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Critical dynamical exponent of the two-dimensional scalar φ4 model with local moves
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We study the scalar one-component two-dimensional (2D) φ4 model by computer simulations, with local
Metropolis moves. The equilibrium exponents of this model are well established, e.g., for the 2D φ4 model
γ = 1.75 and ν = 1. The model has also been conjectured to belong to the Ising universality class. However, the
value of the critical dynamical exponent zc is not settled. In this paper, we obtain zc for the 2D φ4 model using
two independent methods: (a) by calculating the relative terminal exponential decay time τ for the correlation
function 〈�(t )�(0)〉, and thereafter fitting the data as τ ∼ Lzc , where L is the system size, and (b) by measuring
the anomalous diffusion exponent for the order parameter, viz., the mean-square displacement 〈��2(t )〉 ∼ t c

as c = γ /(νzc ), and from the numerically obtained value c ≈ 0.80, we calculate zc. For different values of the
coupling constant λ, we report that zc = 2.17 ± 0.03 and zc = 2.19 ± 0.03 for the two methods, respectively.
Our results indicate that zc is independent of λ, and is likely identical to that for the 2D Ising model. Additionally,
we demonstrate that the generalized Langevin equation formulation with a memory kernel, identical to those
applicable for the Ising model and polymeric systems, consistently captures the observed anomalous diffusion
behavior.
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I. INTRODUCTION

The φ4 model has become one of the most useful tools
in studying critical phenomena [1–4]. In two dimensions, the
lattice version of the φ4 model is defined by the action S and
Hamiltonian H as

S = H
kBT

= −β
∑
〈ij〉

φiφj +
∑

i

[
φ2

i + λ
(
φ2

i − 1
)2]

, (1)

where −∞ < φi < ∞ is the dynamical variable at site i; β

and λ are two model constants. The summation of the first
term in the right-hand side (RHS) of Eq. (1) runs over all
nearest-neighbor spins and for an L × L square lattice 0 �
(i, j ) < L. The order parameter for the φ4 model is defined as
� = ∑

i φi and the dynamics of the model is given by [5,6]

φ̇i = −�
∂S
∂φi

+ ξ (i, t ), (2)

〈ξ (i, t )ξ (i ′, t ′)〉 = 2�δ(i − i ′)δ(t − t ′), (3)

where ξ (i, t ) is a Gaussian noise term and � represents the
dissipation constant, which is related to the noise term by the
fluctuation-dissipation relation (3).

The equilibrium properties of the model in relation to the
critical phenomenon are well studied. Earlier investigations of
the two-dimensional (2D) and three-dimensional (3D) lattice
φ4 model have indicated that the critical exponents γ and ν are
the same as these for the Ising model, e.g., in 2D, γ = 1.75
and ν = 1 [7–9]. Simultaneously, Monte Carlo simulations
of the 2D lattice φ4 model have supported the idea that the
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φ4 model belongs to the Ising universality class [10]. Despite
these advances in the equilibrium properties of the model, its
critical dynamical properties are not settled.

As for the critical dynamical exponent, Blöte and Nightin-
gale [11] have analyzed three variations of Ising-type models
with next-nearest-neighbor interactions, and found that they
share the same critical exponents, not only γ and ν, but
also the critical dynamical exponent zc. Further works have
supported their results both in 2D and 3D [12–14]. For the 2D
Ising model zc has been determined quite precisely as zc =
2.1665 ± 0.0012 [15]. For the critical dynamical exponent of
the 2D φ4 model, z ≈ 2 was mentioned in Ref. [16], and the
ε-expansion method has shown that zc ∈ (2.04, 2.14) [17].
Further, zc has been measured using the heat bath algorithm,
yielding zc = 1.9 ± 0.21 [18]. In short, the value of the crit-
ical dynamical exponent for the φ4 model still remains to be
determined with higher precision.

