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Soft-particle lattice gas in one dimension: One- and two-component cases
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The object of the present article is a one-dimensional lattice-gas model of soft particles, wherein particles
interact only if they occupy the same or a neighboring site. The model is intended as a simple representation
of penetrable particles of soft condensed matter. To represent different scenarios, two different realizations of
the lattice model are considered: a one-component and a two-component system. For the two-component case
particles of the same species repel and those of opposite species attract each other. The systems are analyzed
entirely within the transfer matrix framework. Special attention is paid to the criterion devised in Ref. [Phys. Rev.
E 63, 031206 (2001)], which serves to separate two types of behavior encountered in one-component penetrable
particle systems. In addition to confirm the existence of a similar criterion in the one-component lattice-gas
model, we find that the same criterion can be used in the two-component system for predicting the occurrence

of thermodynamic catastrophe.
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I. INTRODUCTION

The present work investigates a one-dimensional (1D)
lattice model of soft particles. Soft interactions imply the pos-
sibility of multiple occupations of a single site, and the model
is intended to be a simple representation of penetrable par-
ticles, such as the Gaussian core or the penetrable-sphere
model.

In soft condensed matter, penetrable pair potentials have
been recognized as realistic representations of effective in-
teractions between a number of large macromolecules. For
example, the penetrable-sphere model represents micelles in
a solvent [1], the Gaussian core model accurately captures
entropic repulsions between self-avoiding polymer coils in a
good solvent [2,3], and the generalized exponential model,
exp(—r*), accurately describes the effective repulsion be-
tween flexible dendrimers in a solution [4-7]. Many other
soft potentials have been suggested to characterize an ever
larger class of macromolecules [8]. Penetrability has been
further extended to charged macromolecules, represented by
a divergence-free Coulomb potential [9-11].

Due to the absence of hard-core interactions, the density
of penetrable systems may acquire arbitrarily large values.
This in turn leads to new behaviors not observed in standard
models. For example, a solid of Gaussian particles melts in
two ways: when pressure is reduced, as in normal melting,
and when pressure is increased, known as reentrant melting
[12-14].

Penetrable spheres, on the other hand, do not undergo
reentrant melting. A solid phase is preserved all the way into
infinite densities. A lattice structure, instead of being shrunk
or deformed upon compression in order to create additional
sites, remains intact, and excess of particles is accommodated
by allowing multiple occupation of existing lattice sites. Such
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“stacks” of several particles sharing the same space can form
already in a dense liquid phase prior to freezing. Advantage
of a “stacked” arrangement is that it reduces a total number of
overlaps. This, in turn, lowers the system energy.

Between the Gaussian core and the penetrable-sphere
model there exists a continuum of potentials that exhibit one
of the two types of behavior. Based on the mean-field analysis,
Likos et al. [15] determined a criterion for predicting a type of
behavior for any given pair potential. If the Fourier transform
of the potential is everywhere positive, then one expects
the Gaussian model-like behavior. If, on the other hand, it
is not positive everywhere, the system exhibits “stacking”
formations as in the penetrable-sphere model.

The leading motivation for the present work is to shed
light on the two classes of behavior and to better understand
the Likos-Lang-Watzlawek-Lowen (LLWL) criterion in the
context of a simple lattice-gas system. The model consists of
a 1D array of discrete sites. There is no bound on how many
particles may occupy a single site. Particles interact only if
they are on the same or a neighboring site. The interaction
strength is regulated with two parameters, K for interactions
between particles on the same site, and K’ = a K, for interac-
tions between particles occupying neighboring sites.

To analyze the model and its properties, we use the transfer
matrix method. Within this method a system is completely
characterized by a transfer matrix. All the thermodynamic
quantities can then be expressed in terms of the transfer matrix
eigenvalues and eigenvectors. As the occupation number is
unlimited, the transfer matrix has infinite size. In practice,
however, a 20 x 20 matrix suffices for most cases. Eigenval-
ues and eigenvectors of the transfer matrix are then calculated
numerically using any of the standard software packages, such
as Mathematica or Matlab.

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.062123&domain=pdf&date_stamp=2018-12-17
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.98.062123

DEREK FRYDEL AND YAN LEVIN

PHYSICAL REVIEW E 98, 062123 (2018)

In addition to a one-component scenario, the work con-
siders a two-component system, where particles of the same
species repel and those of opposite species attract each other.
Such systems have been considered for penetrable spheres
[16] and the Gaussian core model [17]. As the two-component
Gaussian core model is well behaved, the two-component
penetrable-sphere model is thermodynamically unstable. We
argue that the LLWL criterion of classification [15] applies to
a two-component system, where it is used to predict thermo-
dynamic stability.

The work is organized as follows. In Sec. II we consider a
1D lattice model for noninteractive particles. Different ways
of counting configurations are considered, leading to different
partition functions. In Sec. III we consider a one-component
lattice model with soft repulsive interactions. Here we deter-
mine the existence of two types of behavior, in agreement
with penetrable particles of soft condensed matter. In Sec. IV
we consider a two-component system with particles of the
same species repelling and of different species attracting each
other. We show that the LLWL criterion of a one-component
case apply to the two-component system as a criterion of
thermodynamic stability. Finally, in Sec. V we conclude the
work.

II. NONINTERACTIVE PARTICLES

Given a 1D array of L lattice sites and N indistinguishable
and noninteractive particles, the canonical partition function,
for the case where at most one particle can occupy a lattice
site, is

L!

2= NL - W) @

and corresponds to a binomial coefficient C(L, N). In this
work, however, we are interested in a lattice model with mul-
tiply occupied sites. The partition function for this situation is

_(N+L-1)!

