai (n)}Ni=0, where n is the sight number and i corresponds
to the ith eigenvalue. We assume the descending order for
the frequencies: ω0 � ω1 � ω2 � · · · . In Fig. 3, we plot the
density of state obtained,

ρ(ω) 
 1

N + 1

N∑
i=0

δ(ω − ωi ), (56)

by the exact diagonalization for N + 1 = 104. The continuous
spectrum observed for 0 < ω < 2 corresponds to the phonon
mode of a simple harmonic chain. In addition, at ω 
 2.09, an
isolated normal mode exists. As shown in the inset of Fig. 3,
the gap between the largest and the next frequencies, ω0 − ω1

converges to a finite value in the N = ∞ limit, while the gap
between ωi and ωi+1 vanishes for i � 1. By the least squares
fitting by using the results whose sizes are from N + 1 = 103

to 104, we obtain ω0 − ω1 = 0.09355570(4) for N → ∞,
which coincides with the gap between the isolated mode and
the continuum, ωiso − 2, obtained from the analytic solution
[Eq. (54)].

In order to assess the spatial structure of the isolated normal
mode, next, we plot the amplitude of the normal mode, A0(n),
near n = 0. As clearly seen in Fig. 4, the isolated normal mode
is localized around n = 0, at which the oscillator couples
to the tagged particle. The inset of Fig. 4 shows that the
amplitude of the isolated normal mode decays exponentially.
From these observations, we conclude that the asymptotic
oscillation in the VACF is caused by the isolated and localized
normal mode around n = 0.
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FIG. 4. Amplitude of the isolated normal mode, A0(n), near
n = 0 for N + 1 = 104, m = 1.0, and k = 0.2, 0.4, 0.8, 1.0. The
horizontal axis, n, denotes the site index of the bath particles. The
inset shows a semi-log plot of the amplitude squared.

IV. SUMMARY AND DISCUSSION

In the present paper, we proposed a simple physical model
of harmonic oscillators [Eq. (11)], in which the dynamics of
the tagged particle is described by the GLE and the memory
function satisfies the second fluctuation dissipation theorem.
By deriving the analytic solution for the memory function
and the VACF, and also by using the numerical simulations,
we revealed two notable features of our model: First, it
breaks the ergodicity and the VACF oscillates asymptotically,
even though the nonergodic strength [Eq. (8)] vanishes. This
behavior is observed for any finite mass of the tagged particle
and any finite coupling constant between the chain and the
particle. We point out that the failure of the nonergodic
strength in the present model is due to the abuse of the final
value theorem in Eq. (9). The theorem holds only if a(t )
converges to a final value. Clearly, this is not the case for
the present model. Finding a more robust criterion for the
ergodicity remains as an interesting future problem.

Second, we found a localized mode with an isolated fre-
quency from the continuous phonon spectrum, and that the
existence of such a localized mode breaks the ergodicity of the
system. We should mention that some physical models have
been proposed, which exhibit similar localized and isolated
modes: In Ref. [38], a finite-size system has been proposed,
while in Ref. [40] a harmonic oscillator chain system with a
light impurity has been considered. In both cases, however,
the relation between the existence of such localized mode and
the ergodicity breaking was not focused.

The memory function of the present model does not decay,
but oscillates asymptotically. It should be pointed out that
this behavior violates one of the three conditions proposed
in Ref. [33] as necessary conditions so that the GLE be-
comes physical. The conditions are, (i) the Laplace transform
of the memory function should vanish in the large-z limit,

limz→∞ �(z) = 0, (ii) the memory function should decay in
the long time limit, limt→∞ �(t ) = 0, and (iii) the magnitude
of the memory function should be smaller than the initial
value, |�(t )| < |�(0)|. Although the memory function in the
present study is derived analytically from a microscopic phys-
ical model and satisfies the conditions (i) and (iii), it breaks
the condition (ii). This fact tells us that the condition (ii) is
not necessary for the GLE to be physical.
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APPENDIX: TOTAL SHIFT SAMPLING

1. Algorithm

We develop a method to perform sampling for a harmonic
oscillator chain, called the “total shift sampling.” Our purpose
is to generate configurations according to the Boltzmann
distribution, Eq. (41). Since the distribution function can be
factorized into one-dimensional Gaussian distributions for
x(0), ẋ(0), and {q̇n(0)}, generation of these random variables
is straightforward. The remaining problem is thus generating
{qn(0)} according to the probability distribution (42).

