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Semiflexible polymer chains on the square lattice: Numerical study of critical exponents
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We have studied the statistics of semiflexible linear polymer chains modeled by self-avoiding random walk
(SAW) on the square lattice. We applied the PERM Monte Carlo simulation method to sample the polymer chain
configurations for SAWs up to 2000 steps. Varying the stiffness parameter s of the chain we have calculated
numerically the critical exponents ν (associated with the mean squared end-to-end distance of polymer chain)
and γ (associated with the partition function of polymer chain system), as well as the growth constant μ. We
find a clear numerical evidence that, in the studied region of s, both critical exponents (ν and γ ) do not depend
on polymer flexibility. Besides, for moderately flexible chains, we show that the growth constant μ displays a
linear dependance on the stiffness parameter s. We discuss and relate our findings to those obtained previously
for Euclidean and fractal polymer containers.
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I. INTRODUCTION

The self-avoiding walk (SAW) is a random walk that must
not contain self-intersections, and it has been accepted as
canonical model of linear polymer chains [1]. The pure SAW
is a good model for perfectly flexible polymer, where one ig-
nores the apparent rigidity of real polymer, and consequently,
associates the same weight factor (fugacity) to each step
of SAW. Statistics of flexible SAW chains has been widely
studied for continuous and discrete containers of polymers
[2]. However, in most real cases the polymers are semiflexible
(with various degree of stiffness), such as DNA biopolymers
[3] as well as a wide class of synthetic polymers [4]. Recently,
the significant attention has been devoted to theoretical and
experimental research [5–7] of stiffness properties of iso-
lated semiflexible polymers with the so-called bottle-brush
architecture. The latter can be envisaged as macromolecules
that consist of a long backbone chain along which smaller
side-chains are attached [8,9], with an important feature that
changing the length and grafting density of attached chains the
stiffness of bottle-brush polymers may be varied over a wide
range. The measure of polymer stiffness is the persistence
length �p (average length of straight parts of a chain), and
hence various types of semiflexible SAW models have been
invented, with a focus on the persistence length behavior. The
stiffness property enlarges the persistence length, so that for
stiff enough chains �p becomes comparable with the polymer
length L. In the limit of very stiff chains �p � L holds, and
the polymer takes the rigid-rod-like form. In the continuous
space models the polymer stiffness is modeled by constraining
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the angle between consecutive bonds of polymer or assigning
an extra energy to each bend of the chain, while in the lattice
models an additional statistical weight is introduced for each
turn in the walk.

Theoretical investigation of semiflexible chain molecules
was initiated by Flory [10] in a study of polymer crystal-
lization, where an energy penalty was added to each bend
of the polymer chain to model the polymer inflexibility (see
also the pioneering study of chain molecules [11]). The real
polymer system is almost always consisting of collection of
polymer chains, but because of complexity of such a system
the study of single-chain statistics has been frequently ap-
plied, as a requisite step towards understanding the statistics
of many-chain systems. The first model of single semiflexible
polymer (that includes the excluded volume effect) has been
the biased (or persistent) SAW model, where the probability
to make the next step is different for straight steps (which
do not change the SAW direction) and bending steps (those
that change the SAW direction). For this SAW model scaling
properties of semiflexible polymers in the so-called rod-to-
coil crossover region have been studied on two- and three-
dimensional Euclidean lattices [12–15]. The same problem of
conformational rod-to-coil transition of stiff polymer chain
has also been studied for directed SAW model, which has
been solved exactly [16–18] on hypercubic lattices in arbi-
trary dimension d � 2. The persistent SAW model has been
enhanced by introducing an energy penalty ε for each turn
of the walk [19,20]. Accordingly, for ε < 0 the probability
for SAW bends is enlarged favoring more flexible SAW states
(with more bends), for ε � 0 the super-flexible polymer chain
emerges [21], while the case ε > 0 favors the stiffer chain
states (with less bends).

Investigation of asymptotic properties (for large number of
steps) of various types of self-avoiding walk models, appears
to belong to category of demanding problems in the critical
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phenomena studies. To comprehend various features of semi-
flexible polymers within the SAW model numerous studies
have been performed. One of the main issues in semiflexible
polymer model studies has been to answer the question if the
critical exponents depend on polymer stiffness and whether
different self-avoiding-type models have the same values for
critical exponents (belong to the same universality class)
for the same polymer flexibility. In corresponding studies
universality arguments, as well as results of approximate
and extrapolation methods for similar models, suggest that
critical exponents on regular (Euclidean) lattices should not
be affected by the value of polymer stiffness. Besides, in the
recent Monte Carlo studies of SAWs on the simple cubic and
square lattice [20,22] the rescaled mean square and-to-end
distance was analysed for a wide range of polymer stiffness.
The obtained results, in the limit of very long chains, support
the prediction that end-to-end distance critical exponent ν