NI(L —1)! @

and corresponds to the binomial coefficient C(N + L — 1, N)
and represents the permutation formula for L — 1 items of
type one and N items of type two. If L — 1 items represent
bars, then the remaining N items are segregated into L sets,
where a single set represents a lattice site. In light of this
interpretation, Eq. (2) makes perfect sense.

Note, however, that the pressure per lattice site for the

logZ -
above system, defined as P = agL ,is
BP =log(1+ p) 3)

and does not correspond to the ideal-gas behavior.

To construct the partition function that reproduces ideal-
gas properties, we must proceed from the assumption that
particles are distinguishable, in which case there are LV dis-
tinct configurations. The standard trick to obtain the partition
function is to use the Gibbs correction, 1/N!, yielding

LN

zZ=—+ (4)

The resulting partition function now yields the correct ideal-
gas pressure per lattice site,

BP =p. 5

Difference between the partition function in Eq. (2) and
that in Eq. (4) is well illustrated with different simulation algo-
rithms. One algorithm generates configurations by randomly
selecting a lattice site. This is followed by either adding or
subtracting a particle. At the end of an update cycle, consisting
of L random draws, one ensures that the total number of
particles is conserved. This algorithm corresponds to Z in
Eq. (2).

In an alternative algorithm, configurations are generated
by randomly selecting a particle (not a site), hence, particles
are labeled. A selected particle is then moved to a randomly
selected site. This algorithm corresponds to Z in Eq. (4) and
is more suitable for representing liquids.

As it is more convenient to work with grand partition
functions, below we obtain the appropriate expressions. The
formal relation between the grand and the canonical partition
function is

oo
BB, L) =) eV Z(N. L),
N=0

where w is the chemical potential and B = 1/kpT.
For indistinguishable particles, using Eq. (2), E =
> o eﬂ“N% = (1 —eP*)~L. Note that only u <0
is physically meaningful. At p =0 the partition function
diverges and for ;< 0 it becomes negative. The same result

can be obtained from an alternative formulation:

00 [e'e) 1 L
= = Buny | pPune [~
H—Z Ze loo.e L_<1_eﬁu>' (6)

n;=0 n;=0

The physical interpretation of the above expression is clear.
L summations correspond to L sites and n; designates the
number of particles at a site i.

To obtain the grand partition function for distin-
guishable particles we use Eq. (4), leading to E =
Y g e NLN /NI = (e )L. The same result follows from
an alternative formulation:

> O pBum eBrne

g=Y - = ole™, (7

n! nr!
n;=0 n;p=0 1 L

Later in this work we consider probabilities p(n), the prob-
ability that any given site is occupied by n particles. Conse-
quently, we derive these probabilities for noninteractive par-
ticles. The procedures to obtain p(n) will furthermore clarify
the difference between distinguishable and indistinguishable
particles.

We start by recalling that Z(N, L) in Eq. (2) counts the
number of configurations for N indistinguishable particles
distributed over L sites. If one site is occupied by n
particles, the number of configurations of the remaining
N — n particles distributed over L — 1 sites is Z(N —n, L —
1), and p(n) is given by the ratio of the two numbers,
pn) = Z(NZ(+€;1) In the thermodynamic limit, L — oo
and N — oo such that N /L = p [and using the Sterling
formula N!~~ NVe™™ and the limiting representation of
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the exponential function e* = limy_ (1 + x/N)N], that
expression reduces to

P=1,\1+,)

For distinguishable particles the total number of configu-
rations is LV . If one site is occupied by n labeled particles,
the number of configurations of the remaining N — n particles
distributed over L — 1 sites becomes (L — 1)V~". However,
the ratio (L — l)N —" /LN does not yield the probability p(n).
As there are TN N - different ways to draw n labeled parti-
cles, the ratio (L — l)N " /LN needs to be multiplied by that
number. The correct distribution becomes

N! (L — DN
n!(N —n)! LN ’

which in the thermodynamic limit recovers the Poisson distri-
bution:

p(n) =

€))

pe”

p(n) = (10)

III. INTERACTIONS: ONE-COMPONENT SYSTEM

We next consider an interactive 1D lattice system repre-
sented by the Hamiltonian

L
g;ni(ni

where the interactions between particles on the same site are
given by the first and the interactions between particles on
neighboring sites by the second term. For o = 0 interactions
between particles on neighboring sites are turned off, and for
o = 1 these interactions are the same as those for particles on
the same site. The case « = 1 is analogous to the penetrable-
sphere model, and the case 0 < @ < 0.5 to the Gaussian core
model. We are not interested in the scenario o > 1, which
implies that interactions between particles on neighboring
sites are greater than those for particles on the same site. We
are also not interested in the scenario a < 0, which implies
the presence of attractive interactions between particles on
neighboring sites, in analogy to the van der Waals potential.
As for noninteractive particles in Sec. III, we consider the
system of indistinguishable and distinguishable particles. For
indistinguishable particles the grand partition function is

§ § un
a ell..

n1=0 n;=0

H(ny,...,np) =

L
—D+aK ) minig, (11)
i=l

lmLe BH(ny,..., ”L)’ (12)

a1

and for distinguishable particles it is

eﬁﬂ-"l eﬁ“ L

Z Z . e e pH.... nL), (13)

n;=0 n;p=0

[1]
S

“ EL)

where we use the index and “b” to differentiate between
the two cases. Both cases adapt periodic boundary conditions,
nyy+1 = ni, which ensures that each site is equivalent.