Here, we consider a finite chain of length N with periodic
boundary conditions, qi+N = qi . For simplicity, we drop ‘(0)’
and renumber the variables as q1, q2, . . . , qN and set q1 = 0.
The joint probability distribution function is then written as

Pq

({qn}Nn=2

) ∝ e
− 1

2σ2

∑N
n=1(qn+1−qn )2

(A1)

with σ 2 = kBT .
Sampling from the above distribution can be achieved

according to the following procedure: First, we sample N real
random numbers, {rn}Nn=1, from the Gaussian distribution with
variance σ 2. Then, we determine {qn}Nn=2 recursively as

qn+1 = qn + rn − 1

N

N∑
�=1

r� =
n∑

j=1

rj − n

N

N∑
�=1

r�. (A2)

Note that the periodic boundary condition

qN+1 = qN + rN − 1

N

N∑
�=1

r� =
N∑

j=1

rj − N

N

N∑
�=1

r� = 0

(A3)

is satisfied by construction.
Then, {qn}Nn=2 satisfy the distribution Eq. (A1). It is easy to

confirm the marginal distribution of a particular variable, but
the joint probability distribution is not trivial.
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2. Validity of total shift sampling

We proof the validity of our algorithm. We can represent the distribution obtained by the above procedure as

Pq

({qn}Nn=2

) ∝
∫

· · ·
∫ N∏

n=1

drnδ

(
qn+1 −

(
qn + rn − 1

N

N∑
�=1

r�

))
e
− 1

2σ2

∑N
i=1 r2

i , (A4)

where δ(·) is the Dirac δ function. We rewrite the Dirac δ function in the right-hand side as∫
· · ·

∫ N∏
n=1

drn δ

(
qn+1 −

(
qn + rn − 1

N

N∑
�=1

r�

))
e
− 1

2σ2

∑N
i=1 r2

i

=
∫

· · ·
∫ {

N∏
n=1

drn dkn

}
e
∑N

n=1[−ikn(qn+1−(qn+rn− 1
N

∑N
�=1 r� ))− 1

2σ2 r2
n ]
. (A5)

The exponent can be transformed as

N∑
n=1

[
−ikn

(
qn+1 −

(
qn + rn − 1

N

N∑
�=1

r�

))
− 1

2σ 2
r2
n

]

=
N∑

n=1

[−ikn(qn+1 − qn)] −
N∑

n=1

1

2σ 2

[
rn − σ 2

{
ikn − i

1

N

N∑
n=1

kn

}]2

− σ 2

2

N∑
n=1

k2
n + σ 2

2N

(
N∑

n=1

kn

)2

. (A6)

By performing the Gaussian integration with respect to {rn}Nn=1, we obtain

Pq

({qn}Nn=2

) ∝
∫

· · ·
∫ {

N∏
n=1

dkn

}
e
∑N

n=1[−ikn(qn+1−qn )]− σ2

2

∑N
n=1 k2

n+ σ2

2N
(
∑N

n=1 kn )2
. (A7)

Then, we introduce a new variable, Q = ∑N
n=1 kn, in the right-hand side as∫

· · ·
∫

dQ

{
N∏

n=1

dkn

}
δ

(
Q −

N∑
n=1

kn

)
e
∑N

n=1[−ikn(qn+1−qn )]− σ2

2

∑N
n=1 k2

n+ σ2

2N
Q2

=
∫

· · ·
∫

dQdη

{
N∏

n=1

dkn

}
e−iη(Q−∑N

n=1 kn )+∑N
n=1[−ikn(qn+1−qn )]− σ2

2

∑N
n=1 k2

n+ σ2

2N
Q2

. (A8)

We evaluate the exponent as

−iη

(
Q −

N∑
n=1

kn

)
+

N∑
n=1

[−ikn(qn+1 − qn)] − σ 2

2

N∑
n=1

k2
n + σ 2

2N
Q2

= −σ 2

2

N∑
n=1

[
kn + i

1

σ 2
(qn+1 − qn − η)

]2

− 1

2σ 2

N∑
n=1

(qn+1 − qn − η)2 − iηQ + σ 2

2N
Q2. (A9)

After performing the Gaussian integration with respect to {kn}, we have

Pq

({qn}Nn=2

) ∝
∫∫

dQdη e
− 1

2σ2

∑N
n=1(qn+1−qn−η)2−iηQ+ σ2

2N
Q2

. (A10)

The exponent is further transformed as

− 1

2σ 2

N∑
n=1

(qn+1 − qn − η)2 − iηQ + σ 2

2N
Q2 = − 1

2σ 2

N∑
n=1

(qn+1 − qn)2 + η

σ 2

N∑
n=1

(qn+1 − qn) − N

2σ 2
η2 − iηQ + σ 2

2N
Q2

= − 1

2σ 2

N∑
n=1

(qn+1 − qn)2 − N

2σ 2

(
η + iσ 2

N
Q

)2

. (A11)

Here, we use the periodic boundary condition,
∑N

n=1(qn+1 − qn) = qN+1 − q1 = 0. Finally, we obtain the joint distribution as

Pq

({qn}Nn=2

) ∝
∫ ∫

dQdη e
− 1

2σ2

∑N
n=1(qn+1−qn )2− 1

2Nσ2 (η− iσ2

N
Q)2 ∝ e

− 1
2σ2

∑N
n=1(qn+1−qn )2

. (A12)
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