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Enhanced magnetoelectric effect of the exactly solved spin-electron model on a doubly decorated
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Magnetoelectric properties of a coupled spin-electron model on a doubly decorated square lattice in an external
electric field applied along the crystallographic axis [11] are rigorously examined with the help of generalized
decoration-iteration transformation. The phase diagram, spontaneous magnetization and electric polarization
are exactly calculated and their dependencies are comprehensively investigated under a concurrent influence
of temperature and electric field. It is found that the electric field mostly stabilizes at zero temperature the
spontaneous antiferromagnetic order with respect to the ferromagnetic one. At finite temperatures the external
electric field gradually suppresses a spontaneous ferromagnetic (antiferromagnetic) order emergent close to a
quarter (half) filling. An enhanced magnetoelectric response is detectable in the vicinity of a continuous phase
transition at which the spontaneous magnetization vanishes and the electric polarization displays a weak-type
singularity. It is demonstrated that reentrant phase transitions of the ferromagnetic or antiferromagnetic phase
may be induced at moderate values of the electric field, which simultaneously produces a sharp kink in a critical
line of the ferromagnetic phase nearby a quarter filling.
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I. INTRODUCTION

The magnetoelectric effect currently attracts a great deal
of attention, though the early discovery of this cooperative
phenomenon dates back to pioneering work by Curie more
than a century ago [1]. The main reason for this revival of
interest lies in an immense application potential hidden in
the magnetoelectric effect [2,3]. The term magnetoelectric
effect signifies a dependence of the magnetization on an
electric field and a dependence of the electric polarization
on a magnetic field. Sizable technological applications of
the magnetoelectric effect in the form of switches or data-
storage devices are quite obvious, but they are unfortunately
limited by a relatively small response of the magnetization
(polarization) with respect to the external electric (magnetic)
field (see Refs. [2,3] and references cited therein). Although
the phenomenological theory of the magnetoelectric effect
was developed by Dzyaloshinskii more than a half century ago
[4], an incomplete understanding of the magnetoelectric effect
at a microscopic level precludes an efficient enhancement of
the magnetoelectric response. Exactly solved lattice-statistical
models, which would provide a deeper understanding of the
magnetoelectric effect and all its consequences, are therefore
highly desirable.

To the best of our knowledge, there are only a few rigor-
ous studies of the magnetoelectric effect for one-dimensional
Heisenberg [5] and XX [6,7] spin chains, as well as zero-
dimensional Hubbard pair [8–10] and cubic [11] clusters.
However, these rigorous studies cannot bring insight, because
of their low dimensionality, into the magnetoelectric response
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in the close vicinity of temperature-driven phase transitions.
The main goal of the present work is therefore to fill in this
gap when considering a coupled spin-electron model on a
doubly decorated square lattice, which exhibits a nontrivial
criticality at finite temperatures notwithstanding its exact
solvability [12–18]. To achieve this goal, we will extend a
coupled spin-electron model on a doubly decorated square
lattice introduced in Refs. [15,16] by considering the external
electric field applied along the crystallographic axis [11] and
rigorously calculate the spontaneous magnetization as well as
the electric polarization under a concurrent influence of the
external electric field and temperature. It will be demonstrated
hereafter that the investigated spin-electron model indeed ex-
hibits an enhanced magnetoelectric effect in the close vicinity
of a continuous phase transition.

The paper is organized as follows. The coupled spin-
electron model on a doubly decorated square lattice in the
presence of the external electric field will be introduced in
Sec. II together with a few basic steps of its exact treatment.
The most interesting results for the ground-state and finite-
temperature phase diagrams will be discussed along with typ-
ical temperature and electric-field variations of spontaneous
magnetization and electric polarization in Sec. III. The paper
ends with a brief summary of the most important findings and
future outlook, presented in Sec. IV.