The systems are analyzed using the transfer matrix method,
the standard method of lattice models in one dimension
[18]. The central object of the method is the transfer matrix,

T(n,n’), by means of which the partition function can be
written as
o0

2= Z Z T(ni,ny)T(np,n3)---

n;=0 nyp=0

T(”Ls”l)? (14)

revealing chain structure of a partition function. Using matrix
algebra, the partition function is shorthanded into

=TrT". (15)

Eigendecomposition of the transfer matrix, T = QAQT
(where A is the diagonal matrix with diagonal elements
A;; = A; and Q is the square matrix whose ith column is the
eigenvector ¢; (n) of T), further transforms the expression into

=§3ﬁg (16)

where AL are eigenvalues of the matrix T, and T* is the
product matrix generated by multiplying T by itself L times.
If eigenvalues are ordered according to their modulus as
[A1] > |A2] > |A3]---, and because in the thermodynamic
limit, L — oo, E is dominated by the largest eigenvalue, the
grand partition function becomes

E = AL, (17)
and the corresponding pressure per lattice site is given by
BP =logh,. (18)

We next use the transfer matrix framework to obtain the
probability p(n), that a given site i is occupied by n particles.
The formal definition is

1 o0 o0
pmy=—=Y > T n)T(ny,n3)--

n2=0 nr =0

T(ny,n) (19)

and amounts to breaking the ring structure of Eq. (14) at a
site i = 1, giving rise to a linear chain. After the applica-
tion of eigendecomposition (see Appendix A), the expression
reduces to

p(n) = ¢i(n), (20)

where ¢;(n) are elements of the dominant eigenvector corre-
sponding to the largest eigenvalue A, thus, p(n) is properly
normalized since the modulus of a vector ¢;(n) is 1.

The transfer matrix for indistinguishable particles, corre-
sponding to the partition function in Eq. (12), is
%(nvan’z)efﬂotKnn’

T,(n.n')=e e T )

and that for distinguishable particles corresponding to Z in
Eq. (13) is
B ’
ﬁTK(n2+n'2)efﬂaKnn/ e (ntn) - 22)
~/nln'!
Eignevalues and the eigenvectors are calculated numerically
using Mathematica. In principle, T (n, n’) is an infinite matrix,
but in practice the 20 x 20 matrix is sufficient for most
situations.
Figure 1 shows a number of distributions p(n) for indis-
tinguishable particles, for BK = 0.1 and o = 1, for different

Ty(n,n')=e"
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FIG. 1. p(n) for indistinguishable particles for K = 0.1 and
o = 1. The dashed red line is for noninteractive particles according
to the expression in Eq. (8).

densities arranged in increasing order. The consecutive plots
show gradual transformation of p(n) into a bimodal structure,
emerging at around p = 4. The two peaks of the bimodal
structure are at n = 0 and n ~ 2p, suggesting an alternating
structure of occupied versus empty sites, rather than a coex-
istence of vacuum cavities embedded in a fluid with density
2p. The emergence of an alternating structure is analogous to
the “stack” formations of penetrable spheres discussed in the
introduction.

A similar transformation into a bimodal structure occurs
for distinguishable particles; see Fig. 2. The crossover, how-
ever, occurs at a higher density, p ~ 10. The explanation for
this difference lies in different entropies of the two systems.
For the case of distinguishable particles the adaptation of an
ordered alternating structure entails larger loss of entropy.

To confirm the existence of an alternating structure, we
consider the two-site probability, p,,(n,n’), which is the
probability that two sites separated by m sites have the oc-
cupation number n and n’, and whose formal definition is

1 [o.¢] [o.¢]
pu(n,ny= =" " T, m)T (2, n3) -+ Ty, 1)

n,=0 n,=0
o0 o0
!
e E P E T(n’nm+2)...T(nL’n).
Nm+2=0 np=0
(23)
02 02 0.2
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FIG. 2. p(n) for distinguishable particles for BK = 0.1 and o =
1. The dashed red line corresponds to the Poisson distribution of
noninteractive particles in Eq. (10).

p=4 PK=0.1 e s p=10 BK=0.1
° indistinguishable indistinguishable
()
Zd - 3 1000¢
[ ] * n
. P - . LA TP

I R i S O34 6%

n n

FIG. 3. Partially ordered eigenvalues |A;| > |X;| > ---, for for
BK = 0.1 and a = 1. Circles are for n odd, corresponding to A,
positive, and squares are for n even, corresponding to A, negative.

Applying eigendecomposition (see Appendix B), we arrive at
the expression

Pu(n,n) - (m)"%k(n)d»k(n/)
Lt ) S} PG oy
ey =T 2\5) mwma @

where p,,(n, n’) can be shown to be normalized,

Z Z pm(n,n') = Z p(n) Z p(n") + Z (%‘)
n=0 n'=0 k=2

n=0n'=0

X Y d1me(n) Y (W )(n') = 1,

n=0 n'=0
(25)

where the second term vanishes for any k % 1 as the conse-
quence of orthonormality of the eigenvectors ¢y.
We next define the quantity

_ Pn(0,0)

= ) 26
p*(0) (20

In absence of correlations between empty sites, I',, = 0. On
the other hand, if occupied and empty sites alternate, we
expect

r, >0, for m-even

27
r, <0, 27

for m-odd

In Fig. 3 we plot |, | for the density when the distribution
starts to separate into bimodal structure and for the density
where the distribution has a well-developed bimodal structure.
The eigenvalues alternate in sign as

An >0,
A <0,

for n-odd
, (28)
for n-even

which is not captured by the figure which plots the data
points for |A,|. The main result is that once the bimodal

062123-4



SOFT-PARTICLE LATTICE GAS IN ONE DIMENSION: ...