In this paper, we study the one-component 2D scalar
φ4 model by computer simulations, i.e., Eq. (1), with local
Metropolis moves. In order to settle the value of zc, we
employ two independent methods: (a) we calculate the rel-
ative terminal exponential decay time τ for the correlation
function 〈�(t )�(0)〉, and thereafter fit the data as τ ∼ Lzc ,
where L is the system size; (b) we measure the mean-square
displacement (MSD) of the order parameter 〈��2(t )〉 ∼ t c

with c = γ /(νzc ), and from the numerically obtained value
c ≈ 0.80 we calculate zc. We report that zc = 2.17 ± 0.03
and zc = 2.19 ± 0.03 for the two methods, respectively. Our
results suggest that zc is independent of λ, and is likely
identical to that for the 2D Ising model.

Further, the numerical result 〈��2(t )〉 ∼ t0.80 at the criti-
cal point means that �(t ) undergoes anomalous diffusion. We
argue that the physics of anomalous diffusion in the φ4 model
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TABLE I. Value of βc for λ = 0.1, 0.5, and 1.0 [9,23].

λ Value of βc

0.1 0.60647915(35)
0.5 0.686938(10)
1.0 0.680601(11)

at the critical point is the same as for polymeric systems and
the Ising model [19–22], and therefore a generalized Langevin
equation (GLE) formulation that holds for the Ising model at
criticality and for polymeric systems must also hold for the φ4

model. We obtain the force autocorrelation function for the
φ4 model at �̇ = 0, and the results allow us to demonstrate
the consistency between anomalous diffusion and its GLE
formulation.

The paper is organized as follows. In Sec. II we introduce
the φ4 model and the dynamics and then show the results
of the correlation term 〈�(t )�(0)〉 and the mean-square dis-
placement of the order parameter; from both we measure the
critical dynamical exponent. In Sec. III we briefly explain
how the restoring force works, which naturally leads us to
the generalized Langevin equation (GLE) formulation for the
anomalous diffusion in the φ4 model, and verify the GLE
formulation for anomalous diffusion. The paper is concluded
in Sec. IV.

II. MEASUREMENT OF THE CRITICAL
DYNAMICAL EXPONENT

A. Model and the dynamics

We consider the scalar one-component two-dimensional
φ4 model on an L × L square lattice with periodic boundary
conditions. The action is introduced in Eq. (1) and in this
paper we focus on λ � 1.

We simulate the dynamics of the system, i.e., Eq. (2),
using Monte Carlo moves, with the Metropolis algorithm:
we randomly select a site i, for which we try to change the
existing value φi to a new value φ′

i , given by

φ′
i = φi + �φ

(
r − 1

2

)
, (4)

where r is a random number uniformly distributed within
[0,1) and, following Refs. [8,9], we set �φ = 3. The resulting
change of the action �S after every attempted change in φi is
calculated. The move is accepted if �S � 0; if not, then the
move is accepted with the usual Metropolis probability e−�S .
With �φ = 3, the acceptance rates are between 40% and 60%.

In this paper, all simulations have been performed on
a 3.40 GHz desktop PC running Linux. We mainly focus
on three different values of λ, i.e., λ = 0.1, 0.5, 1.0. The
corresponding critical coupling constants βc, obtained in
Refs. [9,23], are listed in Table I.

Next, we use two independent methods to measure the
dynamical exponent zc.

B. Measurement of the correlation function 〈�(t )�(0)〉
In the first method, we measure the correlation func-

tion 〈�(t )�(0)〉 of the order parameter. To obtain the

TABLE II. Measured values of zc for the 2D φ4 model at differ-
ent λ. The critical dynamical exponent zc is calculated by fitting the
data of the relative value of τ as τ ∼ Lzc . The results indicate that
the value of zc is likely independent of λ, which allows us to produce
a single estimate of zc, viz., zc = 2.17 ± 0.03 (see main text).

λ zc

0.1 2.17 ± 0.03
0.5 2.15 ± 0.03
1.0 2.20 ± 0.03

corresponding data, we run our simulations for 5 × 107 Monte
Carlo steps per lattice site to thermalize the system. Subse-
quently, we keep taking snapshots of the system at regular
intervals over a total time of 5 × 108 Monte Carlo steps per
lattice site, and compute the order parameter � at every
snapshot. From this data set we calculate 〈�(t )�(0)〉.

