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Spin-wave dynamics in nonlinear chains with spin-lattice interactions
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We consider the one-magnon subspace of a quantum Heisenberg Hamiltonian with ferromagnetic ground
state. In this model, the spins belong to a chain which contains a cubic interaction between the nearest neighbors
atoms. The quantum Heisenberg spin-spin coupling is a function of the distance between them. By providing a
numerical solution of the Heisenberg nonlinear lattice model, we found that magnon-lattice coupling affects the
magnon dynamics in distinct ways: for a specific range of magnon-lattice interaction values, a magnon-soliton
pair is observed. Moreover, an effective repulsion between the magnon’s excitation and the lattice deformation
is noticed for other cases.
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I. INTRODUCTION

Time-dependent behavior of an initially localized elec-
tronic wave packet has a direct connection with the transport
properties of materials [1]. Anderson and co-workers have
shown that the presence of static disorder is a relevant issue
that narrows the spatial extension of the wave function [2].
They demonstrated that, even in mild disorder degree, a sys-
tem with dimensions below two has all eigenstates localized
in a finite fraction of the lattice: a set of results usually named
Anderson localization theory (ALT) [1–4]. In the context of
theoretical models with time-dependent intrinsic disorder, we
remind one of the effective model that takes into account the
interaction between electrons and optical phonons [5–7]. This
kind of system is well described by a nonlinear Schrödinger
equation [5,6] with time-dependent diagonal disorder (the
on-site potential is, in general, the square modulus of the
wave function [5,6]). An interesting phenomenon associated
to nonlinearity is self-trapping (ST), which occurs when the
nonlinearity strength exceeds a critical value of the order
of the bandwidth [7–12]. In general, the ST phenomenon is
characterized by the localization of the wave packet around
its initial position. Moreover, in Refs. [13–25] Velarde and
co-workers demonstrated the existence of a polaron-soliton
quasiparticle in nonlinear lattices and they also showed its
importance to charge carrying. The pair formation with self-
trapped states (polaron states) and the lattice solitons has been
generally termed as solectron [13–24]. We emphasize that
the solectron theory represents an interesting generalization
of the original polaron concept which mediates non-Ohmic
supersonic electric conduction [21]. The electronic transport
mediated by nonlinear effect was observed in several two-
dimensional anharmonic lattices along crystallographic axes,
particularly in a square lattice similar to the cuprate alloy [24].

In this work we investigate the interaction between a
magnon excitation and the nonlinear lattice vibrations. We
consider a subspace of a single spin deviation (one-magnon
framework) in a quantum Heisenberg Hamiltonian with the
ferromagnetic ground state. The spin chain contains an in-

trinsic cubic interaction. Magnon excitations and the spin
vibrations interact with each other as a function of the distance
between the spins. By solving numerically the Heisenberg-
nonlinear lattice model, we find that the magnon-lattice cou-
pling intensity (α) promotes distinct dynamics. For a range of
values of α, it is noticed an occurrence of a magnon-soliton
pair similar to the solectron which was in the previous works
of Velarde and co-workers [13–25]. However, our calculations
also suggest a new and counterintuitive behavior associated
with the Heisenberg-nonlinear lattice model: there is numer-
ical evidence that points to a kind of effective repulsion
between the magnon and the lattice deformation.

II. MODEL AND NUMERICAL CALCULATION

Our approach consists of a quantum ferromagnetic Heisen-
berg model with N spins 1/2 under the effect of nonlinear
lattice vibrations. The quantum Hamiltonian describing the
spin waves can be written as [3,4]

HS = −
N∑

j=1

{Jj,j+1 �Sj
�Sj+1}, (1)

where Jj,j+1 represents the exchange couplings connecting
sites j and j + 1. In our model, Jj,j+1 depends upon spin
displacement {Qj } from their equilibrium position: Jj,j+1 =
e−α(Qj+1−Qj ). Here, α is an intensity parameter of spin-spin
coupling energy. This quantity has the same status of the
“electron-phonon” coupling presented in Refs. [21,26]. In the
present model, α is also a measure of the intensity of (spin-
wave)-lattice coupling. A nonlinear classical Hamiltonian HL

is considered in order to describe the spin vibrations:

HL =
N∑

j=1

P 2
j

2mj

+
N∑

j=1

(
1

4
[(Qj+1 − Qj )2

+ (Qj − Qj−1)2] + η

6
[(Qj+1 − Qj )3

+ (Qj − Qj−1)3]

