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Spin glasses have competing interactions and complex energy landscapes that are highly susceptible to
perturbations, such as the temperature or the bonds. The thermal boundary condition technique is an effective and
visual approach for characterizing chaos and has been successfully applied to three dimensions. In this paper, we
tailor the technique to partial thermal boundary conditions, where the thermal boundary condition is applied in a
subset (three out of four in this work) of the dimensions for better flexibility and efficiency for a broad range of
disordered systems. We use this method to study both temperature chaos and bond chaos of the four-dimensional
Edwards-Anderson model with Gaussian disorder to low temperatures. We compare the two forms of chaos, with
chaos of three dimensions, and also the four-dimensional ±J model. We observe that the two forms of chaos are
characterized by the same set of scaling exponents, bond chaos is much stronger than temperature chaos, and
the exponents are also compatible with the ±J model. Finally, we discuss the effects of chaos on the number of
pure states in the thermal boundary condition ensemble.
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I. INTRODUCTION

Chaos is a fascinating and common phenomenon in glassy
systems, which have rugged energy landscapes such as
spin glasses. The spin orderings are reorganized at large
scales when a parameter is tuned, such as the temperature
or the bonds. These corresponding chaotic phenomena are
therefore called temperature chaos [1–16] and bond chaos
[10,11,14,17], respectively. While chaos is an equilibrium
phenomenon, it is also believed to be related to various
nonequilibrium dynamics such as hysteresis, memory, and
rejuvenation effects [18–21]. Chaos is also of great relevance
for numerical simulations and analog optimization machines
[22,23], such as the D-Wave quantum annealers. For example,
small temperature perturbations or problem misspecifications
could lead to a solution of an entirely different Hamiltonian,
especially when the number of spins is large. Chaos is a source
of the computational complexity of spin glasses [13,15,23,24],
known to slow down extended-ensemble algorithms, which
are the current state-of-the-art methods, including both par-
allel tempering and population annealing. Therefore, chaos
is closely related to both equilibrium and nonequilibrium
properties of spin glasses, experimental optimizations, and
numerical simulations.

It has been recognized that temperature chaos (TC) and
bond chaos (BC) appear to follow the same scaling properties,
and bond chaos is considerably stronger than temperature
chaos [10,11,25]. Both of these results can be simply ex-
plained within the framework of the droplet picture [4,26–29]
by scaling properties and assuming that temperature chaos is
mainly entropy driven, whereas bond chaos is mainly energy
driven [17].
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Most studies of chaos are based on some correlation
functions [10,11,25,30,31]. Recently, a new technique called
thermal boundary conditions (TBCs) has been successfully
applied to three-dimensional spin glasses [15,17]. For thermal
boundary conditions, the system can choose either periodic
or antiperiodic boundary conditions in each spatial direction,
according to the Boltzmann weights of the different boundary
conditions. In D dimensions, the full TBC set has 2D different
boundary conditions. Chaos manifests itself as the instabilities
of the relative weights of different boundary conditions (in
thermal equilibrium) when the temperature or the bonds are
tuned.

The TBC approach has certain advantages. First, the
strength of chaos is directly quantified using the number of
boundary condition crossings (exchange of their weights).
Therefore, there is no reference state such as the reference
temperature as in correlation functions. This allows a direct
and detailed characterization of chaos such as the temperature
dependence of the strength of temperature chaos. Chaotic
events are also more frequently observed with the enlarged
phase space, with some chaotic instances exhibiting several
crossings in a typical parameter range (such as a temperature
range for temperature chaos), even for a relatively small
system size accessible to current simulations.