on regular lattices remains unaltered upon the changes of
polymer stiffness. However, research on fractal structures
[19,23–25] revealed that geometrical critical exponents are
stiffness dependent, for a wide range of flexibility. Since,
to the best of our knowledge, there have been no detailed
and precise numerical studies of semiflexible SAW model on
Euclidean lattices to confirm the expected behavior of critical
exponents, we have been motivated to perform such a study
on the square lattice. Thus, in this paper we report on results
obtained by performing numerical study of geometrical crit-
ical exponents by applying the pruned-enriched Rosenbluth
method (PERM) to simulate semiflexible SAWs on the square
lattice. We have calculated the end-to-end distance critical
exponents ν (associated with the mean squared end-to-end
distance of polymer chain) and the entropic critical exponents
γ (associated with the total number of different polymer
configurations), as well as the growth constant μ, for semiflex-
ible SAWs. Besides, we have performed our calculations for
various degrees of polymer stiffness s, to study stiffness de-
pendence of the geometrical critical exponents. Furthermore,
we have explored the impact of polymer stiffness on statistics
of SAW in various types of polymer containers.

This paper is organized as follows. We define the semiflexi-
ble SAW model on the square lattice in Sec. II, where we also
present the framework of the PERM Monte Carlo approach
for sampling linear polymer chains with relevant flexibility.
In Sec. III we describe the way of numerical evaluation
of geometrical critical exponents (ν and γ ) and the growth
constant μ for stiff polymers. In the same section we expose
and discuss the obtained specific results. Finally, in Sec. IV we
give a short summary of our work and pertinent conclusions.

II. MODEL AND METHOD

To describe stiffness of a polymer chain, we introduce the
Boltzmann factor s = e−ε/kBT , where ε is an energy barrier
associated with each bend of the SAW path, and kB is the
Boltzmann constant. The case s < 1 (ε > 0) corresponds to
stiffer polymer chains, while the case s > 1 (ε < 0) brings out
chains with enhanced flexibility. The two limiting cases s →0
and s → ∞ correspond to the so-called rigid-rod-like and
super-flexible chain, respectively, whereas completely flexible
chain coincides with the case s = 1 (ε = 0). Within the model

FIG. 1. Two examples of SAW path (blue line) on the square
lattice. Full green circles are starting and red ones are ending points
of the SAW. Empty circles denote turn points of the walker (that is,
bends of the SAW path), to which we associate the Boltzmann factor
s = e−ε/kBT , where ε is the energy related to polymer bends. Thus,
for example, the left SAW configuration has length N = 24 with
Nb = 12 bends. Its RR weight is W24 = (4 × 315 × 2 × 37)s12 =
251048476872 s12, in accord with Eq. (7). The right SAW config-
uration is an example of trapped walker (the polymer growth, with
Nb = 8 bends, is stopped after N = 18 steps).

described the persistence length is a function of s. For s � 1
(when bends are favorable) it is equal to the lattice constant
�p(s) ∼ 1, while for s < 1 it behaves as �p(s) ∼ s−1.

If we assign the weight x to each step of the SAW, then the
weight of a walk having N steps, with Nb bends, is xNsNb (see
Fig. 1), and, consequently, the generating function for SAWs
of all possible length has the form

G(x, s) =
∞∑

N=1

ZN (s) xN . (1)

Here

ZN (s) =
N−1∑
Nb=0

C(N,Nb ) sNb (2)

is the partition function for an N -step SAW system, while
C(N,Nb ) is the number of N -step SAWs having Nb bends.
For large N it is expected that the above sum displays the
following power-law behavior:

ZN ∼ μNNγ−1, (3)

where γ and μ are the entropic critical exponent and the
growth constant, respectively, and may depend on polymer
flexibility s. For fully flexible polymers (s = 1) the critical
exponent γ is universal on the Euclidean lattices, with the
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exact value γ = 43/32 [26,27] for dimension d = 2, while
μ is a lattice dependent quantity.

To describe metric properties of SAWs we define the mean
squared end-to-end distance for an N -step semiflexible SAW
system

〈
R2

N (s)
〉 = 1

ZN (s)

N−1∑
Nb=0

ρ(N,Nb ) sNb , (4)

where

ρ(N,Nb ) =
C(N,Nb )∑

i=1

r2
i =

C(N,Nb )∑
i=1

(
x2

i + y2
i + z2

i

)
, (5)

and ri is the Euclidean distance between end points of an
N -step SAW having Nb bends. For large N , we expect the
following scaling behavior:〈

R2
N

〉 ∼ N2ν, (6)

where ν is the end-to-end distance critical exponent, that
in general might depend on stiffness parameter s. For fully
flexible (s = 1) two-dimensional SAWs the critical exponent
ν is universal and equal to 3/4. In addition, in this model the
persistence length is defined as an average number of steps
between two consecutive bends �p = limN→∞ N

〈Nb〉 , where

〈Nb〉 = 1
ZN

∑N−1
Nb=0 Nb C(N,Nb )sNb is the mean number of

bends in an ensemble of SAW chains of length N , which
have been numerically studied on Euclidean lattices [21], as
a function of bending energy.