II. MODEL AND METHOD

The investigated spin-electron model consists of the lo-
calized Ising spins situated at vertices of a square lattice,
which are indirectly coupled through the Ising-type ex-
change interaction mediated by mobile electrons performing a
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FIG. 1. A part of a doubly decorated square lattice (the left
figure) and a schematic representation of the kth bond (the right
figure) corresponding to the bond Hamiltonian (1). Large (blue)
balls determine lattice position of the localized Ising spins, while
small (yellow) balls denote decorating sites over which the mobile
electrons are delocalized.

quantum-mechanical hopping at a couple of decorating sites
situated on all bonds of a square lattice (see Fig. 1). It is
noteworthy that magnetic properties of the coupled spin-
electron model on a doubly decorated square lattice have
been comprehensively investigated in the absence of an ex-
ternal electric field by assuming a quarter filling [12], a half
filling [13,14], or a fractional filling [15–18] of the atomic
orbitals of the decorating sites. The main focus of the present
work therefore will be the influence of the external electric
field upon magnetic properties of this correlated spin-electron
model, which has not been dealt with previously. In the
present work, we will consider a particular spatial orientation
of the external electric field E, which is applied along the
crystallographic axis [11] defined through the polar angle
ϕ = π/4, measuring inclination from the global frame x axis.
Under this specific field orientation, the mobile electrons with
a charge |e| delocalized over a couple of decorating sites
separated by the interatomic distance d will experience the
same electrostatic potential energy Vx(y) = Ex(y)|e|d/2 both
on horizontal as well as vertical bonds. As a matter of fact,
the electrostatic potential energy of the mobile electrons from
decorating sites lying on the horizontal and vertical bonds
will achieve the identical values Vx = V cos(π/4) = V/

√
2

and Vy = V sin(π/4) = V/
√

2, respectively. Because all the
considered interactions have only the local character, the total
Hamiltonian of the considered spin-electron model can be
divided into a sum of the commuting bond Hamiltonians
Ĥ = ∑2N

k=1 Ĥk , whereas the local bond Hamiltonian Ĥk is
defined as follows:

Ĥk = − t
(
ĉ
†
k,l1,↑ĉk,l2,↑ + ĉ

†
k,l1,↓ĉk,l2,↓ + H.c.

)
− J σ̂ z

k,l1

(
n̂k,l1,↑ − n̂k,l1,↓

) − J σ̂ z
k,l2

(
n̂k,l2,↑ − n̂k,l2,↓

)
− V√

2

(
n̂k,l1,↑ + n̂k,l1,↓ − n̂k,l2,↑ − n̂k,l2,↓

) − μn̂k. (1)

Above, ĉ
†
k,lα,γ and ĉk,lα,γ (α = 1, 2; γ = ↑,↓) denote the

creation and annihilation fermionic operators of the mobile
electrons from the kth couple of decorating sites, n̂k,lα,γ =
ĉ
†
k,lα,γ ĉk,lα,γ and n̂k = ∑

α=1,2

∑
γ=↑,↓ n̂k,lα,γ determine the

respective number operators, and σ̂ z
k,lα

represent z components
of the Pauli spin matrices corresponding to the localized Ising

spins. The first term in Eq. (1) determines the kinetic energy
of the mobile electrons, while the next two terms stand for the
Ising-type exchange interaction between the nearest-neighbor
localized Ising spins and mobile electrons. Next, the fourth
term takes into account the effect of external electric field E

applied along the crystallographic axis [11] when the corre-
sponding electrostatic energy for a set of the mobile electrons
from each individual bond is referred to a relevant center of
mass. Finally, the last term involving the chemical potential of
the mobile electrons μ allows control of the electron density
on the decorating sites (i.e., the number of mobile electrons
per bond).