We use system sizes L = 30, 40, . . . , 90 for each value
of λ. The required CPU time is about 45 min for L = 30,
reaching about 6 h for L = 90.

At long times we expect 〈�(t )�(0)〉 to behave as
〈�(t )�(0)〉/〈�(0)�(0)〉 ∼ exp(−t/τ ), and define Q(t ) =
− ln [〈�(t )�(0)〉/〈�(0)�(0)〉], leading us to expect

Q(t ) ∼ t/τ. (5)

We then calculate the relative value of terminal decay time τ

by collapsing the Q(t ) data to a reference for every value of
λ. More explicitly, for every value of λ we choose the Q(t )
data for L = 30 as reference, set its τ value to unity, and
then collapse the rest of the Q(t ) for other values of L to that
reference, which yields us the relative value of τ for that value
of λ. As an example, Fig. 1(a) demonstrates this procedure:
with a properly chosen relative value of τ , the 〈�(t )�(0)〉
data for different system sizes collapse to the data of L = 30.

At the critical temperature τ ∼ ξzc , where ξ is the correla-
tion length. According to finite-size scaling theory, for finite
system sizes ξ needs to be replaced by L, i.e.,

τ ∼ Lzc . (6)

The critical dynamical exponent zc is calculated by fitting
the data of the relative value of τ with Eq. (6). Results of this
procedure are shown in Fig. 1(b). The corresponding values
of zc can be found in Table II. The error bars in Table II are
obtained from the best fits of Fig. 1(b). These results indicate
that the value of zc is likely independent of λ. If we do assume
that, then we can combine the different numerical values for
different λ to produce a single estimate of zc, viz., zc = 2.17 ±
0.03.

C. Mean-square displacement of the order parameter

In the second method, we focus on the measurement of the
mean-square displacement of the order parameter at time t ,
given by

〈��2(t )〉 = 〈[�(t ) − �(0)]2〉. (7)

To obtain the data of the MSD of the order parameter, we
first thermalize the system with 2 × 108 Monte Carlo moves
per lattice site, then measure 〈��2(t )〉 in a further simulation
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FIG. 1. Measurement of zc from the Q(t ) data for different values of λ at the critical point. (a) An example of the measurement process to
obtain the relative value of terminal decay time τ . In this figure λ = 0.1 and τL=30 is the terminal decay time of reference system size L = 30.
The data collapse (to the reference) is obtained by adjusting the relative values of terminal decay time for other system sizes; (b) measurement
of zc by fitting the data of the relative value of decay time τ as τ ∼ Lzc . The symbols represent the simulation results of τ and the solid line
corresponds to τ ∼ L2.17.

over 2 × 109 Monte Carlo moves per lattice site, using the
shifting time window method.

For each value of λ, three different system sizes are used:
L = 40, 80, 160. For L = 40, the simulation runs for about
5 h, and it takes about 3 days to obtain the results for L = 160.

At short times (t ≈ 1), the individual changes of � are
uncorrelated; i.e., the mean-square displacement (MSD) of
the order parameter must behave as 〈��2(t )〉 ∼ Ldt , where
d = 2 is the spatial dimension of the system.

At long times, t � Lzc , we expect 〈�(t )�(0)〉 = 0, which
means that

〈��2(t )〉 ≈
t	Lzc

2〈�(t )2〉 ∼ Ld+γ /ν, (8)

which is an equilibrium quantity.
If we assume that the MSD is given by a simple power law

in the intermediate time regime (1 � t � Lzc ), then we have

〈��2(t )〉 ∼ t c, (9)

where c = γ /(νzc ). Note that exactly the same behavior has
been found in the Ising model [22,24].