Our goal is to calculate numerically ν, γ , and μ, for
s 	= 1, on the square lattice to establish whether they depend
on s. To this end we generate sets of SAW samples with
various polymer flexibility s. To create SAWs of different
lengths we apply the pruned-enriched Rosenbluth-Rosenbluth
method (PERM) [28], which is an upgraded version of the
Rosenbluth-Rosenbluth (RR) method [29] for growing chains
of different lengths, and here we present a brief review of both
approaches, that is, of the original and upgraded.

We start with the basic ideas of the RR method, which
is a biased kinetic growing walks algorithm on a lattice. In
this method the SAW chain grows step by step, starting from
an arbitrary lattice site (this growth process, from a start, we
call the tour). The new step is appended to an existing chain,
so that it is chosen randomly from the set of all possible
steps toward previously unvisited neighboring sites. We let the
walker repeat the step adding procedure up to predetermined
maximal chain length Nmax. In the case when, after some num-
ber of steps N (smaller than Nmax), all neighboring sites are
occupied (the walker is trapped) the chain growth is stopped
and we start a new tour from the origin, with N = 0. When
the walk attains the maximal length Nmax we finish the SAW
simulation, and in that case we say that this tour is successful.
In practice we generate nT successful tours, creating the same
number of SAWs of the length Nmax. We note that consecutive
SAW parts, created during the growth process within one tour,
may be used as samples for shorter SAWs (of lengths less than
the maximal one achieved in this tour). Clearly, the number of
N -step SAW chains with N < Nmax is larger or equal to nT

since some walks have been trapped before reaching the full

length Nmax (i.e., the number of total tours is greater or equal
to the number of successful ones).

Random walks created in RR method are biased, since
previously visited neighboring sites are excluded from the
next step random choice. To take the bias into account we
assign different statistical weights to sampled N -step walks.
For an N -step semiflexible SAW the RR weight is

WN =
N−1∏
i=0

nf (i)s (1−cos θi,i+1 )

= WN−1nf (N − 1)s (1−cos θN−1,N ), (7)

where nf (i) is the number of free (previously non-occupied
by the walk) neighboring sites after i steps in the growing
SAW process (also called the atmosphere of the walk [30]),
and θi,i+1 is the angle between the two consecutive steps. The
starting values for these quantities are nf (0) = 4 and θ0,1 = 0.

The partition function for an N -step SAW system is calcu-
lated as an average of the weights given by Eq. (7), that is

ZN = 〈WN 〉 = 1

s0

sN∑
i=1

[WN ]i . (8)

In the above sum, the number of terms is equal to the number
of N -step SAW samples sN . It should be emphasized that,
to obtain the correct result for ZN , this sum should be
averaged over the number of starting SAWs s0, not over
the number of N -step SAW samples sN [31,32]. Since the
number s0 includes SAWs that might be trapped before
attaining the length N (their weight is zero), the relation
s0 � sN holds in the RR method. In the high temperature
region (i.e., for an athermal system) ZN coincides with the
total number CN of distinct N -step SAWs, so that the RR
algorithm might be conceived as an approximate method for
CN calculation. Apart from ZN (which provides information
about the entropic critical exponent γ ) in our focus of interest
is the mean squared end-to-end distance 〈R2

N 〉, determined
by the metric critical exponent ν. Within the RR method the
latter can be evaluated as

〈
R2

N

〉 =
∑sN

i=1 [WN ]i
[
R2

N

]
i∑sN

i=1 [WN ]i
, (9)

where [R2
N ]

i
is the squared end-to-end distance of i-th sample

of SAW containing N -step, with the weight [WN ]i calculated
in accord with Eq. (7).

In the implementation of RR method two problems emerge
when we try to generate polymers consisting of large number
of monomers N . The first one emerges when longer chains
are simulated and an immense number of starting walks
become trapped before attaining the desired length (i.e., the
rate of successful tours decreases with N ). In this situation
sampling of longer SAWs appears to be inefficient, and an
exponential attrition of SAW samples occurs. The second
problem, in addition to the large number of low weight SAW
samples, is that a few samples with a very large weight are
generated. These rare configurations predominantly determine
the mean value of the weights [given by Eq. (8)], and distort
ensemble statistics producing a decidedly high dispersion in
the weights. These two side effects of RR method make it
inefficient for longer SAWs simulation.
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IVAN ŽIVIĆ et al. PHYSICAL REVIEW E 98, 062133 (2018)

To eliminate above problems two improvements of RR
algorithm have been introduced: enriching the walks with high
weight, and pruning the low weight walks in a systematic
way [28]. The new algorithm has been called the PERM
(pruned and enriched Rosenbluth method). Accordingly, one
defines the two thresholds W−

N and W+
N , for an N -step SAW

weight WN , which are incessantly updated during the chain
growth. If WN > W+

N one replaces the current configuration
with two identical copies (clones), each having the half of the
original weight WN → WN/2. This transformation is called
enrichment. Now, one of two clones continues to grow, while
the second one waits in a stack until the first clone finishes
its growth. However, the low weight configurations WN <

W−
N , are eliminated with the probability 1/2, and if the SAW

survives one doubles its weight WN → 2WN . This process is
called the pruning. In this way one keeps the weights WN

close to the window [W−
N ,W+

N ], eliminating configurations
with low and high weights. It is important to perceive that both
enrichment and pruning do not change the values of averages
defined by Eqs. (8) and (9). Only the number of terms sN in
the sums may be changed, but the sums are not disturbed. The
choice of W−

N and W+
N is fairly arbitrary, but the efficiency of

the method depends on its choice. It is plausible to choose the
values for W−

N and W+
N to be comparable with the mean 〈WN 〉.