PHYSICAL REVIEW E 98, 062123 (2018)

1 ‘ ‘
BK=0.1 p=10
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Eo|
- m-cven
1o 5000 10000
m

FIG. 4. The correlation function I', defined in Eq. (26) as a
function of m, for K = 0.1 and o = 1. The thick dashed lines are
exact results, and the thin solid lines are for the ansatz de " 1°g%1/%2),

structure is established, the spectrum is dominated by the first
two eigenvalues, A; and A,, so that [',, in Eq. (26) can be

approximated as
N (g)"’[@(mr 29)
"o\ L]

Furthermore, we find that ¢,(0)/¢;(0) =~ 1, so that the cor-
relations are determined solely by the ratio A,/A; < 0. Since
A1 and A, have different sign, X,/A; raised to an odd power
is negative, and raised to an even power it is positive. This
suggests the following functional form

for m-even
for m-odd

C,~ e 108()»1/)»2)’

[, ~ —e mlogti/ia) (30)

Even if the first two eigenvalues converge with increasing
density, |X2| — |A;], they coalesce only in the limit p — oo.
But since the true long-range order arises only if |Xy| = |Aq],
we can exclude the possibility of a phase transition, which we
attribute to the low dimensionality of a system [19].

[',, plotted in Fig. 4 confirms the exponentially decaying
correlations and accuracy of the ansatz in Eq. (30).

So far we have considered only the case o = 1, which
can be regarded as representative of the penetrable-sphere
model whose interaction strength remains the same as long
as spheres are overlapped. In the subsequent section we look
into other values of «, especially, we examine the effect of
reduced « on the structure of p(n).

In Fig. 5 we plot several distributions p(n), for K = 0.1
and fixed p, for decreasing values of «. The results indi-
cate gradual transformation of a bimodal into a monomodal
structure, implying the dissolution of an ordered alternating
structure. For indistinguishable particles the bimodal structure
vanishes for ¢ = 0.55; but reappears if density is increased.
The question is, what is the critical value of « below which an
ordered alternating structure never arises for any density?

To answer this, we consider two idealized configurations.
One configuration is uniform, with each site having the oc-
cupation number n; = p. Another one has occupations that
alternate between n; = 2p and n; = 0. From the Hamiltonian

0.2, 0.2 0.2,

(a) o=0. (b) a=0.55 (c) a=0.5
indistinguishable- indistinguishable- indistinguishable
_
o1 0.1 0.1
o
Q 020 30 020 30 { 107720 30
n n n
02 02 0.2
(d) a=0.95 (e —a=0.9 (6} a=0.85
distinguishable distinguishable distinguishable:
_
0.1 0.1 0.1
o
10 20 30 40 10 20 30 40 10 20 30 40
n n n

FIG. 5. p(n) for different . The interaction strength is K =
0.1. The density for indistinguishable particles is p = 10 and that for
distinguishable particles is p = 15.

in Eq. (11), the energy of each configuration is

LK
Enon = —-1(1 +2a)p* — p] (31)
and
LK _ ,
Eg = 7[2,0 - pl, (32)

and the energy gained by each site by replacing a homogenous
structure with an alternating structure is

AE __KP 0y 33
. = (Ze-D. (33)
The results indicate that for @ < 0.5 no energy can be gained
from adapting an ordered alternating structure. The condition
o > 0.5, is sufficient but not necessary, as it is determined
from energy considerations alone. In real systems the energy
gain is accompanied by the entropy loss. In addition to the
condition « > 0.5, we need to arrive at the conditions where
energy is a dominant contribution of the free energy. This
becomes the case for large interaction strength and density.

To illustrate how the structural rearrangement of adapting
an alternating structure affects thermodynamic quantities, in
Fig. 6 we plot pressure per lattice site as a function of «. Ini-
tially the pressure increases linearly with . At the crossover,
where the distribution p(n) becomes bimodal, this trend
abruptly changes and pressure begins to decrease, reflecting
the structural rearrangement of a system that is concurrent
with the reduction of internal tension.

In this work we focus on weak interactions and all the
results are for K = 0.1, where the transformation into al-
ternating structure requires large densities.

1t (@) 45:-(b)
40f
=)
& 10 &35
gl indistinguishable 30F distinguishable 1
BK=0.1 p=10 BK=0.1 p=15

0.5 1 2% 0.5 1
o (04

FIG. 6. Pressure per lattice site as a function of «. The onset of
structural rearrangement is accompanied by a reduced pressure.
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An additional feature of systems with strong interactions is
that once an alternating structure is attained, it is followed by
regular transformations at densities corresponding to integer
values, that is, when the occupation of a lattice site changes
fromn — n + 1 (n being an integer). This results in a steplike
structure of the pressure isotherm. A strong interaction case
and the accompaning regular transformations were carefully
studied in Refs. [20,21]. It was determined that the transfor-
mations at n — n + 1 correspond to sharp crossovers rather
than true phase transitions.