The grand-canonical partition function of the model under
investigation can be exactly calculated by following the pro-
cedure elaborated in our previous papers for zero electric field
[16–18], so it is sufficient to recall just a few of the most im-
portant steps of this procedure and to quote generalized forms
of the expressions modified by the relevant field term. The
grand-canonical partition function can be partially factorized
and expressed in terms of the eigenvalues Ek,i of the bond
Hamiltonian (1):

� =
∑
{σ }

2N∏
k=1

�k =
∑
{σ }

2N∏
k=1

16∑
i=1

exp(−βEk,i ), (2)

where β = 1/(kBT ), kB is the Boltzmann constant, T is the
absolute temperature, and the summation

∑
{σ } runs over all

possible spin states of the localized Ising spins. After tracing
out degrees of freedom of the mobile electrons, the bond grand
partition function �k solely depends on spin states of two
localized Ising spins, which allows us to replace the bond
grand partition function �k through a simpler expression via
the generalized decoration-iteration transformation [19–22]

�k =
16∑
i=1

exp(−βEk,i ) = A exp
(
βRσk,l1σk,l2

)
. (3)

The mapping parameters A and R entering into the
decoration-iteration transformation (3) are “self-consistently”
given by the expressions A = (V1V2)1/2 and βR =
1
2 ln (V1/V2), which are defined through two new functions
V1 and V2:

V1 = 1 + 4(z + z3) cosh(βJ ) cosh(βt∗)

+ 2z2[1 + cosh(2βJ ) + cosh(2βt∗)] + z4,

V2 = 1 + 2(z + z3)[cosh(βB+) + cosh(βB−)]

+ 2z2[1 + cosh(βF+) + cosh(βF−)] + z4, (4)

where

t∗ =
√

V 2/2 + t2, B± =
√

J [J ±
√

2V ] + t∗2,

F± =
√

2[J 2 + t∗2] ± 2B+B−, z = eβμ. (5)

The electron density, which is defined as the mean value of
the overall number operator of the kth bond ρ ≡ 〈n̂k〉, can be
subsequently calculated from the formula

ρ = z

2N

∂ ln �

∂z
= z

2

{
V ′

1

V1
(1 + ε) + V ′

2

V2
(1 − ε)

}
, (6)
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where ε ≡ 〈σk,l1σk,l2〉 denotes the pair correlation function
between the nearest-neighbor localized Ising spins and V ′

1 =
∂V1/∂z, V ′

2 = ∂V2/∂z. The last equation plays the crucial role
in the computational process, because it may be viewed as
the equation of state when defining correspondence between
two conjugated variables: the chemical potential and electron
density of the mobile electrons.

The electric polarization can be related to an elementary
electric dipole moment P of the mobile electrons, which can
be expressed as a difference of the mean electron concentra-
tions at two decorating sites, P = ∑

γ=↑,↓〈n̂k,l1,γ 〉 − 〈n̂k,l2,γ 〉.
The existence of the spontaneous ferromagnetic and antifer-
romagnetic order can be inferred from previous studies of
the zero-field case [15–18] and hence it might be useful to
calculate the uniform magnetization of the localized Ising
spins mi = (〈σ̂ z

k,l1
〉 + 〈σ̂ z

k,l2
〉)/2 and the mobile electrons me

per bond as the order parameters for the ferromagnetic phase
along with the staggered magnetization of the localized Ising
spins ms

i = (〈σ̂ z
k,l1

〉 − 〈σ̂ z
k,l2

〉)/2, and the mobile electrons ms
e

as the order parameters of the antiferromagnetic phase. Exact
mapping theorems [23,24] would imply that the uniform and
staggered magnetizations of the localized Ising spins directly
equal the single-site uniform and staggered magnetizations
of the effective Ising model, mi = mIM (β,R > 0) and ms

i =
ms

IM (β,R < 0), while the uniform and staggered magnetiza-
tions of the mobile electrons follow from the relations

me =
〈 ∑

j=1,2

∂ ln �k

∂
(
βJσk,lj

)
〉

= mi

W1

V1
, (7)

ms
e =

〈 ∑
j=1,2

∂ (−1)j+1 ln �k

∂
(
βJσk,lj

)
〉

= T1

V1

(
mi + ms

i

) + T2

V2
ms

i ,

(8)

where we have used the abbreviations W1, T1 and T2 for the

following functions:

W1 = 4(z + z3) cosh(βt∗) sinh(βJ ) + 4z2 sinh(2βJ ),

T1 = 2
√

2(V/t∗)(z − z3) sinh(βJ ) sinh(βt∗),

T2 =
√

2(z + z3)[(
√

2J + V )SB+ + (
√

2J − V )SB−]

+ 4Jz2

[(
1 + J 2 − V 2/2 + t2

B+B−

)
SF+

+
(

1 − J 2 − V 2/2 + t2

B+B−

)
SF−

]
. (9)

To save the expression’s lucidity, the novel notations SB± =
(sinh βB±)/B± and SF± = (sinh βF±)/F± are defined.

III. RESULTS AND DISCUSSION

Let us start our discussion of the most interesting results
with a comprehensive analysis of the ground-state phase dia-
gram, which was determined from the lowest-energy eigen-
states of the bond Hamiltonian (1). Five different ground
states with either paramagnetic (P), ferromagnetic (F), or
antiferromagnetic (AF) spin arrangements can be detected
in the overall parameter space depending on a competition

between the hopping term t > 0, the ferromagnetic exchange
constant J > 0, the electric field V > 0, and the chemical
potential μ. It should be pointed out that the applied electric
field relevantly influences only the electron subsystem and,
consequently, the respective probability amplitudes of indi-
vidual basis states of the mobile electrons are modified by the
electric field in contrast with the basis states of the localized
Ising spins that are unaffected and remain completely identi-
cal as in the zero-field case V = 0 [16]. In the absence of the
external electric field a homogeneous distribution of the mo-
bile electrons over the pairs of decorating sites is realized in
the ferromagnetic phases I and III with odd numbers of mobile
electrons per bond [16], while a charge segregation at one of
two decorating sites takes place in the ferromagnetic phases I
and III due to the nonzero electric field, as exemplified by the
eigenvectors

|I〉 =
2N∏
k=1

|1〉σk,l1
⊗(cos α|↑, 0〉k + sin α|0,↑〉k ) ⊗ |1〉σk,l2

,

|III〉 =
2N∏
k=1

|1〉σk,l1
⊗ (cos α|↑↓,↑〉k − sin α|↑,↑↓〉k )

⊗|1〉σk,l2
, (10)

where the emergent quantum superposition of two basis states
of the mobile electrons is determined through the mixing
angle α defined by tan α = (t∗ − V/

√
2)/t . A markedly dif-

ferent situation appears in the quantum antiferromagnetic
phase II emergent around the half-filled band case, where the
classical Néel order of the localized Ising spins is accompa-
nied with a quantum superposition of two magnetic and two
nonmagnetic ionic states of the mobile electrons [16]. The
magnetism of the electron subsystem basically changes under
the influence of the external electric field, which significantly
contributes to a quantum reduction of the spontaneous stag-
gered magnetization of the mobile electrons according to the
eigenvector

|II〉 =
2N∏
k=1

|1〉σk,l1
⊗ [α2|↑,↓〉k + β2|↓,↑〉k + γ2|↑↓, 0〉k

+ δ2|0,↑↓〉k] ⊗ | − 1〉σk,l2
, (11)

which involves a quantum superposition of four aforemen-
tioned electronic states defined through the mixing angles
α2 = 2tη3(η3 − η1)/η4, β2 = −α2(η1+η3 )

η3−η1
, γ2 = α2(η1+η3 )(η3−η2 )

2tη3

and δ2 = γ2
η2+η3

η3−η2
, η1 = −2J , η2 = −√

2V , η3 = F+, η4 =√
2
√

4t2η2
3(η2

3 + η2
1 ) + (η2

3 + η2
2 )(η2

3 − η2
1 )2. It is quite clear

that the magnetism of two paramagnetic phases 0 and IV with
empty or fully occupied decorating sites is not influenced by
the external electric field, and hence the eigenvectors remain
completely the same as predicted in our earlier work [16].
Another important observation is that the increasing V gives
to rise an effective antiferromagnetic coupling between the
localized spins instead of the ferromagnetic one, whereas for
sufficiently large V/J a clear enhancement of the parameter
region corresponding to the phase II is observed (see Fig. 2).