Despite these successes and extensive research of chaos in
three dimensions, there are far fewer works in four dimensions
[6,10,31] and the majority of these works focused on the ±J

model [6,10]. To the best of our knowledge, we have only
found one such pioneering numerical study on the Gaussian
disorder in four dimensions operating at a relatively high
temperature using correlation functions [31]. This is most
likely due to earlier computational limitations, considering
that Gaussian disorder is much harder to equilibrate than the
±J disorder. In this paper, we fill in this gap and study the
numerically intensive four-dimensional Gaussian spin glasses
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to low temperatures (TC/3 for temperature chaos and TC/2 for
bond chaos) using the massively parallel algorithm population
annealing. This not only improves statistical errors for a better
comparison of temperature chaos and bond chaos in four
dimensions, but more importantly also allows us to compare
with the three-dimensional (3D) counterpart, and the four-
dimensional (4D) ±J model. Second, we also tailor the TBC
technique to apply more flexibly and efficiently to the 4D
model (and many others, e.g., the one-dimensional chains
with long-range interactions). Our work is done using partial
thermal boundary conditions, which is described as follows.

The motivation for the partial thermal boundary condition
is from the following question: Is the total number of bound-
ary conditions essential to the TBC technique? For example, is
it necessary to keep all 16 boundary conditions in four dimen-
sions, which is a rather expensive setup? Much computational
efforts would be saved if we could reduce this number. On the
other hand, for a one-dimensional spin chain with long-range
interactions, one would like to use more boundary conditions
rather than two to collect good statistics. In this work, we
propose a simple idea to tailor the number of boundary condi-
tions. More precisely, we introduce partial thermal boundary
conditions in four dimensions, to turn on thermal boundary
conditions in only a subset of the dimensions. As mentioned,
to collect good statistics, the number of boundary conditions
should also not be too small. Therefore, we choose to keep
eight boundary conditions as in three dimensions, i.e., the
thermal boundary condition is turned on in three directions
and the periodic boundary condition is always applied in the
fourth direction. There could be a potential possibility that
changing the number of boundary conditions may affect the
scaling exponent of the number of crossings. Fortunately, our
results suggest this is not the case and the method is valid, as
shown in Sec. III.

The paper is organized as follows. We first present the
model, simulation methods, and scaling properties of temper-
ature chaos and bond chaos in Sec. II, followed by numerical
results in Sec. III. Concluding remarks are stated in Sec. IV.

II. MODELS AND NUMERICAL SETUP

In this section, we present the four-dimensional Edwards-
Anderson model, observables, and simulation details. The
scaling properties for characterizing the chaos phenomena are
also summarized for completeness.

A. Models, methods, and observables

The Edwards-Anderson (EA) Ising spin glass [32] is rep-
resented by the following Hamiltonian:

H = −
∑
〈ij〉

JijSiSj , (1)

where Si ∈ {±1} are Ising spins. The sum 〈ij 〉 is over the
nearest neighbors in a four-dimensional simple cubic lattice
of linear system size L and number of spins N = L4. The
couplings Jij between spins Si and Sj are chosen indepen-
dently from the standard Gaussian distribution with mean
zero and variance 1. We refer to each disorder realization as
an “instance.” We apply partial thermal boundary conditions

(PTBCs) to each instance; i.e., each instance has the freedom
to choose either periodic boundary conditions or antiperi-
odic boundary conditions in three directions according to the
Boltzmann weights. In the fourth direction, periodic boundary
condition is always applied. There are therefore a total of eight
boundary conditions in our PTBC ensemble. More precisely,
the weight pi of a boundary condition i is related to its free
energy Fi as

pi = exp(−βFi )∑
i exp(−βFi )

. (2)

The model has a spin-glass phase transition at TC ≈ 1.8
[31,33]. For later reference, we mention here that the 3D
Gaussian model has TC ≈ 1 [34] and the 4D ±J model has
instead TC ≈ 2 [35]. To study temperature chaos, a single
instance J is cooled from the infinite temperature β = 0
to a low temperature deep in the spin-glass phase TC/3.
Scaling properties are studied in the temperature range T ∈
[TC/3, 2TC/3]. To study bond chaos, we first choose an inde-
pendent random perturbation instance J ′ for each instance J .
We then tune the bonds using a small parameter c at a fixed
temperature TC/2 following an annealing also from β = 0 as