IV. TWO-COMPONENT SYSTEM

In this section we consider a two-component 1D lattice
model, where particles of the same species repel, and those of
the opposite species attract one another. The system Hamilto-
nian is

L
K
== > Inf(nf = D407 (ny —1) =20/ n;]

i=1

L
+aK Y () —n))nf, —ni), (34)

i=1

where the two species are labeled as “4-” and “—” in analogy
to charged systems. The first line is for interactions between
particles occupying the same site (the second term on that
line subtracts self-interaction introduced in the first term), and
the second line is for interactions between particles occupying
neighboring sites. We rewrite Eq. (34) into a more convenient
form as

L L
K _ K _
i=1 i=1

L
+akK Z(”,Jr — n;)(n;;l —

i=1

no)- (35)

As for the one-component system, we consider both in-
distinguishable and distinguishable particles. The partition
function for the indistinguishable case is

S 3D IR 3D 3L | CUERE

nl_Onl_O n,_On,_O

and that for the distinguishable one

8y = e —. 37
ni=0n;7=0 ny=0n;=0 ' :

Both partition functions can be transformed into the sum-
mations over s; = n; — n; (see Appendix C):

0 © Lo, sak ePrlsi]

[ R— — 58 , T PAKS;Si41

222 3 [T ®etennn (00 a9
§|=—00 S§=—00 (=1

and
oo oo L sk

Ep=) ... [Je = etk ), (39)

S|=—00 Sp=—00 i=1

where ' = u 4+ K /2 and I,,(x) in the second equation is the
modified Bessel function of the first kind:

& 2n

X
I,2x)=x" . 40
R Y
The corresponding transfer matrices are
BE(Isl+1s'D)
N o 7M(S2+x’2) —BaKss' €
T,(s,s')=¢ + e |:—1 T 41)

and

Tb(s’s/)=e—%(sz-s-sﬂ)e—ﬁams/\/I‘SI[2eﬁ,4]l‘s,‘[26ﬁu]. (42)

Note that the matrices are similar to those in Egs. (21) and (22)
for the one-component system. What makes the two systems
different is that the indices s and s’ in Egs. (41) and (42) are
for all integers, raising the possibility of the term e £ to
dominate the transfer matrix if s and s’ have opposite sign
and to eventual divergence of the partition function. The di-
vergence, however, can be switched off for sufficiently low «.

For example, if we consider elements of the transfer matrix
corresponding to s" = —s,

e~ 157 (1=20) B ls|

—s5) = 1——ezf‘l"’ (43)

T, (s,
we find that the possibility of divergence in the limit s — oo
is prevented if @ < 0.5 (keeping in mind that 4’ < 0). Fora >
0.5, no matter how negative u’, the divergence can never be

suppressed. If we consider in turn the case s > O and s’ = —1,
T, 1 kg e T PaKs 44

—_ = 4 S —
s D= et e @)

we discover that the divergence in the limit s — oo never
arises for any «, as the expression is dominated by e’ﬁTKsz,
which vanishes in the same limit. We conclude that divergent
elements in the limit s — oo are those that roughly satisfy
s~ —s.

The presence of the divergent terms implies that a charge,
(s), at a single site becomes infinite, which, by the same
token, implies that the occupation number at a single site
diverges, pointing to thermodynamic instability (also known
as catastrophe).
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3 M=15 6 M=20
¢ (a) o= (b)
2 ] 4 ]
= =
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1 2r
- ) " e u o = o m -
R S B %2 0
n n
FIG. 7. Ordered eigenvalues |[A| > |Az| > --- for BK = 0.1,
B = —1, and @ = 1, for two different sizes of the transfer matrix

M x M.

To see how the presence of the divergence plays its role,
in Fig. 7 we plot |A,| for « =1 as a function of n, for
different values of M, where M is the size of a transfer matrix
M x M. In the stable system, |A,| converges in the limit
M — oo. In the unstable system, |A,| diverges in the same
limit. In addition to blowing up of |),| as M increases, we
observe increased domination of the two initial eigenvalues,
|A1] & |Az], similar to what was seen for the one-component
system in Fig. 3, and which indicates an ordered alternative
structure. For the two-component system, ordering implies
an alternating occupation of each site by a species “4”
and “—".

For comparison, in Fig. 8 we plot |A,| for a stable system at
o = 0.5. The results indicate that the two leading eigenvalues
are separated even in the limit of large p and, therefore,
never become dominant. The stability in this case implies the
absence of an ordered alternating structure, and the region of
stability corresponds to o < 0.5.

In Fig. 9 we plot the distributions p(s) = ¢3(s) for @ = 0
and o = 0.5. For o = 0.5 the distributions appear broader
but otherwise fail to develop a bimodal structure. Indistin-
guishable particles show less response to the variation with
o, which we attribute to a higher entropy cost in adapting
structured configuration.

The most interesting structural feature of the two-
component system at « = 0.5 is the formation of semistable
pairs between particles of opposite species. In electrolytes
these pairs are referred to as the Bjerrum pairs [22]. The
presence of such pairs is evident in “charge” fluctuations, (s?),
plotted in Fig. 10 as a function of BK for p = 10. For large
values of particle interactions the fluctuations are suppressed,

40 ——y
p=10 BK=0.1

indistinguishable

o

FIG. 8. Ordered eigenvalues |A;| > |A;| > ---. Compare with
Fig. 3 for a one-component system. Circles are for n-odd and squares
for n-even.

0.2

: = =0. [ =10 PK=0.1]
@ P mld(i)stiEvI\Eth)hll 0.2} ®) p distinEuishablc
—
Zo.1+
(=W
010 0 10
S

FIG. 9. Distributions p(s) for « = 0 and o = 0.5. Apart for the
broadening of p(s) for @ = 0.5, there is no evidence of a bimodal
structure.

indicating that particles interchange sites not as free particles
but as as permanent pairs.

A. Significance of thermodynamic instability for real systems

As stated above, the two-component lattice model is ther-
modynamically unstable for o« > 0.5. To determine how this
instability is manifested in real systems, we perform a se-
quence of Monte Carlo simulations in a canonical ensemble
for a two-component 1D lattice model for & > 0.5. The sys-
tem is finite with periodic boundary conditions. The system
size is L = 1000, there are N* = N~ = 10000 particles, and
the interaction strength is SK = 0.1. All simulations start
with randomly distributed particles.