Next, let us investigate a stability of the spontaneous ferro-
magnetic and antiferromagnetic magnetic order with respect
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FIG. 2. The ground-state phase diagram in the t/J - μ/J plane as
constructed from the lowest-energy eigenstates of the bond Hamilto-
nian (1) for three different values of the external electric field V/J .

to temperature and the external electric field upon varying the
electron density ρ ∈ (0, 2) at the decorating sites [the critical
temperature in the other range ρ ∈ (2, 4) is symmetrical due
to a particle-hole symmetry]. It has been demonstrated that
the spontaneous ferromagnetic and antiferromagnetic order
is realized at a quarter filling (ρ = 1) [12] and a half fill-
ing (ρ = 2) [13], respectively, whereas the spontaneous fer-
romagnetic and antiferromagnetic orders are still preserved
when the electron density slightly deviates from the quarter-
and half-filling band cases [15,16]. It is quite evident from
the finite-temperature phase diagrams shown in Fig. 3 that
the applied electric field generally reduces the critical tem-
perature of the ferromagnetic and antiferromagnetic phases,
while the electron concentrations at which the spontaneous
ferromagnetic and antiferromagnetic orders emerge remain
unaffected. The reduction of critical temperature of the fer-
romagnetic phase owing to the external electric field can be
related to a greater localization of the mobile electron at one of
two decorating sites, which consequently transmits the effec-
tive ferromagnetic coupling between the localized Ising spins
less effectively. Similarly, the critical temperature of the anti-
ferromagnetic phase also shrinks upon increasing the external
electric field, because the electric field supports a charge seg-
regation of the mobile electrons at one of the decorating sites
and thus reduces the effective antiferromagnetic interaction
transmitted by two mobile electrons residing the same bond.

Another interesting observation, which directly follows
from the finite-temperature phase diagram shown in Fig. 3,
is the existence of a sharp kink in the dome of critical temper-
ature delimiting a stability region of the ferromagnetic phase.
The sharp kink can be observed close to a quarter filling on
assumption that the electric field is sufficiently strong with re-
spect to the hopping term V � 2t . This effect can be attributed
to the competitive influence of the kinetic term and electric
field: the hopping term t favors a homogeneous distribution
of the mobile electrons over the pairs of decorating sites,
while the electric field contrarily acts in favor of the charge
separation. Moreover, it can be seen from Fig. 3 that the
electric field gives rise to reentrant phase transitions of either
the antiferromagnetic phase [Fig. 3(a)] or the ferromagnetic
phase [Fig. 3(b)]. While the reentrant phase transitions of
the antiferromagnetic phase emergent below ρ � 1.854 can
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FIG. 3. Finite-temperature phase diagrams in the form of critical
temperature versus electron density plots obtained for several values
of the external electric field V/J and two different values of the
hopping term: (a) t/J = 1.0, (b) t/J = 2.0. Note that the dome of
critical temperatures emergent at electron densities close to a quarter
(half) filling corresponds to the spontaneously ordered ferromagnetic
(antiferromagnetic) phase, while the disordered paramagnetic phase
extends over moderate values of the electron densities predominantly
skipped through the axis break.

be already found in the absence of the external electric field
[16] and the relevant field term may just spread reentrance
over a wider interval of the electron densities, the reentrant
phase transitions observable slightly above the upper edge
ρ � 1.146 of the ferromagnetic dome arise from the external
electric field, as they are totally absent in the zero-field case
[see Fig. 3(b)].