)
, (2)
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where Pj is the momentum of the spin at site (j ) and mj =
1 in all calculations. Our interest lies in studying the one-
magnon subspace of the Hamiltonian in Eq. (1). The typical
time-dependent wave function of such excitation is given by
|�(t )〉 = ∑

j cj |j 〉 where |j 〉 represents a wave function of
the chain state with a single reversed spin at site j (|j 〉 =
S−

j |0〉 where |0〉 is the ferromagnetic ground state). The time-
dependent Schrödinger equation is written as

i
dcj (t )

dt
= (Jj−1,j + Jj,j+1)

cj (t )

2
− Jj−1,j

cj−1(t )

2

− Jj,j+1
cj+1(t )

2
, (3)

The classical spins vibrations can be obtained through the
Hamilton equation

d2Qj

dt2
= (Qj+1 + Qj−1 − 2Qj )

+ η[(Qj+1 − Qj )2 − (Qj − Qj−1)2]

+ α

2
[e−α(Qj −Qj−1 )(c∗

j cj + c∗
j−1cj−1)

− e−α(Qj+1−Qj )(c∗
j cj + c∗

j+1cj+1)

+ e−α(Qj+1−Qj )(c∗
j+1cj + c∗

j cj+1)

− e−α(Qj −Qj−1 )(c∗
j−1cj + c∗

j cj−1)]. (4)

Equations (3) and (4) are solved as follows: (i) The time
evolution operator Õ(δt ) is obtained using a high-order Tay-
lor expansion Õ(δt ) = e(−iHSδt ) = 1 + ∑no

l=1(−iHSδt )l/(l!)
[27]; the quantum state |�(t + δt )〉 is described as
|�(t + δt )〉 = Õ(δt )|�(t )〉. (ii) We solve classical equations
using a predictor-corrector Euler method defined as fol-
lows [26,28]: (a) first we calculate a prediction Qj (δt )∗ ≈
Qj (t = 0) + δt[(dQj/dt )|t=0 at time δt . (b) Then, we ap-
ply a correction formula in order to get improved solutions
Qj (δt )∗, i.e., Qj (δt ) ≈ Qj (t = 0) + (δt/2)[(dQj/dt )|t=0 +
(dQ∗

j /dt )|δt ]. In our calculations this correction formula
was used three times. The sum of the evolution operator
was truncated at no = 12 and δt = 10−2. The wave-function
norm within the entire integration was kept within numer-
ical tolerance (|1 − ∑

j |cj (t )|2| < 10−8). We also compare
our simulations with those obtained by using a standard
integrator [e.g., fourth-order Runge-Kutta (RK4) [28]]. The
results obtained by both methods do not show any qualitative
difference; however, the Taylor-Euler procedure requires less
computational time. In order to monitor the magnon dynamics
we use some standard tools, namely, the magnon’s mean po-
sition 〈n〉S (t ) and the participation number ξ (t ), respectively:

〈n〉S (t ) =
∑

j

(j − j0)|cj (t )|2, (5)

ξ (t ) =
∑

j |cj (t )|2∑
j |cj (t )|4 . (6)

We emphasize that the lattice behavior at the j th site will be
also investigated by analyzing the quantity Aj defined as a
kind of generalized probability of local deformation around
site j . This quantity is obtained as follows: First, we compute
the quantity uj = (1 − e[−Qj +Qj−1] )2. Second, we normalize

uj to get the generalized probability of local deformation Aj ,
i.e., Aj = uj/

∑
j (uj ). Using Aj we can compute the centroid

〈n〉L(t ) of the lattice deformation as

〈n〉L(t ) =
∑

j

(j − j0)Aj . (7)

We emphasize that 〈n〉S (t ) and 〈n〉L(t ), respectively, represent
the centroid for time t of the magnon and the lattice deforma-
tion. The participation function ξ (t ) provides an estimate of
the number of sites under which the wave packet is spread at
time t .

III. RESULTS

Most of the calculations were done in a very large chain
with N = 5 × 104 sites. At t = 0, the j0th spin was deviated
[here j0 = N/2, then cj (t = 0) = δj,N/2] and lattice defor-
mations were set to Qj (t = 0) = 0 and Q̇j (t = 0) = δj,N/2,
thus promoting the appearance of a solitonic mode within
this chain [21,26]. We emphasize that only a finite fraction
of the initial energy is participating in the solitoniclike lattice
deformation; the other part evolves along the chain through
nonlinear vibrational modes also called radiation [29]. We
stress that numerical integration of the quantum and classical
equations was done initially in a small fraction of the complete
chain. Our simulation starts with j restricted to the range
j0 − N∗ < j < j0 + N∗ with N∗ = 200. Whenever the wave
function or the atomic vibration arrives at the boundaries of
the initial chain, N∗ is automatically increased by ten sites.
By using this trick, called self-expanded chain, we avoid any
unwanted border effects.