J = J + cJ ′
√

1 + c2
, (3)

where c ∈ [0, 0.1]. The normalization factor is to preserve
the standard Gaussian distribution for any c [11,17,25,30,31].
Note that the possibility to change the Gaussian bonds contin-
uously over a range is a convenient advantage against discrete
bonds such as the ±J model [10]. In our simulations, we start
from c = 0.1 and then reduce c to zero, and the final instance
becomes J . Note that the final J is chosen to be identical to
the temperature chaos instance for benchmarking purposes as
equilibrium properties should not depend on how the system is
prepared. The simulations can be clearly visualized by looking
at the simulation trajectories in the parameter space (β, c) in
Fig. 1.

Our simulation is carried out using the population an-
nealing Monte Carlo method [36–40]. For each instance,
we initialize R random replicas, each with a random con-
figuration and a random boundary condition at β = 0. We
define H = βH as the reduced Hamiltonian. When we change
the simulation parameters as in Fig. 1, or the reduced
Hamiltonian from H to H′, a replica i is copied with the
expectation number ni = exp[−(H′

i − Hi )]/Q. Here, Q =
(1/R)

∑
i exp[−(H′

i − Hi )] is a normalization factor to keep
the population size approximately the same as R. In our
simulation, the number of copies is randomly chosen as either
the floor or the ceiling of ni with proper probabilities to
minimize fluctuations. This reweighting step is called resam-
pling in population annealing, and we note that some replicas
would be duplicated while others may get eliminated from the
population. The purpose of the resampling is to try to maintain
the population in equilibrium when simulation parameters
are changed. After this resampling step, NS sweeps using
the Metropolis algorithm are applied to each replica. The
annealing process continues with the cyclic resampling and
Monte Carlo sweeps until the final targeted parameters are
reached. More details on simulation methods can be found in
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FIG. 1. Schematic simulation paths for temperature chaos and
bond chaos. In all cases, an annealing from β = 0 to T = TC/2
is performed. For temperature chaos, the path goes straight down
in temperature, reaching T = TC/3. For bond chaos, the path turns
horizontally into the c direction at a constant T = TC/2. When
equilibration criteria are not met for an instance, we rerun it with
a larger population size or more sweeps. However, if an instance
is too chaotic to equilibrate in the c path, then spending more
computational work becomes impractical. The path is then split into
two (or more; two are shown here) paths, which are later combined
to form the full path for data analysis.

the three-dimensional work [15,17]. The simulation parame-
ters are summarized in Table I.

Our equilibration criteria are based on a combination of
family entropy and matching of boundary condition weights
when two simulation paths meet in the (β, c) parameter space
[17,39]. Note that we test equilibration for each individual in-
stance rather than the disorder average of all instances. Copy-
ing replicas reduces the diversity of the population, and family
entropy quantifies this property. In the initial population, each
replica is given a family name 1, 2, 3, . . . , R. A family name
is copied together with a replica when doing resamplings and

TABLE I. Simulation parameters of chaos for the four-
dimensional spin glasses using population annealing. BC is the
boundary conditions, T B are either for temperature chaos (TC) or
bond chaos (BC), L is the linear system size, R is the number of
replicas or population size, Tmin is the lowest temperature simulated,
NT is the number of temperature steps (evenly spaced in β), Nc is
the number of disorder steps (evenly spaced in c) in the annealing
schedule, and M is the number of instances studied. We apply NS =
10 sweeps to each replica after each annealing step.