Configuration snapshots in Fig. 11 reveal that a system
collapses into a finite number of clusters, indicating thermo-
dynamic catastrophe [23,24]. As all the sites are equivalent,
the clusters form by spontaneous nucleation. For o = 1 in
Fig. 11(a) particles are distributed over several five-site clus-
ters. As « decreases, larger clusters are preferred. A snapshot
shown in Fig. 11(b) for « = 0.55 indicates that an entire sys-
tem exists as a single 16-site cluster. The cluster disintegrates
for a < 0.54, as there are not enough particles to reorganize
into a larger cluster. This does not imply thermodynamic
stability, however. Changing the system size would produce
another collapse into larger clusters.

To understand the conditions of the formation of clusters,
we carry out a simple analysis based on energy considera-
tions. We start with the smallest possible cluster comprised
of two sites. The energy of this cluster is obtained from the
Hamiltonian in Eq. (35). Assuming that two sites have the
same occupation number n/2, where n is the total number of

41 ‘
1 p=10, 0:=0.5
3 1‘ — distinguishable [
A 1 — indistinguishable
\
N .
2]
Vv

FIG. 10. The fluctuations (s?) as a function of K for @ = 0.5
and p = 10.
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FIG. 11. Monte Carlo simulation snapshots for L = 1000 and
N = N~ = 10000 particles. The interactions are set at BK = 0.1,
and the results are for distinguishable particles. (a) « = 1, (b) @ =
0.55.

particles in the cluster, the energy is

i) e(5) = (5) e

= =2 (z-1)=alz) =—(2) @=-D ==,

k ~ 2\2 2 2 2
45)

where the first term, which is proportional to n?, is positive
if « < 1 and, the two-site cluster disintegrates as its energy
becomes positive for large n.

Next we consider the three-site cluster. If the total number
of particles in the cluster is n, and the occupation of the
central site is ny and that of each flanking site is n — ngy (we
assume symmetricity of a cluster), then based on Eq. (35) the
energy is

e Loy —anen —no) - n. )
X = 5%t 7 (n—no ang(n —ng) — >n.
This energy, optimized with respect to ng, becomes
EY o on? (207 -1 n
—=———])—-=. 47)
K 2 \ 4o +3 2

At o = 1/+4/2 2 0.707 the term proportional to n? becomes
positive and the three-site cluster disintegrates as its energy
becomes positive for large n.

We can repeat the same calculations for a four-site cluster,
whose optimized energy is (optimized clusters are symmetric)

E(()4) nfat+a—1 n
_— =) - =, (48)
K 4 oa+2 2

and the cluster disintegrates at @ = (W5 — 1)/2 ~ 0.618, as
the first term becomes positive. Each consecutive cluster dis-
integrating at o closer to 0.5. For example, a five-site cluster
disintegrates at « = 1/4/3 ~ 0.577.

The observed thermodynamic catastrophe is not an artifact
of a lattice model, and a similar behavior has been observed
for a two-component penetrable spheres [16]. A snapshot for
a two-dimensional two-component penetrable-sphere model
is shown in Fig. 12, which reveals a similar catastrophe,
characterized by a system collapse into small number of large
clusters.

On the other hand, thermodynamic catastrophe does not
occur for a two-component Gaussian core model [17], indicat-
ing that this system does not fulfill the criterion of instability.

In the one-component system the criterion & > 0.5 tells us
that a system under certain conditions of density and interac-
tion strength can adopt an alternating structure. The condition

(a) ® O

[e]

o _
§® Na

© 2R\ /
$ C D

© o, ° ° J
¢ 0 : ©° o” o ) BN )

gq(;%oog o [elye) L ‘ 7/‘

FIG. 12. Configuration snapshots of a two-component
penetrable-sphere system in two dimensions. The red and
black circles indicate particles of different species. Particles do
not interact unless they overlap. At an overlap, the interactions are
Bu(r <o) = =%1.(a) N = 1000 particles, (b) N = 240.

o > 0.5, therefore, is necessary but not sufficient. On the other
hand, in the case of the two-component system, the criterion
a > 0.5 tells us that a system is thermodynamically unstable
under any conditions, no matter what its density and the
interaction strength, as long as a system is in thermodynamic
limit. The criterion & > 0.5 for the two-component system,
therefore, is necessary and sufficient.

B. Criterion for thermodynamic catastrophe

Thermodynamic catastrophe of a one-component system
was first investigated by Ruelle and Fisher [23,24]. The
condition for thermodynamic instability for these systems is
[ dru(r) < 0, or using the Fourier transformed pair potential
ii(k), the same condition is stated as i#(0) < 0. This implies
that the potential needs to have an attractive part and a
nondivergent (soft) core. An example of such a potential is
a double Gaussian potential investigated in Refs. [25,26].

Based on our results for a lattice model and its connection
to real penetrable particles, we conclude that the conditions
for thermodynamic instability for a two-component system
are provided by the LLWL criterion; that is, if #(k) is neg-
ative for some value of k, then the two-component system
is thermodynamically unstable. In turn, if (k) is positive
everywhere, then the system is stable. This explains why ther-
modynamic catastrophe is observed for the two-component
penetrable-sphere but not the Gaussian core model.

V. CONCLUSION

The present work investigates a 1D lattice model with mul-
tiple occupations as a simple representation of penetrable par-
ticles. Starting with noninteracting particles, we distinguish
between different ways of counting configurations, by treating
particles as either indistinguishable or distinguishable, leading
to two different partition functions. The indistinguishable case
is representative of growth models, and the distinguishable
case is representative of liquids.