In Figs. 1(a)–1(c), we plot the magnon’s mean position
[〈n〉S (t )] versus t for η = 1 and α = 0.0 up to 2.8. We
observed that with the absence of a magnon-lattice interaction
(α = 0) we found 〈n〉S (t ) = 0, i.e., the mean position of
the spin deviations remains localized at the initial site. This
result is in a good agreement with previous calculations [3,4].
For α > 0, we found an interesting and new behavior: the
magnon’s position changeed drastically with α; moreover we
also observed that the direction of movement also depends
of α. For 0 < α < 2, the magnon’s mean position is positive
[〈n〉S (t ) > 0] thus indicating that the magnon’s wave packet
moves from the center to the right side of the chain. For
α � 2 we found 〈n〉S (t ) < 0 (magnon excitation moves from
the center to the left side of the chain). Therefore, numerical
simulation suggests that the dynamics of one magnon in a
ferromagnetic chain may be controlled by the spin-lattice
coupling. These results (see Fig. 1) deserve a more detailed
description. In Fig. 2 we plot the participation number (ξ+ and
ξ−) versus time (t) for η = 1 and α = 0.4. We stress that for
α = 0.4 the magnon moves to the right side [see Fig. 1(a)]. We
emphasize that ξ+ and ξ− were both computed using Eq. (6)
with a change at the range of sum in j : j0 � j � N for ξ+
and 1 � j � j0 for ξ−. Hence, ξ+ represents the spread of the
wave packet at the right side of the chain (i.e., j � j0) and
ξ− represents the size of the wave packet at the left side of
the chain (i.e., j � j0). We clearly observed that ξ− is larger
than ξ+. In previous works [19,21], this kind of behavior was
associated with the asymmetric behavior of the wave packet
due to the electron-phonon interaction. In brief, a portion of
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FIG. 1. Magnon’s centroid [〈n〉S (t )] versus t for η = 1 and α =
0.0 up to 2.8. For α < 2, the magnon exhibits a displacement from
the center to the right side of the chain. For α � 2, our results
[〈n〉S (t ) < 0] suggest an inversion on the direction of movement.

the wave packet becomes trapped at the positive side (j > j0)
by a solitonic mode and, therefore, the wave packet’s spread
at this side indeed decreases.

This hypothesis may be confirmed in our work by an-
alyzing the mean position of the wave packet and the lat-
tice deformation [i.e., respectively 〈n〉S (t ) and 〈n〉L(t )]. In
Figs. 3(a)–3(d), we plot 〈n〉S (t ) and 〈n〉L(t ) versus time for
several values of α = 0.4 up to 2.8. In Fig. 3(a) we notice
that the solitonic deformations and the wave packet moves
roughly together. Therefore, the results found in Fig. 3(a)
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FIG. 2. The participation number (ξ+ and ξ−) versus time (t)
for η = 1 and α = 0.4. We notice that ξ− is larger than ξ+, thus
confirming the asymmetric propagation of the wave packet.

explain qualitatively the asymmetric behavior found in Fig. 2
and also the behavior of the magnon excitation for this case:
the solitonic mode traps a finite fraction of the initial wave
packet and they move together; moreover, this magnon-soliton
pair for α = 0.4 seems to dominate the dynamics within
the chain. However, in Figs. 3(b)–3(d) we clearly observe a
distinct range of dynamics behavior. The lattice and magnon
dynamics are separated. For large values of α, our calculations
suggest indeed a kind of repulsion between the magnon and
the lattice deformation [see Figs. 3(c) and 3(d)]. By analyzing
the possibility of magnon-soliton coupling according to pre-
vious references [19,21], this is a counterintuitive result. In
Figs. 4(a)–4(d), we plot the wave-packet component |cj (t )|2
[Figs. 4(a) and 4(b)] and the lattice deformation Aj Figs. 4(c)
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FIG. 3. Mean position of the magnon [〈n〉S (t )] and lattice defor-
mation [〈n〉L(t )] versus time for several values of α = 0.4 up to 2.8.
In (a) our results suggest the existence of a kind of magnon-soliton
pair moving along the chain. However, in (b)–(d) our calculations
suggest that the magnon wave packet and the lattice are moving in
separate ways.
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FIG. 4. Square modulus of the wave function |cj (t )|2 [(a),(b)]
and the lattice deformation Aj [(c),(d)] versus j and t for η = 1,
α = 0.4 [(a),(c)] and α = 2.8 [(b),(d)].