Various choices may be done, and here we go for

W−
N = c−〈WN 〉

(
sN

s0

)2

, W+
N = c+〈WN 〉

(
sN

s0

)2

, (10)

where coefficients c− and c+ are constant [33]. In particular,
it has been set out c− = 1/5 and c+ = 1, since this choice
provides that the number of samples sN is approximately the
same for polymers of different length N .

III. SIMULATION RESULTS AND DISCUSSION

We have simulated semiflexible polymer chains on the
square lattice for various values of polymer flexibility. The
set of values for stiffness parameter (s = 0.2, 0.3, 0.4, 0.6,
0.8, 1, 1.5, 2, 3, 4 and 5) have been chosen in such a way that
the log(s) scale is almost linear. Using the method described
in the previous section, for each specific s we performed a
large number of Monte Carlo simulations, for polymers of the
maximal length Nmax = 2000. The simulation process begins
with the SAW that starts its growth from an arbitrary site of
the lattice, in accordance with the PERM algorithm. Within
each simulation tour polymer chains of different lengths N

are created. All SAWs generated within one tour are corre-
lated (because of the enrichment), while those belonging to
different tours are independent [28]. Some tours are termi-
nated before the SAWs (generated within the tour) reach the
maximal length Nmax. The tour is successful when length of
simulated SAW chain attains the given maximal value Nmax.
At that milestone we stop the possible further simulation of
chains (with lengths N > Nmax), finishing the tour simulating
only SAWs with N � Nmax. We repeat the simulating process
(from starting point) until the preset number of successful
tours is carried out. Within a generated SAW of length N , suc-
cessive parts (of the lengths less than N ) are also used as mem-
bers of shorter SAWs ensembles. During the simulations, for
each SAW configuration of length N , generated by the PERM,

we record the weight [WN ]i and the corresponding squared
end-to-end distance [R2

N ]i (i = 1, 2, . . . , sN ). Then, for nT

successful simulation tours, the number of ensemble mem-
bers of length N (N � Nmax) is sN = kNnT , where kN >1
in practice. For one simulation session, consisting of nT

successful tours, the choice of W−
N and W+

N , given by Eq. (10),
ensures that the number of samples sN of different length
N is almost the same. That is, the coefficient kN does not
depend on N , but it is a function of the maximal length Nmax

and the stiffness parameter s: kN = kN (Nmax, s). For fixed s,
kN (Nmax, s) increases with Nmax almost linearly (for instance,
kN (1000, 1) 
 69, kN (2000, 1) 
 145, kN (3000, 1) 
 225),
whereas for fixed Nmax change of s (for s 	= 1) enlarges
the value of kN [for example, kN (2000, 0.2) 
 1945 and
kN (2000, 5) 
 630]. In our experiment, for each s, we usually
prepared nT = 3 × 106 successful tours to simulate chains of
the maximal length Nmax = 2000. The Monte Carlo exper-
iments have been performed on the computer machine HP
SL230s Gen8 consisting of cluster of Intel(R) Xeon(R) CPU
E5-2670@2.60 GHz processing units. The program has been
parallelised writing the code in OpenMP Fortran, and, for
instance, 620 h of the CPU time have been used to simulate
chains of the maximal length Nmax = 2000 with s = 0.2 in a
run of nT = 3 × 106 successful tours.

For each specific s, from measured quantities [WN ]i and
[R2

N ]i , one can calculate their representative means obtaining
ZN and 〈R2

N 〉. To evaluate these quantities and their stan-
dard errors, we applied the block analyses [34]. Within such
an analysis the number of successful tours is divided into
M blocks (indexed with j = 1, 2, . . . , M), each containing
s

(j )
N 
 sN/M samples of SAW, generated from s

(j )
0 
 s0/M

starting SAWs. For each block, one calculates the means
〈WN 〉(j ) and 〈R2

N 〉(j ), (j = 1, 2, . . . , M), in accordance with
Eqs. (8) and (9), respectively. The block means 〈WN 〉(j )

(as well as 〈R2
N 〉(j )) are statistically independent, because

different blocks contain SAW samples belonging to different
simulation tours. The final estimates, obtained after averaging
over the block number, are

ZN = 〈WN 〉 = 1

M

M∑
j=1

〈WN 〉(j ),

〈
R2

N

〉 = 1

M

M∑
j=1

〈
R2

N

〉(j )
, (11)

while their standard errors should be calculated as σ〈X〉 =√
1

M−1 (〈X2〉 − 〈X〉2), where X stands for both WN and R2
N ,

since the block means are mutually independent [34]. In
our implementation, the choice M = 32 for block numbers
provides reliable results for calculated averages and related
errors.