In order to measure the value of the exponent c

from 〈��2(t )〉, we need to focus on the intermediate-
time regime, i.e., we consider the MSD data in (tmin, tmax)
to estimate the exponent. From these data we calcu-
late the exponent c as numerical derivative as c =

1
tmax−tmin

∑tmax−1
t=tmin

ln〈��2(t+1)〉−ln〈��2(t )〉
ln(t+1)−ln t

. In order to estimate zc

for different λ from these data, we use the data from the largest
system size so that we can limit the influence of finite-size
effects. From the numerically obtained c we calculate zc and
c = γ /(νzc ), which we present in Table III. These results, too,
indicate that the value of zc is likely independent of λ. If we
do assume that, then we can combine the different numerical
values for different λ to produce a single estimate of zc, viz.,
zc = 2.19 ± 0.03. The corresponding data for the MSD of
�(t ) for 80 � L � 160 for different values of λ are shown
in Fig. 2. The small deviation in Fig. 2 at late times is caused
by periodic boundary conditions: they are different when free
boundary conditions are utilized. (Exactly the same effect has
been observed in our earlier work on the Ising model [22].
Verification of the boundary effects is therefore not shown

here, since the deviations from the power law do not scale with
L, and consequently are not relevant in the scaling limit.)

In conclusion, the critical dynamical exponent zc obtained
with two independent methods demonstrate that zc = 2.17 ±
0.03 or zc = 2.19 ± 0.03 for different values of λ in the 2D
scalar φ4 model. Both results are consistent to the value of
zc for the 2D Ising model (2.1665 ± 0.0012). In other words,
our results indicate that zc is independent of λ and is likely
identical to that for the 2D Ising model.

III. GLE FORMULATION OF THE ANOMALOUS
DIFFUSION IN THE φ4 MODEL

In Sec. II C we numerically obtained that, in the
intermediate-time regime, the MSD of the order parameter in
the φ4 model behaves as

〈��2(t )〉 ∼ L2t0.80. (10)

This means that, at the critical point, the order parameter
exhibits anomalous diffusion. The same behavior has been
observed in the Ising model [24]. The physics of anomalous
diffusion in the Ising model has been thoroughly analyzed in
Ref. [22], where it has also been demonstrated that the physics
is identical to that for polymeric systems [19–21,25–29].

Both in the Ising model and polymeric systems, the anoma-
lous diffusion stems from time-dependent restoring forces
which lead to the GLE formulation. Translated to the φ4

model, the physics of the restoring force can be described as
follows.

TABLE III. Critical dynamical exponent zc, which is obtained
from the numerically obtained c with c = γ /(νzc ), for the 2D φ4

model at different λ. The results, too, indicate that the value of zc is
likely independent of λ, which allows us to produce a single estimate
of zc, viz., zc = 2.19 ± 0.03 (see main text).

λ zc

0.1 2.20 ± 0.03
0.5 2.18 ± 0.02
1.0 2.20 ± 0.04
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(a) (b)

FIG. 2. (a) Mean-square displacement (MSD) of the order parameter 〈��2(t )〉 in the φ4 model at the critical point. The MSD scales as
〈��2(t )〉 ∼ L2t c, where c = γ /(νzc ). The x and y axes are scaled with λ-dependent numerical scale factors to achieve good quality data
collapse for different λ. The solid line denotes the power-law behavior shown in Eq. (8). (b) The effective exponents, i.e., the numerically
differentiated d ln(〈��2(t )〉)/d ln(t ), of the MSD of the order parameter for different λ. The system sizes are L = 160 and the time period
for calculating the exponent c is t ∈ (tmin, tmax), where tmin ∼ 1 and tmax ∼ Lzc .

Imagine that the order parameter locally changes by an
amount δφ due to thermal fluctuations at t = 0. Due to the
interactions among the spins dictated by the Hamiltonian, the
system will react to the change in δφ. This reaction will be
manifest in the two following ways: (a) the system will to
some extent adjust to the change of δφ, however, it will take
some time, and (b) during this time the order parameter will
also readjust to the persisting value of �, undoing at least part
of δφ. It is the latter that we interpret as the result of inertia
that resists change in �, and the resistance itself acts as the
restoring force to the changes in the order parameter.