and 4(d)] versus j and t for η = 1, α = 0.4 [Figs. 4(a) and
4(c)] and 2.8 [Figs. 4(b) and 4(d)]. Also, for α = 0.4 the
magnon and the lattice deformation seems to move together
with approximately the same velocity [see Figs. 4(a) and 4(c)].
However, in Figs. 4(b) and 4(d) for α = 2.8, we note the
repulsion that exists between the wave packet and the lattice
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FIG. 5. (a) Our calculations for the mean distance between
the magnon and the lattice deformation |〈nS〉 − 〈nL〉| versus the
magnon-lattice interaction (α). The magnon and the lattice defor-
mation mean the position obtained where 〈nS〉 = 〈n〉S (t → 4 × 103)
and 〈nL〉 = 〈n〉L(t → 4 × 103). (b) The velocity of the magnon (VS)
and the lattice deformation (VL) versus (α). Calculations of the
velocity were done by doing a linear regression of the quantities
〈n〉S (t ) and 〈n〉L(t ) for long time.

solitonic profile. We can see in Fig. 4(b) that the largest part of
the wave function moves to the negative side while most of the
lattice deformation [see Fig. 4(d)] goes to the positive side. In
Fig. 5(a), we graph, for a wide range of α, the mean distance
between the magnon and the lattice deformation (i.e., |〈nS〉 −
〈nL〉|). The long-time behavior of the magnon and lattice de-
formation mean positions were computed as 〈nS〉 = 〈n〉S (t →
4 × 103) and 〈nL〉 = 〈n〉L(t → 4 × 103). In Fig. 5(b) we plot
the velocity of both magnon’s excitation and the lattice defor-
mation versus α (VS and VL in Fig. 5(b)]. Calculations of the
velocity were done by estimating the slope of the quantities
〈n〉S (t ) and 〈n〉L(t ) at the long-time limit. It suggests that
the magnon and the lattice deformation kept approximately
the same position and velocity only for α ≈ 0.38(2). For
other α values, we observe that the magnon and the lattice
deformation have distinct velocity and are kept completely
separated.

The magnon-lattice pair formation was only noticed for a
tiny range of α values [around roughly 0.38(2)]; it is a new and
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counterintuitive result, thus deserving a more detailed discus-
sion. In general, we do not have a quantitative description that
definitely explains this key issue. However, we can, at least,
try to point out the main difference between the magnetic case
considered here and the previous electronic case reported in
Refs. [21,26]. In the electronic context, it was numerically and
analytically proved that electron-lattice pair formation exists
in a wide range of values of electron-lattice coupling [21,26].
In this case, only the hopping term (the kinetic energy) de-
pends on the effective coupling with the lattice deformation.
For the one-magnon subspace, both the effective potential
energy and the effective kinetic energy depend on the mass
displacements. The antigenic effects between both potential
and kinetic energies on the magnetic model seem to be the
key ingredient behind the special kind of magnon-lattice pair
formation we have found.

IV. SUMMARY AND FINAL STATEMENT

In this work we considered the one-magnon subspace of a
quantum Heisenberg Hamiltonian with ferromagnetic ground
state. Within our theoretical formalism we considered the

cubic interaction along the spin chain and the interaction
between the magnon’s excitation and the spin vibrations as
a function of the distance between the spins. We found the
numerical solution of the quantum and classical dynamics
equations. Our calculations indicate that the magnon-lattice
coupling promotes distinct dynamics in this nonlinear model.
For a tiny range of values of the magnon-lattice coupling, we
found a magnon-soliton pair similar to the electron-soliton
pair that was found in Refs. [19,21]. We also numerically
demonstrated that the magnon-soliton pair formation is a
rare event that happens only for a narrow range of α val-
ues. In general, our calculations suggest that the magnon-
lattice coupling effectively promotes a repulsion between the
magnon and the solitonic deformation that exists within this
nonlinear chain. We emphasize that in our model we dealt
with a special kind of time-dependent disorder distribution
at the hopping terms. Despite the fact that our work does
not contain a static disorder similar to what exists in the
standard Anderson model, the magnon-lattice interaction at
the spin-spin coupling represents a dynamic disorder within
the system. We hope that the magnon dynamics obtained and
its direct relation with the magnon-lattice coupling stimulate
further investigation.
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