BC T B L R Tmin NT Nc M

PTBC TC 4 2 × 105 0.6 101 2000
PTBC TC 5 6 × 105 0.6 101 2000
PTBC TC 6 8 × 105 0.6 201 2000
PTBC TC 7 2 × 106 0.6 301 2000
PTBC BC 4 2 × 105 0.9 101 51 2000
PTBC BC 5 6 × 105 0.9 101 51 2000
PTBC BC 6 8 × 105 0.9 201 51 2000
PTBC BC 7 2 × 106 0.9 301 101 2000

remains the same under Monte Carlo updates. At each stage of
the simulation, we collect the fraction of each family name in
the population {fi} and the family entropy Sf is then defined
using the regular Gibbs entropy Sf = −∑

i fi ln(fi ) [39,41].
The family entropy usually decreases as the simulation pro-
ceeds, and it is sufficient to control the final family entropy
of each instance [39,41]. The final family entropy depends on
the energy landscape of an instance and the simulation details
such as the population size and the number of sweeps. The
larger Sf , the better the equilibration for a simulation. We
require each simulation to satisfy Sf � ln(100). Whenever
two simulation paths meet in the parameter space, we require
also that the two simulation paths should give the same
boundary condition weights max{|pi − p′

i |} � 0.05, where
{pi} and {p′

i} are the weights of each boundary condition
from the two paths, respectively. When either criterion is not
fulfilled for an instance by using the parameters in Table I, we
rerun it by increasing the population size, doing more sweeps,
or breaking the c path into several segments, as shown in
Fig. 1.

Finally, for each instance, we record the energy {Ei} and
weights {pi} of each boundary condition along the simulation
paths. The energy is computed by averaging over the replicas
and the weights are estimated by counting the fraction of
replicas of each boundary condition. All other observables
used for studying chaos in this work are derived from only
these two observables, reflecting the simplicity of the method.
Other observables not directly related to chaos such as the
free energy and the order parameter or the overlap distribution
function are defined when used, for clarity. We summarize the
scaling properties of chaos in the next section.

B. Scaling analysis

In this section, we summarize the scaling relations used in
this work in the framework of the droplet picture. Flipping
boundary conditions would create a relative domain wall
between two boundary conditions. There are two scaling
exponents in the droplet picture for such domain walls: the
domain-wall free-energy exponent θ and the domain-wall
fractal dimension ds ∈ [d − 1, d]. Let �F be the free-energy
cost of inserting a domain wall and � is the size or number of
spins of the domain wall; then

�F ∼ Lθ, (4)

� ∼ Lds . (5)

Naturally �F = 0 at a boundary condition crossing, but
both �E and T �S are nontrivial like in a first-order phase
transition and they scale as

�E ∼ Lds/2, (6)

T �S ∼ Lds/2. (7)

Here it is simply assumed that the scales are related to the size
of the domain walls [Eq. (5)] and the square roots come from
the frustrations of domain walls. Doing a Taylor expansion in
the vicinity of a crossing for the generalized parameter Q at
Q0 (either Q = T for temperature chaos or Q = c for bond
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FIG. 2. Two typical evolutions of the weights {pi} of each
boundary condition of two moderately chaotic instances of system
size L = 6 for temperature chaos (top) and bond chaos (bottom),
respectively. The red circles are examples of dominant crossings, and
the blue squares are crossings but not dominant ones.

chaos) gives

�F (Q0 + δQ) = �F (Q0) + ∂�F

∂Q
δQ. (8)

= ∂ (�E − T �S)

∂Q
δQ. (9)

Supposing that �E dominates the response to bond changes
and T �S dominates the response to temperature changes
[17], we obtain

Lθ ∼ Lds/2δQ, (10)

δQ ∼ 1/Lζ , (11)

δQ ∼ 1/Lds/2−θ , (12)

where ζ = ds/2 − θ is the chaos exponent. Note that this is a
derived exponent that depends on ds and θ . In this work, we
measure these three exponents independently for both forms
of chaos and check this equality. One direct consequence of
Eq. (11) is that the number of dominant boundary condition
crossings, NC , should scale as

NC ∼ Lζ , (13)

where a dominant boundary condition crossing is a crossing of
two boundary conditions that also have the maximum weights.
See the red circles in Fig. 2 for examples.