Last but not least, let us analyze in detail the spontaneous
magnetization and electric polarization under a concurrent in-
fluence of temperature and electric field at two different elec-
tron densities. For illustration, we have chosen two electron
concentrations equal to quarter- (ρ = 1) and half-filling (ρ =
2) band cases, which demonstrate typical thermal behavior of
the ferromagnetic and antiferromagnetic phases, respectively.
It is quite evident from Figs. 4 and 5 that there exists a strong
correlation between the electric and magnetic properties of
the investigated system. First, let us make a few comments
on the typical behavior of the spontaneous magnetization and
electric polarization of the ferromagnetic phase. It can be
seen from Fig. 4(a) that the sublattice magnetizations of the
localized Ising spins and mobile electrons exhibit standard
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FIG. 4. (a) Thermal variations of the spontaneous uniform mag-
netization mi (solid lines), me (dotted lines), the staggered magneti-
zation of the mobile electrons ms

e (dashed-dotted lines) [scaled with
respect to the left axis] and the electric polarization P (dashed lines)
[scaled with respect to the right axis] at a quarter filling ρ = 1 and
t/J = 1 for three different values of the external electric field V/J .
(b) Electric-field variations of mi , me, and ms

e at different temper-
atures. (c) Electric-field variations of P at different temperatures.
Open circles denote weak-singular points of P , around which the
most obvious changes of P can be detected (see the inset).

temperature dependencies with a steep power-law decline
mi,e ∝ (Tc − T )βm in a vicinity of the critical temperature,
which is characterized through the standard Ising-type crit-
ical exponent βm = 1/8 as evidenced in Fig. 6(a). Contrary
to this, the electric polarization displays around the critical
temperature Tc a more striking temperature dependence with
a weak energy-type singularity (Tc − T ) ln |Tc − T |, because
it is proportional to the nearest-neighbor pair correlation
function ε (internal energy) of the effective Ising model.
Actually, it is quite evident from Fig. 7(a) that the obtained
numerical data for one illustrative example V/J = 4 are
sufficiently close to the critical temperature governed by the
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FIG. 5. (a) Thermal variations of the spontaneous staggered
magnetization of localized Ising spins ms

i (solid lines) and mobile
electrons ms

e (dashed-dotted lines) [scaled with respect to the left
axis] and the electric polarization P (dashed lines) [scaled with
respect to the right axis] at a half filling ρ = 2 and t/J = 1 for three
different values of the external electric field V/J . (b) Electric-field
variations of ms

i and ms
e at different temperatures. (c) Electric-field

variations of P at different temperatures. Open circles denote weak-
singular points of P , around which the most obvious changes of P

can be detected (see the inset).

asymptotic formula |P (T ) − P (Tc )| ∝ (Tc − T ) ln |Tc − T |.
It should also be mentioned that the electric field gradually
increases the staggered magnetization of the mobile electrons
despite the spontaneous ferromagnetic order. Moreover, it is
quite obvious from Fig. 4(b) that the electric field gradually
destroys the spontaneous magnetizations of the localized Ising
spins and mobile electrons, whereas the relevant electric-field
dependence just smears out upon increasing the temperature.
It could thus be concluded that an enhanced magnetoelec-
tric effect can be detected in the vicinity of a critical point
related to a continuous phase transition of the ferromagnetic
phase. On the other hand, the electric polarization displays a
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HANA ČENČARIKOVÁ AND JOZEF STREČKA PHYSICAL REVIEW E 98, 062129 (2018)

−15 −10 −5 0
−1.5

−1

−0.5

0
ln
(m

i) 
, l
n(

m
e)

ln(Tc−T)

(a) ρ=1.0

mi
me

≈ ln|T
c
−T|1

8

−15 −10 −5 0
−2.5

−2

−1.5

−1

−0.5

0

0.5

ln
(m

is ) 
, l
n(

m
es )

ln(Tc−T)

(b) ρ=2.0

ms
i

ms
e

≈ ln|Tc−T|1
8

FIG. 6. Logarithmic dependencies of the spontaneous sublattice
magnetization of localized Ising spins (solid lines) and mobile
electrons (dashed lines) as a functions of logarithmic distance of
temperature from its critical values Tc for V/J = 2 and t/J = 1 and
two different electron densities: (a) ρ = 1 and (b) ρ = 2.

monotonic increase with the external electric field even
though it still displays a weak singular point at the relevant
critical point. It is quite remarkable that the staggered magne-
tization of the mobile electrons closely follows the electric
polarization at low enough electric fields, but then it tend
to vanish together with the spontaneous uniform magnetiza-
tions of the localized Ising spins and mobile electrons [c.f.
Figs. 4(b) and 4(c)].

