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Critical Casimir interactions and percolation: The quantitative description of critical fluctuations
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Casimir forces in a critical medium are produced by the spatial suppression of order parameter fluctuations.
In this paper we address the question of how fluctuations of a critical medium are related to the magnitude of
critical Casimir interactions. Namely, for the Ising model we express the potential of critical Casimir interactions
in terms of Fortuin-Kasteleyn site-bond correlated percolation clusters. These clusters are a quantitative
representation of fluctuations in a medium. We propose a Monte Carlo method for the computation of the Casimir
force potential which is based on this relation. We verify this method by computation of Casimir interactions
between two disks for the two-dimensional Ising model. The method is also applied to the investigation of
a nonadditivity of the critical Casimir potential. The nonadditive contribution to three-particle interaction is
computed as a function of the temperature and the separation between disks. The benefit of the proposed method
is that it lets us compute the multiparticle interaction explicitly.
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I. INTRODUCTION

Critical behavior in the vicinity of the second-order phase
transition point is characterized by large-scale fluctuations
of the order parameter. The appearance of forces due to
the spatial confinement of fluctuations in the vicinity of the
critical point was predicted by Fisher and de Gennes [1]. This
phenomenon in critical media is now known as the critical
Casimir (CC) effect [2–4]. One can observe the appearance of
CC forces in a critical binary mixture near its consolute point
[5]. Two colloidal particles in a fluctuating medium exhibit
attraction. The observation of colloidal particle aggregation in
a critical binary mixture was described in [6]. The interaction
between a colloidal particle and a planar substrate has been
measured directly using total internal reflection microscopy
[7,8]. Critical depletion in colloidal suspensions has been
studied in many experiments [9–13] (see Ref. [14] for a re-
view). Recently, the nonadditivity of CC interactions between
three colloidal particles was studied experimentally [15]. Ex-
perimentally, it has been shown that, in a lipid membrane
consisting of two different types of lipids, the second-order
phase transition may occur [16,17]. Such a transition has been
observed in membrane-forming plasma vesicles [18].

The analytical computation of CC forces is a difficult
problem. A critical binary mixture belongs to the universality
class of the Ising model. Therefore, one can use numerical
simulations of the Ising model to extract information about
CC interactions for particular geometry and boundary condi-
tions. The CC force and its scaling functions for the three-
dimensional (3D) Ising universality class with and without
the bulk field for the film geometry and various boundary
conditions have been studied numerically [19–24]. The CC
force between a spherical particle and a plane for the 3D
Ising universality class has been studied in Ref. [25]. A
numerical algorithm for the computation of CC interactions

between two particles in the presence of the negative bulk
field for the 3D Ising model has been proposed in [26] and
the interaction of a particle with two walls has been studied in
[27]. Numerical methods are also used for the computation of
critical interactions within the mean-field (MF) universality
class. The CC force between two colloidal particles in three
dimensions was studied using the conformal transformation
in Refs. [28,29]. Mean-field interactions between an elliptic
particle and a wall [30] and between two colloidal particles in
the presence of the bulk ordering field [31] have been studied.
Nonadditive interactions for the MF universality class have
been investigated for plane-particle-particle [32] and three-
particle [33] geometries.

Experimental observations of the phase separations in 2D
membranes demonstrate the need for the study of the critical
behavior of the 2D Ising model with appropriate geometries
that have the same universality class. For the stripe geometry
the CC force may be computed analytically [34–37]. Results
for the CC force between two disks for the 2D Ising model
with the bulk field have been obtained via the Derjaguin ap-
proximation [38]. An alternative method for the computation
of the CC interaction between a mobile disk and a wall has
been proposed [39]. The interaction between inclusions in
a critical 2D membrane has been studied in [40] by using
the Bennett method. The torque, acting on a needle near a
wall, has been studied in Ref. [41]. The phase diagram of a
ternary solvent-solvent-colloid mixture represented by the 2D
Ising model with disklike particles has been investigated by
using the grand-canonical insertion technique [42]. Recently,
fluctuation-induced Casimir interactions in colloidal suspen-
sions at the critical point in the 2D system have been studied
by the geometric cluster algorithm [43]. This algorithm is
capable of moving the particles and mixing the medium. Then
two-particle and multiparticle interactions are extracted from
particle distribution functions. For the 2D Ising model at
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criticality one can use the power of conformal transforma-
tions for analytical evaluation of CC interactions between
inclusions [18,43]. Recently, conformal invariance has been
used for the investigation of interactions between rodlike
particles [44].