The exponent θ can also be measured in the framework
of thermal boundary conditions using the so-called sample
stiffness scaling [15,41]. In this approach, free energy is not
measured directly like energy, although this is also possible
using the free-energy perturbation method [36,39]. Rather

domain-wall free energy is conveniently estimated from the
quantity sample stiffness. For an instance at a temperature T ,
it is defined as

λ(T ) = log
pmax(T )

1 − pmax(T )
, (14)

where pmax = max({pi}) is the maximum weight of all the
boundary conditions. Note that this is simply an estimator of
the free-energy difference (times −β) between the dominant
boundary condition and all other boundary conditions com-
bined. Since pmax can be very close to 1 for some instances,
and a precise estimation of λ for these instances would be
difficult, one therefore usually works with a characteristic
λchar using a median, instead of the mean. The median is
usually chosen from the tail of the distribution (large λ), but
not too far into the tail where statistics are poor. In our work,
we choose the 0.9 median and we have checked that our
results are not sensitive to this particular choice. Naturally as
Eq. (4), λchar scales as

λchar ∼ Lθ . (15)

We summarize our methods for measuring the scaling ex-
ponents: We use sample stiffness scaling [Eq. (15)] to measure
θ . At the boundary condition crossings �F = 0, and we use
�E [Eq. (6)] to measure ds . We use only crossings that are
above a threshold for good accuracy. For temperature chaos,
we use crossings above pc = 0.05. For bond chaos where
there are more crossings, we use a slightly larger threshold
pc = 0.1. Our results, however, are not sensitive to these
thresholds. We use the number of dominant crossings, NC

[Eq. (13)], to compute the exponent ζ . Note that the different
thresholds do not affect NC , as no dominant crossings can
occur below p = 0.125 with eight boundary conditions. In the
next section, we present our results of temperature chaos and
bond chaos, and the comparisons with the 3D model and the
4D ±J model.

III. RESULTS

A. Scaling properties of chaos

Chaos in (partial) thermal boundary conditions manifests
as crossings of boundary condition weights, as shown in Fig. 2
for two typical moderately chaotic instances of size L = 6.
The red circles and blue squares are examples of dominant
and not dominant crossings, respectively. The histograms
of those crossings above pc for all instances of L = 6 are
shown in Fig. 3. The distribution is approximately exponential
with respect to β for temperature chaos, while uniform with
respect to c for bond chaos. Our results clearly show that
the effectiveness of temperature chaos decreases rapidly with
decreasing temperature in the spin-glass phase. The uniform
distribution of bond chaos is easy to understand because of
the statistical symmetry of c. The distributions are also very
similar to their 3D counterparts. See the next section for more
quantitative comparisons.

One of our main results, the scalings of the sample stiffness
λchar, 〈|�E|〉 at crossings, and the total number of dominant
crossings, NC , are shown in Fig. 4. Here, we have com-
bined data at (β = 2/TC, c = 0) and (β = 2/TC, c = 0.1) to
compute θ to improve statistics, as the data at different c are
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FIG. 3. Distribution of all crossings of L = 6 above a threshold
pc for temperature chaos (pc = 0.05, top) and bond chaos (pc = 0.1,
bottom), respectively. Temperature chaos is approximately exponen-
tially distributed, and bond chaos is uniformly distributed. These
distributions are similar to other sizes and also the three dimensions.

statistically equivalent. Our estimates of the exponents are

θ = 0.69(6), (16)

ds = 1.74(3) (TC), (17)

ds − θ = 1.05(7) (TC), (18)

ζ = 1.19(7) (TC), (19)

ds = 1.84(4) (BC), (20)
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FIG. 4. Scaling of the measured quantities as a function of the
system size. The log-log plot clearly shows that the different quan-
tities are well fitted with a power law. Sample stiffness scales as
λchar ∼ Lθ , the energy difference at all boundary condition crossings
scales as �E ∼ Lds , and the number of dominant crossings scales as
NC ∼ Lζ . Error bars are smaller than the symbols.

ds − θ = 1.15(7) (BC), (21)

ζ = 1.20(6) (BC). (22)

The agreement of the exponents for TC and BC are
reasonably good, and both are compatible with the relation
ζ = ds − θ . Therefore, we conclude temperature chaos and
bond chaos share the same set of scaling exponents in four
dimensions as in three dimensions [17]. The results also at
the same time validate the partial thermal boundary condition
technique for studying chaos.