First we analyze the stiffness dependance of metric critical
exponent ν, defined by Eq. (6), for N � 1. In a real Monte
Carlo experiment, we simulate SAWs and calculate 〈R2

N 〉 for
finite values of chain length N . In that case it is appropri-
ate to define a sequence of effective (N dependent) end-to-
end distance critical exponents νN = 1

2 d ln〈R2
N 〉/d ln N [35],

which can be viewed as a set of finite size estimators for the
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FIG. 2. (a) Results for the end-to-end distance critical exponent νN (together with associated standard errors) of semiflexible SAWs on the
square lattice as a function of the polymer length N , for s = 0.2, 1, and 5. Values of νN , given by Eq. (12), have been calculated with the
step 2 for N , up to maximal length Nmax = 2000, and here we depicted only those with step 20 for N to distinguish the corresponding graph
symbols. We note that graphs for the other studied values of s have similar shapes as graphs presented in this figure. Graphs for s = 0.8, 0.6,
0.4, 0.3, and s = 1.5, 2, 3, 4 lie gradually between corresponding graphs for s = 1 and 0.2, and between s = 1 and 5, respectively. Finally, in
the cases (b)–(d) the values of νN are plotted as functions of 1/N , for s = 1, 0.2, and 5, when N runs from 100 to 2000. Red horizontal lines
represent the value 3/4.

end-to-end distance critical exponent ν. In practice, from
quantities 〈R2

N 〉 measured in the Monte Carlo simulations, the
values of νN can be calculated [36–38] via the formula

νN = 1

ln 4
ln

〈
R2

N

〉
〈
R2

N
2

〉 . (12)

The obtained streams of νN estimators, for different values
of s, are depicted in Fig. 2, as functions of N and 1/N .
We have shown only the results for fully flexible polymers
s = 1, together with two opposite cases s = 0.2 and s = 5,
since the graphs for the other studied values of s have similar
shapes (see comment in caption of Fig. 2). In this figure one
can see that, for each s, critical exponents νN , being always
less then 3/4, monotonically increase with the polymer length
N . For shorter chains the polymer flexibility s affects the
values of νN , while for larger N it seems that this dependance
disappears. One also observes that the impact of s on νN is
stronger for polymers with s < 1 than for ones with s > 1. To
learn the precise limiting values of νN (s) (when N → ∞), for

each specific s, we apply the following approach. Taking into
account corrections to the scaling, the asymptotic form given
by Eq. (6), for mean-squared end-to-end distance of SAW may
be written as
〈
R2

N

〉 = AN2ν
(

1 + a1

N
+ a2

N2
+ · · · + a′

0

N�
+ a′

1

N�+1
+ · · ·

)
.

(13)

The correction terms ai/N
i are called analytical, whereas

a′
i/N

�+i (with � not being an integer) are called nonanalytic
(confluent) correction terms. For the square lattice the expo-
nent � has the value 3/2 [39–41], and the leading correction
term is analytical. Combining Eqs. (12) and (13) we find that,
in the region of large N , the set of effective critical exponents
νN behaves as a linear function of 1/N ,

νN = ν − a1

ln 4

1

N
. (14)

From data trends presented in Fig. 2, we perceive that for
each s values of νN approach their limiting value ν from
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FIG. 3. Estimates of the critical exponent ν, as functions of Nmin (together with pertinent standard errors), obtained from weighted least
squares linear fit of νN data (depicted in Fig. 2) for stiffness parameter values s = 0.2 and s = 5 of semiflexible SAWs. Blue arrows mark
the sections for Nmin ([1100,1580] for s = 0.2, and [300,950] for s = 5) where values for ν look visually stable. Blue horizontal lines denote
average values of data in marked sections, while red ones represent the value 3/4.

below, when N increases. This implies a positive value for
the coefficient a1. Also, we see that ν may be evaluated as the
fitting line intersection of the vertical axis.

To get a sequence of estimates for ν, we form sets of
data {1/N, νN }, with N in the range N ∈ [Nmin, Nmax]. The
windows [Nmin, Nmax] are formed systematically [42–44],
changing the lower bound Nmin from 20 to 1800, with step
2, and keeping the upper bound fixed Nmax = 2000. Next, we
have prepared the weighted least squares linear fit of each set
of data (labeled by Nmin), obtaining thereby series of estimates
ν(Nmin) for the critical exponent ν. Graphical presentations of
the ν(Nmin) data, for s = 0.2 and 5, are shown in Fig. 3. To get
the final estimate we use the technique applied in Ref. [42].
We observe the section [N1, N2] of Nmin where the ν(Nmin)
data visually appear stable, and in that range we average those
data obtaining the first assessment ν (1)(s) of metric critical