In the present article we propose a short and elegant
expression for CC interactions between objects based on the
critical percolation clusters. This method applies to any spatial
dimension (including three dimensions). The method intro-
duced is based on the counting of some percolation clusters
“touching” immersed objects.

The paper is organized as follows. In the next section we
express the interaction potential of the CC force in terms of
clusters of Fortuin-Kasteleyn site-bond percolation. Contrary
to previously existing methods, the proposed algorithm allows
performing the simulation for several objects and for mutual
separations between these objects during a single run. We
verify the numerical method by computing CC interactions
between two disks and comparing them with the results of
another numerical approach. Then the proposed method is
applied to the computation of the nonadditive interactions be-
tween three particles as a function of the inverse temperature.
We end with a summary and conclusions.

II. CASIMIR INTERACTION EXPRESSED VIA CRITICAL
PERCOLATION CLUSTERS

Let us consider the Ising model on a simple square lattice
with periodic boundary conditions. All distances are measured
in lattice units. The classical spin σi = ±1 is located at a site
i of the lattice. The inverse temperature is β = 1/kBT . The
standard Hamiltonian of the bulk system (no restrictions for
spin direction) for a spin configuration {σ } reads

Hb({σ }) = −J
∑
〈ij〉

σiσj , (1)

where J = 1 is the interaction constant and the sum 〈ij 〉
is taken over all pairs of neighboring spins. The partition
function of the model is given by the sum over the total
set 〈σ 〉 of all spin configurations Zb = ∑

〈σ 〉 e
−βHb({σ }). The

corresponding free energy of the bulk system is Fb(β ) =
− 1

β
ln[Zb(β )]. One can rewrite the partition function in terms

of the Fortuin-Kasteleyn correlated site-bond percolation [45]
(reviews on percolation theory are given in Refs. [46–48]). For
every bond between two spins σi and σj we introduce the bond
variable nij , which can take values 0 (open) and 1 (closed). We
introduce the probability p = 1 − e−2β for a bond between
two parallel σi = σj spins to be closed nij = 1. In our case of
homogeneous interactions with the fixed constant J = 1, the
value of this probability p does not depend on spin indices
ij . The probability of a bond between parallel spins being
open nij = 0 is 1 − p = e−2β (the concept of open and closed
bonds between parallel spins was proposed by Coniglio and
Klein [49]). A bond between two antiparallel σi = −σj spins
is always open nij = 0. We denote by {n} the particular
configuration of bond variables. The standard expression for
the partition function may be rewritten as the sum over the

entire set 〈n〉 of configurations of open and closed bonds

Zb(β ) =
∑
〈σ 〉

e−βHb({σ }) =
∑
〈σ 〉

∏
〈ij〉

eβσiσj

= eβNb

∑
〈σ 〉

∑
〈n〉

∏
〈ij〉

[
(1 − p)δnij ,0 + pδnij ,1δσi ,σj

]

= eβNb

∑
〈n〉

[
pnc ({n})(1 − p)Nb−nc ({n})2c({n})

]
, (2)

where Nb is the total number of bonds in the system, nc({n})
is the number of closed bonds, c({n}) is the number of clusters
of connected spins in the configuration {n}, and 2 = q is the
number of spin states for the Ising model. The set 〈n〉 consists
of 2Nb different bond configurations.

Clusters of parallel spins connected by closed bonds are
called physical clusters (contrary to geometrical clusters of
parallel spins). A detailed derivation of the partition function
and expressions of physical quantities such as energy, specific
heat, magnetization, and magnetic susceptibility in terms of
physical clusters have been provided by De Meo et al. [50].
The Fortuin-Kasteleyn correlated site-bond percolation is the
basis of the Swendsen-Wang numerical cluster algorithm for
spin models [51]. We write Eq. (2) in the form of the Ising
model (e.g., σi = ±1 and q = 2 is the number of spin states).
It is also possible to rewrite it for the q-state Potts model (σi =
0, 1, . . . , q) with an arbitrary value of q. This means that this
approach generalizes CC interactions for the Potts model.