Our estimate ds for TC is, however, somewhat smaller than
that of BC, while the agreement of ζ is excellent. One possible
reason for this result is that there might be larger systematic
errors for temperature chaos when averaging 〈|�E|〉 over
a wide temperature range. In bond chaos, all quantities are
averaged at a single temperature. By narrowing down the
temperature chaos range at low temperatures to only T = 0.8
or β = 1.25, the TC data set gives ds = 1.77(4), in good
agreement with the BC result. Therefore, we believe our
BC estimate of ds is cleaner and hence so is the checking
of the chaos equality. It is indeed the case that the relation
ζ = ds − θ is in better agreement for bond chaos.

We now compare our results with the literature. Our
stiffness exponent θ = 0.69(6) is in good agreement with
0.61(2) using the percolation method [42] and 0.64(5) using
approximate ground states [43], both working at T = 0 for the
±J model. Our estimate ds is also in agreement with a recent
result ds ≈ 3.74 using a strong disorder renormalization group
method [44]. The chaos results are similar to that of Ref. [10],
where chaos is studied for the ±J model using correlation
functions: θ = 0.69(3), ds = 1.71(3), and ζ = 1.12(5) for
temperature chaos and 1.10(10) for bond chaos. Our chaos
exponents are slightly larger, but within error bars.

One earlier work with Gaussian disorder is Ref. [31]. The
author, however, separated two cases: chaos at TC and chaos
below TC . The results are ζ = 0.85(10) for temperature chaos
and ζ = 0.95(20) for bond chaos at TC . Notice that they are
compatible, even though they may differ from the exponent in
the spin-glass phase. Below TC in the spin-glass phase, only
bond chaos was studied and ζ = 1.2(1) at T = 1.4, also for
sizes up to L = 7. This exponent is remarkably in good agree-
ment with our results, even though the temperature is higher.
All of these exponents are summarized for convenience in
Table II. Taking all these results collectively, we conclude
also that the ±J model has the same scaling exponents with
Gaussian disorders in four dimensions.

B. Relative strength of chaos

Next, we compare the relative strength of temperature
chaos and bond chaos at TC/2, and also compare with that of
three dimensions. We define the density of crossings for both
types of chaos, and the relative strength can be quantified as
a ratio of the densities. We follow the procedures established
in Ref. [17] for three dimensions. The density of crossings for
bond chaos is given by

ρBC = NC

β�c
. (23)

The distribution for temperature chaos is more compli-
cated and is approximately exponential in the range β ∈
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TABLE II. Summary of exponents (relevant to chaos) of the four-dimensional EA model. Note that not all of these works are for studying
chaos, but a few typical related results are presented for comparisons of θ , ds , and ζ . Here, MC and GS stand for “Monte Carlo” and “ground
state,” respectively. We conclude that temperature chaos and bond chaos share the same set of chaos exponents, and the 4D EA spin glasses of
Gaussian and ±J disorder also share the same set of chaos exponents.

Ref. Model Result Note

[31] Gaussian ζ = 0.85(10) (TC), ζ = 0.95(20) (BC) MC, T = TC = 1.8
[31] Gaussian ζ = 1.2(1) (BC) MC, T = 1.4
This work Gaussian ζ = 1.19(7) (TC), ζ = 1.20(6) (BC) MC, T ≈ TC/2 = 0.9
This work Gaussian θ = 0.69(6), ds/2 = 1.74(3) (TC), ds/2 = 1.84(4) (BC) MC, T ≈ TC/2 = 0.9
[10] ±J ζ = 1.12(5) (TC), ζ = 1.10(10) (BC) MC, T ≈ 0.6
[10] ±J θ = 0.69(3), ds/2 = 1.71(3) (TC) MC, T ≈ 0.6
[42] ±J θ = 0.61(2) percolation
[43] ±J θ = 0.64(5) approximate GS
[44] Gaussian ds = 3.7358(36) approximate GS