For a one-component case we discover two classes of
behavior, depending on weather & > 0.5 or ¢ < 0.5. For o >
0.5, under the conditions of large p and/or large S K, a system
forms an alternating structure. For o < 0.5 such structural
reorganization never takes place. Because the condition o <
0.5 does not guarantee the presence of an alternating structure,
we say that this condition is necessary but not sufficient.
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For the two-component system, where particles of the same
species repel and of opposite species attract each other, we
find that systems with o > 0.5 are thermodynamically un-
stable, and such systems exhibit thermodynamic catastrophe
[23,24]. In this case, the criterion o > 0.5 is necessary and
sufficient for thermodynamic instability, as long as the system
is in a thermodynamic limit. Even a dilute system with weak
interactions eventually collapses.

A similar instability was observed in the penetrable-sphere
model, but not in the Gaussian core model. Consequently,
we conclude that the LLWL criterion devised for a one-
component system applies to a two-component system where
it predicts the conditions of thermodynamic instability.

A shortcoming of a 1D lattice model is that it does not un-
dergo a true phase transition. A more realistic representation
of penetrable particles would require working in two or more
dimensions, where such transition becomes feasible. Some
aspects of a lattice model in a higher dimension were studied
in Ref. [27] for repulsive interactions. In future we plan to
investigate a two-component lattice model in two or more
dimensions, in order to study a gas-liquid phase transition and
the role of Bjerrum pairs in the transition mechanism [17].
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APPENDIX A: DERIVATION OF p(rn) WITHIN THE
TRANSFER MATRIX METHOD

In Eq. (19) we provide the relation p(n) = qbf(n) of the
transfer matrix method, for the probability p(n) that a single
lattice site is occupied by n particles. The relation can be
rigorously derived from the formal definition

1 o [e¢]
py=—=Y - > T n)T(ny,n3)---T(ng,n).
= n2:0 nL:O

(AL)

The aim of this appendix is to provide the omitted derivation.
Note that p(n) is normalized by construction, Z?;O p(n) =
1.

The first step is to rewrite the definition in Eq. (Al) in
shorthanded form, using the matrix algebra nomenclature
that is more convenient for carrying out subsequent matrix
operations,

1 L
p(n) = —(T")(n,n), (A2)

where (T )(n, n') designates the (n, n’) element of the matrix
TE, where T’ is the product matrix generated by multi-
plying T by itself L times. In the next step we apply the

eigendecomposition

T(n,n') =Y 0 k)Q 'k, n), (A3)
k=1

where Q is the square matrix whose kth column is the eigen-

vector ¢y (n) of the transfer matrix T, Q™! is the inverse of Q

such that
QQ'=1L

where I is the identity matrix. Eigendecomposition applied to
TL yields

(A4)

(T, ) =Y A0, K)Q ' (k,n').  (AS)

k=1

The probability p(n) in Eq. (A2) can now be written as

1 o0
p(n) == D A0 Q™ (k, n). (A6)

k=1

Because the transfer matrix is real and symmetric, Q! = QT
where Q7 is the transpose of Q, and we write

Yty M Q2. k)
ik

where we used E = Tr TX = ) 7| AF. Since the columns of
the matrix Q correspond to eigenvectors ¢y, we get

2ot M de(n)
DIprs

In the final step we take the thermodynamic limit, L — oo, in
which the above expression reduces to

p(n) = ¢7(n),

which recovers the result of Eq. (19).

p(n) = (AT)

pn) = (A8)

(A9)

APPENDIX B: DERIVATION OF p,,(n, n’) WITHIN THE
TRANSFER MATRIX METHOD

In this appendix we derive the expression for the proba-
bility p,,(n, n’), that a number of particles at two lattice sites
separated by m sites is n and n’. The derived result appears
in Eq. (24) but no derivation is provided. We start with the
formal definition for p,,(n, n’):

/ 1 = = /
pnnn)y = =" " T(n,n)T (2, n3) - T(np,n')
)

n,=0
o0 [o.¢]
S ) ) T o nga) T, n).
Nm+2=0 np=0

(B1)

Note that p,(n,n’) is normalized by construction,
Y > o Pm(n,n’)y=1.  Using  matrix  algebra
nomenclature, the above expression can be shorthanded
into
1 !
p(n,n') = = (T")(n, n )T n).  (B2)
1

062123-9



DEREK FRYDEL AND YAN LEVIN

PHYSICAL REVIEW E 98, 062123 (2018)

Then eigendecomposition yields

T,y =Y W0 k)Q " kon')  (B3)
k

and

(T n) =Y Q' k)Q ™' (k, n),

k

(B4)

leading to

1
pm(n,n) = ;[Z/\Z’Q(m Q™ (&, n’)]
Lo

X [Z Ao KON (K, n):|. (B5)
-

Further simplifications follow from the fact that for a real
and symmetric matrix T, Q~' = Q7, and the columns of the
matrix Q correspond to eigenvectors ¢. This leads to

S o ML B () () (Vb (1 ).
Do M

pm(n’ l’l/) =
(B6)

where we used E = Y ;7 AF. The final reduction comes from
taking the thermodynamic limit, L — oo, in which case only
k" = 1 does not vanish, leading to the final result

oo

A, m
pu(n,n) =" (ﬁ) $e()gi(n )1 (M1 (n'). (BT)

k=1

Using the relation p(n) = ¢12(n) of the previous section
we get

pm(n,n’) - (Ak>m¢k(n)¢>k(n’)
— =1 —) —, B8
ooy = T 2\5) awmary

which agrees with Eq. (24).