Let us clarify the definition of a cluster of connected spins.
Two spins σi and σj are connected if the bond between
these spins is closed nij = 1; otherwise, these spins are not
connected. The set of all spins connected to each other by
closed bonds is called a cluster. By the definition of closed
bonds, all spins in a given cluster are parallel. However, not
every pair of parallel neighboring spins belongs to the same
cluster. Let us note that, in the last line of Eq. (2), the sum
is taken only over the set 〈n〉 of all possible configurations
of open and closed bonds (a total of 2Nb configurations).
At the same time, for every particular configuration {n}, the
contribution from all possible −1 and +1 cluster configura-
tions is given by the term qc({n}) = 2c({n}), which counts the
number of clusters c({n}) for this configuration. The example
of such a bond configuration on the square lattice is given
in Fig. 1(a), where closed bonds are shown by solid lines
and open bonds are not indicated. The directions of all spins
in Fig. 1(a) are not specified because each cluster can take
both possible directions −1 and +1. Let us now consider the
system with an immersed particle (or particles). In terms of
the Ising model this means that all spins of such a particle
are fixed [25,26,39,43]. Figure 1(b) shows the example of a
disk of radius R = 2.5 with the center located at the point
(100,100). We denote by {col} the set of all fixed spins in
our colloidal particle(s); in the current example σk = +1 for
spins with coordinates (xk − 100)2 + (yk − 100)2 � R2. The
partition function Zc of the system with an immersed colloidal
particle (or particles) may be expressed via the Hamiltonian of
a bulk system Hb with the application of the constraint δσk,1

to all fixed spins. On the other hand, this partition function
may be expressed via the third line of Eq. (2) if we take into
account that all clusters cc that contain spins of the colloidal
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FIG. 1. (a) Clusters of spins, connected by closed bonds. Each
cluster can take either −1 or +1 orientation; these fluctuating spins
are denoted by open circles. (b) Same configuration of clusters with
the inserted disk of radius R = 2.5 with the center at the point
(100,100). All clusters which contain spins within the circle should
be fixed at +1. Fixed spins of these clusters are denoted by closed
circles.

particle cannot fluctuate. The partition function of the system
with an immersed particle (or particles) is expressed as

Zc(β ) =
∑
〈σ 〉

∏
k∈{col}

δσk,1e
−βHb({σ })

= eβNb

∑
〈n〉

[
pnc ({n})(1 − p)Nb−nc ({n})2c({n})−cc ({n})

]
. (3)

The only difference from the partition function of the bulk
system without a particle (or particles) Zb in Eq. (2) is the
term 2−cc ({n}). This term reflects the fact that all cc clusters of
the current configuration {n}, which contain spins of colloidal
particles, are fixed and do not contribute to the partition func-
tion. The free energy of a system with a particle (or particles)
is Fc(β ) = − 1

β
ln[Zc(β )]. Therefore, we can express the free-

energy difference (in kBT units) of the insertion of a particle
(or particles) as

β[Fc(β ) − Fb(β )] = − ln

[
Zc(β )

Zb(β )

]
= − ln〈2−cc 〉β, (4)

where 〈2−cc 〉β is 2 to the power −cc, where cc is the number of
clusters touching the immersed object computed as a thermal
average 〈· · · 〉β at the inverse temperature β with respect to
the bulk (empty) system. The proposed method can also be
applied to systems with various types of boundary conditions
and the presence of the bulk field. Let us note that we do not
specify how many particles are immersed in a bulk system.
This means that the simple expression (4) may be applied to
the computation of CC interactions for various geometries:
particle-particle, multiparticle, wall-particle, etc. Moreover,
this numerical method can also be applied to an arbitrary
spatial dimension and for the q �= 2 Potts model.

III. MODEL DESCRIPTION AND NUMERICAL
VERIFICATION

Let us demonstrate the application of the proposed method
to the computation of CC interactions between two disks in
the 2D Ising system. This example has a practical interest,
because it describes the interaction between protein inclusions
in a lipid membrane at a critical concentration of membrane
components [16–18,38,42,43].

We consider the 2D Ising model on a square lattice with
the periodic boundary conditions (BCs). All distances are
measured in lattice units; the system size is 200 × 200. For
the reference bulk system with the free energy Fb(β ), the
fluctuating spin σi = ±1 is located at each site of the lattice.
For the system with immersed particles with the free energy
Fc(β,D), two disks (disk 1 and disk 2) of half-integer radius
R = 3.5 are immersed in the system at the distance D [see
Fig. 2(a)]. Spins in these disks are fixed at +1. This choice
corresponds to the symmetry-breaking BCs with a completely
ordered surface and it is usually referred to as a (++) BC
(see [22] for details). Let us denote by c12(D) the number of
all clusters which contain spins of two disks separated by the
distance D. We define the insertion free-energy difference for
two disks as

U 12
ins(β,D) = β[Fc(β,D) − Fb(β )] = − ln

〈
2−c12(D)