TABLE I. Numerical estimation of critical exponents ν, γ and
the growth constant μ, for examined values of stiffness parameter s

in case of the square lattice. The numbers in the brackets represent
single standard errors concerning the last two digits. For instance, in
the case of s = 0.2 the reading of ν should be: ν = 0.75010(16) ≡
0.75010 ± 0.00016.

s ν γ μ

0.2 0.75010(16) 1.3463(11) 1.3354846(09)
0.3 0.75014(12) 1.3450(11) 1.5009681(07)
0.4 0.75024(12) 1.3441(03) 1.6653779(29)
0.6 0.75016(09) 1.3430(02) 1.9917894(19)
0.8 0.75008(06) 1.3430(03) 2.3158270(08)
1 0.74999(02) 1.3430(04) 2.6381582(15)
1.5 0.74991(06) 1.3429(06) 3.4389711(16)
2 0.74985(11) 1.3439(06) 4.2351728(48)
3 0.74988(05) 1.3433(10) 5.8199005(78)
4 0.74985(08) 1.3417(06) 7.3988309(45)
5 0.75001(09) 1.3429(07) 8.9745048(82)

exponent. We repeat the whole procedure K times (for in-
stance, K =17 for s =0.2 and K =11 for s = 5) performing
new series of nT successful simulation tours. If in some series
the function ν(Nmin) is not stable (or the range of stability is
too narrow) we do not include this simulation run into analy-
sis. As result, we obtain K assessments ν (i)(s), i = 1, . . . , K ,
of ν(s). Here we remark that choices of visually stable sec-
tions [N1, N2] of data plots are subjective and lead to different
values of confidence intervals for ν (i)(s). Of course, estimates
for ν (i)(s) which are extracted from wider stable sections are
more reliable, and this fact has been taken into account giving
an additional weight (proportional to the size of [N1, N2]) to
each ν (i)(s), in corresponding data analysis. The final result

FIG. 4. Results for the end-to-end distance critical exponent ν of
semiflexible SAW on the square lattice as a function of the logarithm
of stiffness parameter s. Red horizontal line represents the value 3/4,
whereas the numbers above the data and their error bars correspond
to the values of s.
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FIG. 5. Results for ZN+1/ZN (with their error bars) of semiflexible SAWs on the square lattice as a function of the SAW length N [parts
(a) and (c) of the figure] and 1/N [parts (b) and (d)] for the stiffness parameters s = 0.3 and 3. The ratio ZN+1/ZN , has been calculated with
step 1 for N , up to maximal value 1999. To distinguish neighboring data on the graph, we plot them with step 20 for N . Red horizontal arrows
(and lines) designate the corresponding linear extrapolations of data (quoted in Table I).

for ν(s), together with accompanied statistical errors, we find
as a weighted mean of ν (i)(s) (i = 1, . . . , K ). Results for ν(s)
are listed in Table I. Here we note that, besides the correction
term 1/N , we tried to include the next one [from Eq. (13)] in
fitting model, but the range of stability for ν(Nmin) was too
narrow, so that we could not obtain any enhancement.

In a discussion of obtained values for ν (Table I), one
can note that our Monte Carlo value of ν = 0.74999(2) for
fully flexible polymers (s = 1) agrees very well with the
exact result 3/4, deviating 0.0013% from it. To examine the
obtained results as a function of s, in Fig. 4 we have plotted
ν against ln(s). One can see that for each s, exponent ν is
very close to the value 3/4, implying that polymer stiffness
does not change the value of the metric critical exponent.
Also, this graph suggests that estimates of ν for s < 1 are
slightly increased in comparison with those for larger s � 1.
This effect is a consequence of persistence length enlarging
for polymers with s < 1 and will be elaborated with more
details later (when we discuss the exponent γ ).

Continuing our study of critical behavior of semiflexible
SAWs on the square lattice we analyze the partition function
ZN , to extract information about μ and γ . Taking into account

correction to the scaling for large N , partition function can be
written in the form

ZN = BμNNγ−1

×
(

1 + b1

N
+ b2

N2
+ · · · + b′

0

N�
+ b′

1

N�+1
+ · · ·

)
,

(15)

where the exponent � (a positive noninteger) governs nonan-
alytical correction terms [41]. To assess the studied quantities,
we analyze the ratio [30,45]

ZN+1

ZN

= μ

(
1 + γ − 1

N
+ q1

N�+1
+ q2

N2
+ · · ·

)
, (16)

whereupon it follows that on 1/N scale the leading correction
is expressed by the linear term (since for the square lattice
� = 3/2). In our Monte Carlo experiment, for each specific s

we have been able to estimate the value of ZN [according to
Eqs. (8) and (11)] and consequently to calculate the ratio given
by Eq. (16). For instance, for s = 0.3 and 3, the obtained data,
in one experiment run (consisting of nT = 3 × 106 successful
tours), are depicted in Fig. 5. As one can perceive from
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FIG. 6. Numerical assessment (for one simulation run) of the growth constant μ and critical exponent γ (with related error bars) as
functions of Nmin, obtained from weighted least-squares linear fit of ZN+1/ZN against 1/N , for s = 0.3 and 3. Blue arrows represent the
interval for Nmin where data appear to be stable (blue horizontal lines represent average values of data embraced by corresponding intervals).
The final estimates (given in Table I) for μ and γ are obtained as an average across K runs (we took K = 23 for s = 0.3, and K = 7 for
s = 3), whose examples in these plots are presented, and for which one can notice very stable data behavior in a fairly wide region of Nmin.
Red horizontal lines (on right panels) denote the value 43/32.