As far as the thermal behavior of the antiferromagnetic
phase is concerned, the staggered magnetizations of the lo-
calized Ising spins and mobile electrons still display standard
thermal dependencies with a steep power-law decline ms

i,e ∝
(Tc − T )βm characterized through the Ising-type critical ex-
ponent βm = 1/8 in the vicinity of the critical temperature
[see Figs. 5(a) and 6(b)]. It is worthwhile to remark, however,
that the zero-temperature asymptotic value of the staggered
magnetization of the mobile electrons is gradually suppressed
upon increasing the electric field due to a charge segregation.
Similarly to the previous case, the electric polarization ex-
hibits a nonmonotonic thermal dependence with a weak sin-
gularity |P (T ) − P (Tc )| ∝ (Tc − T ) ln |Tc − T | at the critical
temperature, as demonstrated in Fig. 7(b). It is quite apparent
from Fig. 5(b) that the spontaneous staggered magnetizations
of the localized Ising spins and mobile electrons disappear
upon increasing the electric field, whereas the relevant field
dependence gradually smears out upon increasing the tem-
perature. Thus, one may observe an enhanced magnetoelec-
tric effect related to a vigorous change of the spontaneous
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FIG. 7. Thermal variations of the electric polarization P (calc.)
and the respective asymptotic formulas |P (T ) − P (Tc )| ∝ (Tc −
T ) ln |Tc − T | (fit) in a vicinity of the critical temperature for V/J =
4, t/J = 1, and two electron concentrations: (a) ρ = 1 and (b)
ρ = 2.

staggered magnetization driven by the external electric field
close to a continuous phase transition of the antiferromagnetic
phase. The electric polarization contrarily exhibits a smooth
monotonic electric-field dependence with a weak singular
point located at the critical temperature.

IV. SUMMARY AND CONCLUSIONS

In the present work we have rigorously studied the ground-
state and finite-temperature phase diagrams of a coupled
spin-electron model on a doubly decorated square lattice in
an external electric field applied along the crystallographic
axis [11] together with the temperature and electric-field
dependencies of the spontaneous magnetizations and electric
polarization. It has been shown that the ground-state phase
diagram still involves five different ground states with ei-
ther ferromagnetic, antiferromagnetic, or paramagnetic spin
arrangements, which have already been reported for zero
electric field [16]. Although the applied electric field does
not produce any new ground state, it has a non-negligible
effect upon the stability, magnetic, and electric features of the
relevant ground states through the charge separation inducing
the electric polarization. It has been verified that the external
electric field favors at zero temperature the antiferromagnetic
phase before the ferromagnetic one. However, the external
electric field generally suppress the spontaneous ferromag-
netic and antiferromagnetic orders at finite temperature, as
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evidenced by the reduction of critical temperatures of both
these phases. While the spontaneous magnetizations of the
localized Ising spins and mobile electrons display standard
temperature dependencies with a steep power-law dependence
at the critical temperature, the electric polarization exhibits
a nonmonotonic temperature dependence with a remarkably
weak singularity located at the critical temperature. However,
the most interesting finding of the present work concerns
the observation of an enhanced magnetoelectric effect in
the vicinity of a critical temperature of a continuous phase
transition of the ferromagnetic or antiferromagnetic phase,
at which a substantial reduction of the spontaneous uniform

or staggered magnetization can be achieved by the external
electric field.
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