A. GLE formulation for the anomalous diffusion in the φ4 model

In the Ising model and polymeric systems, the restoring
force has led to the GLE description for the anomalous
diffusion [19,20,22]. We now import that for the φ4 model,
with a time-dependent memory function μ(t ) arising out of
the restoring forces. The GLE formulation for the anomalous
diffusion is described as

ζ �̇(t ) = f (t ) + q1(t ), (11a)

f (t ) = −
∫ t

0
dt ′μ(t − t ′) �̇(t ′) + q2(t ). (11b)

Here f (t ) is the internal force, ζ is the “viscous drag”
on �(t ), μ(t − t ′) is the memory kernel, and q1(t ) and
q2(t ) are two noise terms satisfying 〈q1(t )〉 = 〈q2(t )〉 = 0 and
the fluctuation-dissipation theorems (FDTs) 〈q1(t ) q1(t ′)〉 ∝
ζ δ(t − t ′) and 〈q2(t ) q2(t ′)〉 ∝ μ(t − t ′), respectively.

Equation (11b) can be inverted to be written as

�̇(t ) = −
∫ t

0
dt ′ a(t − t ′)f (t ′) + ω(t ). (12)

The noise term ω(t ) similarly satisfies 〈ω(t )〉 = 0 and the
FDT 〈ω(t )ω(t ′)〉 = a(|t − t ′|). Then a(t ) and μ(t ) are related
to each other in the Laplace space as ã(s)μ̃(s) = 1.

To combine Eqs. (11a) and (11b), we obtain

ζ �̇(t ) = −
∫ t

0
dt ′μ(t − t ′) �̇(t ′) + q1(t ) + q2(t ) (13)

or

�̇(t ) = −
∫ t

0
dt ′θ (t − t ′) [q1(t ) + q2(t )], (14)

where in the Laplace space θ̃ (s)[ζ + μ̃(s)] = 1. With t > t ′,
without any loss of generality, using Eq. (14) the result of the
velocity autocorrelation is

〈�̇(t )�̇(0)〉 ∼ θ (t − t ′), (15)

where θ (t ) can be calculated by Laplace inverting the relation
θ̃ (s)[ζ + μ̃(s)] = 1.

If μ(t ) behaves as a power law in time with an exponential
cutoff such as

μ(t ) ∼ L−2t−c exp(−t/τ ), (16)

then we have [20]

〈�̇(t )�̇(t ′)〉 = −θ (t − t ′) ∼ −L2(t − t ′)c−2 for t � τ.

(17)

By integrating Eq. (17) twice in time (the Green-Kubo rela-
tion), we obtain

〈��2(t )〉 ∼ L2t c for t � τ. (18)

The form μ(t ) ∼ L−2t−c not only obtains the anomalous ex-
ponent for the mean-square displacement, but also the correct
L-dependent prefactor to achieve the data collapse in Fig. 2,
i.e., if μ(t ) ∼ L−2t−c, then 〈��2(t )〉 ∼ L2t c.

B. Verification of the first equation of the GLE and the
power-law behavior of μ(t )

We now numerically verify our proposed GLE formulation,
including the form of μ(t ) as stated in Eq. (15) for anomalous
diffusion in the φ4 model.

First, in order to verify Eq. (11a), note that in the φ4 model,
the force within the system can be directly calculated as

f = − 1

L2

N∑
i=0

∂S
∂φi

∂φi

∂�
= − 1

L2

N∑
i=0

∂S
∂φi

. (19)
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FIG. 3. Linear relation Eq. (11a) between the average internal
force 〈f 〉 and 〈�̇〉 for different λ. Numerically, we find (inset) that
the viscous drag ζ behaves as ζ ∼ λ0.65.