Figs. 5(b) and 5(d), the function dependance ZN+1

ZN
( 1
N

) is linear.
Preparing the weighted linear fit of ZN+1/ZN against 1/N ,
we can evaluate simultaneously both quantities of interest μ

and γ . As in the case of critical exponent ν, we constituted
the groups of data {1/N,ZN+1/ZN } (with N in the range
N ∈ [Nmin, Nmax], where Nmin increases gradually and Nmax

is fixed) to obtain the sequence of estimates for μ and γ via
the corresponding fitting procedure for each set.

First, we present results obtained for the growth constant μ.
For one simulation run, an example of set estimates μ(Nmin)
is plotted in Fig. 6(a), for polymers with s = 0.3, as well as
in Fig. 6(c) for s = 3. Following procedure described in the
case of ν evaluation, we have repeated simulations carrying
out sufficient number of independent runs, and the final result
we have calculated as an average over estimates obtained by
all runs. Our definite Monte Carlo findings for μ(s) (together
with accompanied statistical errors) are given in Table I.
The growth constant μ governs the exponential increase of
the partition function [see Eq. (3)], and consequently via
the free energy per step f = −kBT limN→∞ ln ZN

N
= ε

ln s
ln μ

determines thermodynamics of the system under study. From
the last formula follows μ(s) = sf (s)/ε , which means that in
general μ is determined by the Boltzmann factor s, and may
exceed the coordination number of the lattice, especially
at low temperatures (for s > 1). The constant μ has ex-
plicit physical meaning only for s = 1 (i.e., in high tem-
perature region). In this case ZN (s = 1) matches up with
the total number CN of distinct N -step SAWs: ZN (s =
1) = ∑N−1

Nb=0 C(N,Nb ) = CN . Since for large N the ratio
CN+1/CN approaches μ(s = 1), it follows that μ(s = 1) rep-
resents the average number of steps available to the walker
having already completed a large number of steps (which can-
not be larger than 3, for SAW on the square lattice). Our result
2.6381582(15), learned for flexible polymers (s = 1), is in a
good agreement with the very precise numerical value μ =
2.63815853032790(3), calculated recently via the topological
transfer-matrix method [46]. Also, it is more accurate than
μ = 2.63818(3) [45] obtained using the similar method (flat-
PERM) simulating walks of the length up to 512. In Fig. 7(a)
we plotted μ as a function of the stiffness parameter s, from
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FIG. 7. (a) The growth constant μ (see Table I) of semiflexible SAWs on the square lattice, as a function of stiffness parameter s. Error
bars are not depicted since they are smaller than the corresponding square symbols. Red dashed line is the weighted linear fit of the plotted
data in the studied range of s. (b) Estimates (with the related error bars) of the growth constant μ(s = 0), as a function of smax, obtained from
weighted linear fit of data (μ, s ), for s in the range [0.2, smax].

where one may notice that, in the studied region of s, the
growth constant μ is a monotonically increasing function of s.
Furthermore, it seems that μ(s) is a linear function of stiffness
parameter s for semiflexible SAWs on the square lattice. The
same linear dependance of μ on the stiffness parameter s

has been also observed in the fractal-to-Euclidean crossover
region, for semiflexible polymers (with 0 < s � 1) situated
on the plane-filling fractal family [24], as well as for directed
semiflexible SAWs on Euclidean lattices [18]. Finally, we dis-
cuss a possible behavior of μ(s), for very stiff chains s � 1.
The weighted linear fit of data in Fig. 7(a) yields μ(s = 0) =
1.0230(45). To make a better assessment of μ(s = 0), we
have performed a set of weighted linear fits of μ against s, for
s in the range [0.2, smax], lowering the upper bound smax from
5 to 0.6. The obtained results for μ(s = 0) as function of smax,
are presented in Fig. 7(b), from where one can see that μ(s =
0) (being always larger then one) monotonically decreases,
when smax decreases. Since this trend supports the expectation
that μ should approach 1 when s → 0 [as a first assessment,
the simple linear extrapolation of data from Fig. 7(b), for
smax � 1, gives μ(s = 0) = 1.0031(23)], we infer that for
very small s function μ(s) is not linear. Much the same
behavior of μ, as a function of polymer flexibility, has been
observed in the case of semiflexible compact polymer chains
(modeled by Hamiltonian walks) on the four-simplex lattice
[25], where the deviation from linearity has been observed
only for very stiff chains (s � 1).