〉
β
, (5)

which depends on the distance between disks D and is ex-
pressed via the logarithm of the average value of 2 to the
power of −c12(D) in accordance with Eq. (4). The insertion
energy itself does not provide information about the disk
interaction because it is defined up to a certain constant.
Let us take as a normalization constant the insertion energy
U 12

ins(β,Dmax), which corresponds to the maximal possible
separation Dmax between particles for the finite system with
periodic BCs. In our case Dmax = L − 2R, where L = 200 is
the system size. We introduce the CC interaction potential

U12(β,D) = U 12
ins(β,D) − U 12

ins(β,Dmax)

= ln
〈
2−c12(Dmax )

〉
β

− ln
〈
2−c12(D)

〉
β
, (6)

whose derivative with respect to the distance provides the
Casimir force fCas = −∂U12/∂D between two disks.

As a first step we numerically verify the algorithm by
computing the interaction potential U12(β,D) between disks
1 and 2 in accordance with Eq. (6). We use the hybrid
Monte Carlo (MC) algorithm [52]. Each step consists of one
update in accordance with the Swendsen-Wang algorithm [51]
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FIG. 2. System geometry for (a) two disks of radius R = 3.5
at the separation D12 = D for the numerical verification of the
algorithm and (b) equilateral triangle of disks at separations D12 = D

and D13 = D23 � D for the study of nonadditive interactions.

(which is efficient in the vicinity of the critical point) followed
by L2/5 attempts of Metropolis spin updates [53] at random
positions (which is efficient out of criticality). The averaging
is performed over 8 × 108 MC steps split over ten series
for the evaluation of the numerical inaccuracy. Let us note
that, in accordance with our algorithm, we can simultaneously
perform computations for a set of disk separations D. In
Fig. 3 we plot with symbols the interaction potential U12

between two disks as a function of the inverse tempera-
ture β for various separations D = 1, 3, 5, 7, 11, 19. In the
same figure we also plot with lines the potential computed
by the alternative reference method. The reference method
(ref.) is based on the numerical integration of local magne-
tization over the locally applied field [26,54]. We observe
the perfect agreement between the results computed in the
two different ways. This confirms Eq. (6) and verifies the
numerical code used for simulations. The position of the
critical value of the inverse temperature βc = ln(

√
2 + 1)/2

is shown by the vertical dashed line. The maximum of the
attractive interaction is slightly shifted to the high-temperature
region, as is typical for (++) BCs [22]. The proposed method
can be straightforwardly expanded for systems with bulk
and surface fields and systems with several values of the
interaction constants.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.25  0.3  0.35  0.4  0.45  0.5  0.55

β

U
1
2

βc

D = 1
D = 3
D = 5
D = 7
D = 11
D = 19

ref. D = 1
ref. D = 3
ref. D = 5
ref. D = 7
ref. D = 11
ref. D = 19

FIG. 3. Numerical verification of the CC interaction potential
U12 as a function of the inverse temperature β between two disks
at distances D = 1, 3, 5, 7, 11, 19 computed via percolation clusters
(symbols) and by using the reference method [26] (lines).

The method also provides insight into the type of interac-
tion, that is, whether it should be attractive or repulsive. The
number of touching clusters for a short distance n12(D) is less
than this number for a large distance n12(Dmax). Therefore,
ln〈2−c12(Dmax )〉β < ln〈2−c12(D)〉β and the interaction is attrac-
tive U12(β; D) < 0.

IV. NONADDITIVITY OF THREE-PARTICLE
INTERACTIONS

Let us now study the nonadditivity of the interaction in
the three-particle system with the geometry of an equilateral
triangle. This geometry is shown in Fig. 2(b) and it has
been used in an experiment [15] and in the investigation of
nonadditivity for the MF universality class [33]. Now we add
the third disk at the separation D13 from the first disk and
at the separation D23 from the second disk. The separations
are selected to be almost equal on the lattice D13 = D23 �
D12 ≡ D. Later on for the equilateral triangle we select the
odd distance D so that the projection of the center of the third
disk on the x axis is located exactly between the centers of
disks 1 and 2.

We denote by c12, c13, c23, and c123 the number of percola-
tion clusters which contain spins of disks 1 and 2, disks 1 and
3, disks 2 and 3, and all disks 1–3, respectively. The potential
of three-particle interactions is expressed as

U123(β,D) = ln
〈
2−c123(Dmax )

〉
β

− ln
〈
2−c123(D)

〉
β
. (7)

We also introduce the sum of pair interactions Us
123 = U12 +

U13 + U23. For the additive potential we expect U123 = Us
123.