By taking ensemble averages on both sides of Eq. (11a) we
obtain

〈f (t )〉 = ζ 〈�̇〉. (20)

This linear relation is demonstrated in Fig. 3. Additionally,
in the inset we plot the viscous drag ζ as a function of
λ and numerically obtain ζ ∼ λ0.65. Next we verify the
power-law behavior of μ(t ) [Eq. (15)] following the FDT
〈f (t )f (t ′)〉|�̇=0 = μ(t − t ′).

We start with a thermalized system at t = 0. For t > 0 we
fix the value of � (without freezing the whole system), which
we achieve by performing nonlocal spin-exchange moves, i.e.,
at each move, we choose two lattice site i and j at random and
attempt to change the spin values to φ′

i = φi + �φ and φ′
j =

φj − �φ. We calculate the change in the energy �S before
and after every attempted move and accept or reject the move
with the Metropolis acceptance probability. While performing
spin-exchange dynamics, we keep taking snapshots of the
system at regular intervals and compute, at every snapshot
(denoted by t), the force f (t ) from Eq. (19).

We notice that since simulations are performed for fi-
nite systems with � fixed at its t = 0 value, we will in
any particular run have a nonzero value of 〈f (t )〉 acting to
sustain the initial value of � [22]. Thus we calculate the
quantity

�(f ) = 〈f (t )f (t ′)〉 − 〈f (t )〉〈f (t ′)〉, (21)

which we expect to represent μ(t − t ′) for all values of λ, i.e.,

�(f ) ∼ L−2t−c ≈ L−2t−0.80. (22)

The relation (22) is verified in Fig. 4.

IV. CONCLUSION

In this paper, we have measured the critical dynamical
exponent zc in the φ4 model using two independent methods:
(a) by calculating the relative terminal exponential decay
time τ for the correlation function 〈�(t )�(0)〉, and there-
after fitting the data as τ ∼ Lzc , and (b) by measuring the
mean-square displacement (MSD) of the order parameter
〈��2(t )〉 ∼ t c with c = γ /(νzc ), and zc is calculated from

FIG. 4. Behavior �(f ) ∼ t−0.8 for different λ in the interme-
diate time regime following Eq. (22); then following the FDT,
we have μ(t ) ∼ t−0.8. The extra λ-dependent factor λ0.35 is intro-
duced numerically to collapse the data for different λ at interme-
diate times. Further, zc = 2.17 has been used here to collapse the
data.

the numerically obtained value c ≈ 0.80. For different values
of the coupling constant λ, we report that zc = 2.17 ± 0.03
and zc = 2.19 ± 0.03 for these two methods, respectively.
Our results indicate that zc is independent of λ and is likely
identical to that for the 2D Ising model.

Further, the numerical result 〈��2(t )〉 ∼ t0.80 at the criti-
cal point means that �(t ) undergoes anomalous diffusion. We
have argued that the physics of anomalous diffusion in the
φ4 model at the critical point is the same as for polymeric
systems and the Ising model [19,20,22] and therefore a GLE
formulation that holds for the Ising model at criticality and
for polymeric systems must also hold for the φ4 model. We
obtain the force autocorrelation function for the φ4 model at
�̇ = 0, and the results allow us to demonstrate the consistency
between anomalous diffusion and its GLE formulation. In
comparison to the Ising model, since � is a continuous order
parameter and there is a proper definition of the internal force,
we believe that the φ4 model is a better choice to verify the
FDT for the GLE formulation.

Finally, we note that we have confined ourselves to the
range λ ∈ (0, 1]. It is clearly possible to extend our study to
larger values of λ, in particular to λ → ∞, where the model
converges to the Ising model, but not without facing additional
challenges, as follows. The thermal fluctuations decrease with
increasing λ and the effective interactions among the fields
become weaker [9]. For large λ, the self-energy term of the
fields in the Hamiltonian becomes large. The step size has
to be chosen small; otherwise, it will lead to many rejected
moves. As a consequence, the system gets trapped within nar-
row bands on the energy landscape. Our preliminary attempts
to simulate the model at large λ reveal that these traps give rise
to artifacts (e.g., in force autocorrelation function at fixed �)
that are not easy to get rid of. These are issues we will explore
in the future.
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