[βmin, βmax] = [3/(2TC ), 3/TC] for all system sizes studied.
An exponential fit of the dominant crossing distributions of
all sizes taken together of the form

f (β ) = ae−aβ

e−βmina − e−βmaxa
(24)

in the temperature range yields a ≈ 1.78. This exponent is
appreciably larger than that of 3D a ≈ 1.12 in the same
relative range β ∈ [3/(2TC ), 3/TC]. With this density distri-
bution, we can easily compute that the density at β = 2/TC

is approximately 1.17 times the average density in the full
temperature range. The corresponding density of crossings for
temperature chaos at TC/2 is therefore given by

ρTC = 1.17NC

�β
. (25)

Remarkably, the prefactor 1.17 depends only very weakly on
a and is very similar to that of the 3D 1.18 where bond chaos
is again also studied at β = 2/TC [15,17]. This, therefore,
provides also an excellent setting to compare the relative
strength with the three dimensions, as we do in the following.

The relative strength of bond chaos to temperature chaos is
naturally defined as

κ = ρBC

ρTC
,

≈ 6.41
NBC

C

NTC
C

, (26)

where NBC
C and NTC

C are the total numbers of dominant
boundary condition crossings of bond chaos and temperature
chaos, respectively. The prefactor is again similar to three
dimensions, where it is 6.34 [17]. A plot of κ as a function of
the linear system size L is shown in Fig. 5.

First, κ is almost a constant function of L, as expected
from the scaling properties of NC . The interesting finding
is that the relative strength is not a universal constant at
the same scaled temperature T = TC/2. Averaging over all
studied system sizes, we get κ = 9.5(1), compared with that
of three dimensions 16(1). Reference [10] got a value of 17.5
for the 4D ±J model. While this appears to be rather close
to the value obtained in three dimensions instead as observed
in Ref. [17], this is likely an interesting coincidence rather

than suggesting the ratio is a universal constant at a typical
low temperature. This large value is not in disagreement
with our data as the value is calculated at a relatively lower
temperature, 0.3TC . It is expected that κ should increase with
β. For example, bond chaos should persist even at T = 0,
while for temperature chaos, this is likely negligibly small
for the finite sizes we have studied. Nevertheless, all of these
data are fairly close, suggesting that bond chaos at a typical
low temperature is almost an order of magnitude stronger than
temperature chaos.

It is possible to qualitatively explain why the ratio κ is
smaller for the 4D case than that of three dimensions in our
studies where both are at TC/2. It is presumably a result of the
increased entropy relative to the energy in four dimensions.
Here, we have looked at two quantities and find this appears
to be the case. Our first quantity is based on the overlap
distribution function P (q ) where the overlap q in our thermal

5
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20

4 6 8 10

κ

L

T = TC/2

EA3D

EA4D

FIG. 5. Relative strength between bond and temperature chaos
κ at TC/2, as a function of the system size L for both three di-
mensions (red circles) and four dimensions (blue squares). Note that
κ is approximately size independent, as expected from the scaling
relations. The relative strength at the same relative temperature
TC/2 is, however, not a universal constant for different dimensions.
Nevertheless, bond chaos in both cases is typically one order of
magnitude stronger than temperature chaos.
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ensemble is defined as

qab = 1

N

∑
i

Sa
i Sb

i , (27)

where the two replicas a, b are chosen randomly (including
the boundary conditions) from the TBC ensemble. The over-
lap distribution function quantifies the similarities of the dif-
ferent states, or pure states in the thermodynamic limit. The
overlap distribution is trivial if there is only one pair of pure
states and is nontrivial when there are many pairs of pure
states. We compute an extensively used statistic which is
the cumulative integral of the function near q = 0 as

I (0.2) =
∫ 0.2

−0.2
P (q )dq. (28)