In Fig. 4(a) we plot (with symbols) U123 as a function of the
inverse temperature β for different separations between disks
D = 1, 3, 5, 7, 11, 19. In the same figure we plot with lines
the sum of pair potentials Us

123. The difference between U123

and Us
123 demonstrates the nonadditive nature of multiparticle

CC interactions. Let us underline that for the fixed value
of β, all quantities 〈2−c123(D)〉β , 〈2−c12(D)〉β , 〈2−c13(D)〉β , and
〈2−c23(D)〉β for all sets of separations D are computed during
the single simulation of the bulk system. This means that we
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FIG. 4. (a) Multiparticle CC interaction potential U123 (symbols) between three disks located in vertices of the equilateral triangle with
a side of length D = 1, 3, 5, 7, 11, 19 as a function of the inverse temperature β in comparison with the sum of three pair potentials Us

123 =
U12 + U13 + U23 (lines). (b) Excess nonadditive contribution to the CC interaction potential dU123 = U123 − Us

123 as a function of the inverse
temperature β for three disks at the same separations.

should not perform a separate simulation for each value of
D. In Fig. 4(b) we plot the nonadditive difference dU123 =
U123 − Us

123 as a function of β for the same systems. The
nonadditive part of the interactions is positive. This means
that the presence of the third particle decreases the interaction
between a pair of particles. In Fig. 4(b) we see that the
nonadditive part of three-particle interactions has a maximum
approximately at the same point, as the minimum of the
two-particle interaction potential. All these potentials have
wide tails to the high-temperature region, while interactions in
the low-temperature region decrease very fast as we separate
from the critical point. This behavior qualitatively coincides
with results for the MF system [32,33] and with experimental
results [15] for similar geometries.

In Figs. 5(a) and 5(b) we plot the multiparticle inter-
action potential and its excess nonadditive contribution as

functions of the separation D for various values of the inverse
temperature β, respectively. Such a presentation is more con-
venient for experimenters who typically measure the potential
as a function of separation for the given temperature [7].
The results in Fig. 5(a) qualitatively coincide with the results
shown in Fig. 4 of Ref. [15]. The nonadditivity of three-
particle interactions for the 2D system at the critical point was
previously studied in Ref. [43]. In that article the informa-
tion about interaction potentials was extracted from particle
distribution functions. Contrary to that approach, our method
provides the possibility to compute the interaction potential
directly, simultaneously for several values of separation D.

The algorithm described also provides insight into the
effect of the presence of the third particle on the interaction
between the first and second particles. The appearance of the
third particle fixes some clusters n3 on the lattice. Some of
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FIG. 5. (a) Multiparticle CC interaction potential U123 (symbols) between three disks located in vertices of the equilateral triangle as a
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three pair potentials Us

123 = U12 + U13 + U23 (lines). (b) Excess nonadditive contribution to the CC interaction potential dU123 = U123 − Us
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for β = 0.3, 0.35, 0.4, 0.42, βc, 0.5.
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these clusters should also be counted among the n12 clusters
which are fixed by particles 1 and 2. Let us denote by
n12(D)\n3 the number of clusters which are fixed by a pair
of particles under the condition that some of the clusters are
already fixed by the third particle. This number is by definition
less than the number n12 of clusters which are fixed at the
same position by the pair of particles without the third particle.
Therefore, the intensity of the attraction between a pair of
particles will be reduced by the presence of the third particle
of the same type.

V. CONCLUSION

In the present paper we expressed the free-energy change
for the insertion of objects into a critical system in terms
of percolation clusters intersecting the volume of inserting
objects. A numerical algorithm for CC interactions which is
based on the counting of the number of percolation clusters
was proposed. The algorithm provides an explicit expression

for the Casimir potential without numerical integration. This
percolation-based algorithm applies to any spatial dimension
(including the important case of the 3D Ising model). This
algorithm was numerically verified for the computation of the
CC force potential between two disks for the 2D Ising model.
The proposed method allows one to obtain results for several
separations between objects during a single run. The proposed
method was also applied to the study of multiparticle interac-
tions in critical media and to express the nonadditive part of
the interaction potential in terms of percolation clusters. The
expression obtained gives us qualitative information about
the sign of the nonadditive contribution to the multiparticle
interaction, while the numerical realization of the proposed
algorithm enables us to perform a quantitative computation
of the interaction potential. These results are in qualitative
agreement with Ref. [15], where it was shown that the pres-
ence of the additional particle decreases the absolute value of
the interaction between two particles with the same surface
properties.
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