APPENDIX C: REDUCTION OF THE PARTITION
FUNCTIONS FOR THE TWO-COMPONENT SYSTEM

We reduce the partition functions of the two-component
systems, from the 2L summation to the L summation, by
considering the simple case L = 3; however, the procedure
is general and valid for any L. For distinguishable particles
the partition function for three lattice sites, obtained from
Eq. (36), is

(o clENNe ol ol e N e o)
30350 35 3 et

nT:O n; =0 n;:O n, =0 n;r:0 ny =0

—ny )2

s« e~ WBKf —n)(n] —ny) B (nf +n7) =B (nf —ny)?

_ _ _ K _
x efaﬁK(nzrfnz )ng —n3 )6;3;1,’(n2”rrt2 )67%(11;7% )2

—apK (ni—ny )(nf—llf)eﬂu’(llgr-f-n;)

X e (CD

where for the sake of clarity we write down every term explic-
itly. We also recall that 4’ = u + K /2. The above expression

can be shortened by using s; = n;” —n;,

0 o0 00 00 00 00

_BK 2 .

Ea — E § § § § E e 2 sle—aﬂKslaz
ni=0n7=0n3=0n;=0n=0n;=0

% eﬁp./(n;r-knf)e—ﬂTKszze—aﬂK5253 eﬂu'(n;-&-n;)e—ﬁTKs%

x e~ PR st B (T 4n3)

which by itself does not yet transform the summation. In order
to transform the above result into summation in terms of s; we
have to carry out partial summations of some of the terms,
leading to

%) 00 00
BK 2 .
— 557 ,—aBKs;s
0= § E E ezleﬂlz

(1]

§]=—00 §,=—00 §3=—00
S RG]
ﬁu(n++n ) —BK2 —afKsys3
x Z Ze I851”1_"1 e 27e
nT:OnT:O
Bu (nd +ny — B2 —af K s3s)
X E Ee 22H12+_,12—623e
n2_0n2_0
0o 00
B/ (n§ +n3)
X E E ePHITIIS s | (C2)

ni=0n;=0

where §;; is the Kronecker delta function. To complete the
transformation we need to calculate

00 o
7
fa(si) = Z Z eﬂM (4 )83,‘,"?—77[’-_ s

(C3)
n,.*:() n; =0
where the solution is found to be
eBIlsil
Ja(si) = 1_—62’9#/7 (C4)

and where to obtain it we summed up all the terms correspond-
ing to a given s;. For example, for s; = 0, 1, 2 using Eq. (C3)
we get

1
fa(0) = Zew": T (C5)
B
_ B 2pun _
fa)=e Ze = T (C6)
° 280
, ’ e
fu@) = 3 = (@
n=0

Furthermore, it turns out that f,(1) = f,(—1), f.(2)=
fa(=2), etc., confirming the validity of the expression in
Eq. (C4). Consequently, the transformed partition function of
Eq. (C1) becomes

N Bu'lsi|
-~ ——Al —afKss € —ﬁszz
S, = e 27le ﬁe
1—e¢ Bu
§1=—00 §=—00 §3=—00
Bu'ls2 Bu'ls3|
_ e _BK 2 _ e
N aBKsys3 e~ 3 e aBKs3s) . (CS)
1 — 2P 1 — 2P
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The procedure applies to any number of lattice sites.

We apply a similar procedure for indistinguishable parti-
cles. For the case L = 3, the partition function obtained from
Eq. 37) is

(oo lENe oI o BN o BN s N o)
355 335 35 0 3D 3l

n{=0ny=0n3=0n;=0n;=0n;=0

eﬁﬂ (n] +ny) ﬂK

otﬂK(n —ny )(n2 —ny) e~ (n2 —n, )?

X e =
niny!

)eﬁﬂ (”2 +ny)

K —
% efvtﬂl((nz —n, )(n3 —ny 677(}1;7"3 )?

n;!
nyiny!

B (n +n3)
x efutﬁK(n;rfn;)(nffnl’) e e

e (€9
nylng!

then transforming it into the summations over s; we get

[e.¢] o0 oo

Eb E : E : 2 e~ zslg aBKs s,
S1=—00 §,=—00 §3=—00
> ﬁ# (nf+ny)
BK 2
% E § v P efTSZefaﬂKszm
v ol G
ny
nT—Onl—O

2 o P i) _BK2 ek
X 8. o+~ e T @B
T Osany—n;

ny ny ! 2

n3=0n;=0

20 20 B nf+n7)

X z 2 + 853,n§r—n§

ny 'ny!
n;r:On;:O 3 3

(C10)

where it now remains to obtain

o1 nf 07 )
folsi) = Z Z SRR (C11)
n; =0 n; =0

The result turns out to be

folsi) =Tj5 (271, (C12)
where
o0 2n

(C13)

s X
L,(2x) = x X_g TR

is the modified Bessel function of the first kind. To validate
this expression we proceed as before. The results for s; =
0,1,2are

X epun ,
Fr0) =3 — =1o(2e), (Cl4)
2 “nln
o 2Bu'n
_ B ¢ _ B
frl)=e Z(;—"!(”‘H)! =1;(2eM), (C15)
2Bu'n
_ 2B ¢ _ B
) =e Zon!(nﬂ)! =L (2eM), (C16)

then f,(1) = f,(—1), f»(2) = fp(—2), etc., confirming the
result in Eq. (C12). The transformed partition function
becomes

- 5 5 5 e, et
=—0Q0 §$=—00 §3=—00
x e*aﬂlﬁzfsl‘sz‘(Zeﬁﬂ’)e*%&%e*aﬂlﬁm1‘53‘(26/311’).
(C17)
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