Eventually, to make our analysis of semiflexible SAWs on
the square lattice complete, we discuss obtained values for γ

(see Table I). First, we analyze the case of fully flexible poly-
mers. The result for γ (s = 1) has been evaluated from two-
parameter linear fit (simultaneously estimating both μ and γ ).
The quoted value of γ (s = 1) may be improved after fixing
the growth constant at the most accurate value achieved so
far μ = 2.63815853032790(3) [46], and then applying one-
parameter fit. In this way we get more precise estimate γ (s =
1) = 1.3433(02), which deviates 0.034% from the exact value

43/32 = 1.34375. Next, to assess the influence of parameter
s on γ behavior, in Fig. 8 we have shown the values of γ , as a
function of ln(s). From this plot it is quite clear that for s � 1
exponent γ does not depend on s, but for s < 1 one cannot
immediately conclude the same. In the latter region it is visible
that values of γ are slightly increased in comparison with
the values for larger s, and therefore an additional analysis is
necessary to draw a definite conclusion about its dependance
on s. We believe that increase of γ values for smaller s (in
our plot it is visible for s � 0.4) comes from the fact that in
this region the systematic error in γ estimation (produced by
neglecting higher order terms in the fitting model) is larger

FIG. 8. Results for the critical exponent γ of semiflexible SAWs
on the square lattice as a function of the logarithm of stiffness
parameter s. Red horizontal line represents the value 43/32, whereas
the numbers above or bellow the data and their error bars correspond
to the specific values of s.
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comparing with one produced for larger s. This assumption
may be supported by the following arguments. Since the
persistence length for s = 0.2 is 5 times lager than for s � 1,
it follows that effective number of steps Neff = Ns (this is
the number of steps measured in the persistence length units),
for N = 2000 and s = 0.2, is Neff = 400. This implies that
systematic error in γ evaluation, for s = 0.2 and N = 2000,
could be compared with one obtained for s � 1 and N =
400. To check that, for s = 1, we recalculated γ , fitting only
data up to Nmax = 400, and obtained the value 0.14% larger
than one obtained for Nmax = 2000 (given in Table I). The
obtained increase of γ for s = 1, caused by reduction in Neff,
is comparable with 0.19% for which is γ (s = 0.2) = 1.3463
larger than 43/32. We expect the same outcome in calculation
of γ for smaller values of s, where diminished Neff produces
a systematic increase in γ estimates. For this reason, to obtain
more accurate estimates for smaller values of s one should
simulate polymers with larger number of steps (for s = 0.2
the maximal length of polymer should be Nmax = 10 000),
and also large enough number of samples have to be created.
We have tried to increase the maximal number of steps up to
Nmax = 3 000, but created graphs, similar to those in Fig. 6,
have not been stable, so that obtained data have not been
useful for further examination.

On the whole, regarding both critical exponents ν and γ ,
we may say that obtained numerical results are consistent
with the universality arguments based prediction that the SAW
bending energy ε is irrelevant for the SAW critical exponents
on Euclidean lattices, and its only effect is in changing the
persistence length. Our investigation is the first numerical
study of semiflexible polymers on Euclidean lattices which
confirms numerically the universality arguments assumption
about critical exponents behavior of semiflexible SAWs. So
far, this behavior of semiflexible SAWs on homogeneous lat-
tices was demonstrated explicitly only for directed semiflexi-
ble SAWs [18], using the scaling method. However, in contrast
to the case of homogeneous lattices, disorder in nonhomo-
geneous lattices combined with the stiffness, in some cases
can constrain the persistence length, and consequently induces

dependence of critical exponents on s [19]. This behavior
has been observed in a study of semiflexible polymers on the
plane-filling fractal family, where we have also found that in
fractal-to-Euclidean crossover region critical exponents do not
depend on s, but their values are different from the Euclidean
ones [24].

IV. SUMMARY AND CONCLUSION

We have studied the semiflexible linear polymer chains
modeled by self-avoiding random walk (SAW) on the square
lattice by applying the PERM Monte Carlo simulation
method. Varying the stiffness parameter s of the chain we have
calculated numerically the critical exponents ν (associated
with the mean squared end-to-end distances of polymer chain)
and γ (associated with partition function of polymer chain
system), as well as the growth constant μ. Our results show
that for finite polymer chain length effective values of critical
exponent ν are stiffness dependent functions, while for very
long chains we find a clear numerical evidence that both
critical exponents (ν and γ ) do not depend on the polymer
flexibility. Furthermore, we have found that the growth con-
stant μ displays a linear dependance of s, in the studied region.

The performed research has been made for a limited set of
polymer flexibility parameter values, and it would be worth to
expand it. To this end it is desirable to initiate additional inves-
tigations using, for instance, some temperature-independent
Monte Carlo methods, like flatPERM [32] or multi-canonical
chain-growth algorithm [47], which could be more efficient
for studying the statistics of stiffer chains. Also, it would be
interesting to extend this study to the case of polymers situated
on three-dimensional Euclidean lattices.
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