The disorder average is well known to be approximately a
constant function of L. This provides a definition of the effec-
tive relative temperature [45] of the system, again with respect
to TC based on the strength of excitations in the spin-glass
phase. The statistic I (0.2) equals 0.1302(54) and 0.1805(40)
in three and four dimensions, respectively. Therefore, the 4D
data are at a higher effective relative temperature than the 3D
data, which explains why the 4D κ is smaller. The ratio of the
two is 1.39(7) which is approximately of the same scale as the
ratio of κ which is 1.68(11). The other quantity we looked at
is the direct ratio of the energy to entropy scales [〈E〉]/[〈T S〉]
at TC/2, where the square brackets denote disorder averages.
The entropy is computed from the energy and the free energy
which can be easily measured in population annealing using
the free-energy perturbation method [39]. The estimates are
56(3) and 22.0(3) for three and four dimensions, respectively.
The ratio of the two is 2.54(15) which is again approximately
of the same scale as the ratio of κ . It is important to emphasize,
however, that both quantities are merely estimates of scales.
Neither is expected to be an estimator of κ . Nevertheless, it
appears relatively clear and we conclude that κ gets smaller in
four than in three dimensions at TC/2 as a consequence of the
increased entropy relative to energy.

C. Does chaos imply many pure states?

In this section, we discuss whether chaos would imply a
nontrivial overlap distribution in the framework of thermal
boundary conditions. It may seem inconsistent that we have
employed the droplet description of chaos and now argue
against it. However, we are here only questioning the number
of pure states, not its scaling description of chaos. Indeed,
we argue in the following that many states and the droplet
description of chaos can also be consistent.

First, the droplet scaling of chaos is scaling with respect to
the system size L and does not require that there are only two
pure states. Similar to our finding that the number of boundary
conditions does not affect the scaling exponents, we expect
the same is true for pure states as well only provided that the
effective number of active pure states (not with a vanishingly
small weight) should be about the same for different L.
Recall that chaos refers to or is dominated by large-scale
reorganizations. This is indeed the case in a many-state picture
because despite that there are many (a countable infinity in
the thermodynamic limit) pure states, only a handful of them

have O(1) weights [46]. This is also reflected in that the pool
of the overlap distribution functions {PJ (q )} looks similar
for different sizes like the aforementioned statistic I (0.2).
Therefore, there is no apparent inconsistency between many
pure states and the validity of the droplet description of chaos.
The droplet description of chaos could be applied to any pair
of those active pure state exchanges. Finally, many pure states
would, while not affecting the three scaling exponents, clearly
enhance the intensity of chaos or the prefactor of this scaling.

Next, we discuss why we consider the possibility of many
pure states. The droplet picture [4,26–29] has long been
believed to be a two-state picture, as the exponent θDW > 0
assuming droplet excitations and domain-wall excitations are
similar in nature. However, numerical simulations have been
observing nontrivial overlap distributions, i.e., many pure
states. There is so far no direct evidence that the overlap
distributions are trivial. This is either interpreted as evidence
for the replica symmetry breaking (RSB) picture [47–49] or as
a finite-size effect. It seems more likely the former is correct,
as it is actually questionable that θDW > 0 would imply the
absence of large-scaling excitations for all instances. For
example, even the mean-field Sherrington-Kirkpatrick model
[50] appears to have a positive exponent θDW, but the model
is clearly described by RSB [51]. In addition, θDW appears to
be simply a growing function of dimensionality and remains
positive such as at D = 7 [52] which is already above the
upper critical dimension, presumably D = 6. In the following,
we discuss a tentative view that the two-state picture may not
hold from the perspective of chaos in the TBC ensemble. We
propose a picture that results in both a positive exponent θDW

and nontrivial overlap distributions.
In fact, the primary motivation of the TBC [41] is exactly

to address the number of pure states. Reference [41] did find
nontrivial overlap distributions from direct computations,
but instead concluded the overlap distributions should
become trivial using an indirect sample stiffness scaling.
The basic idea is that more stiff instances (large λ, one
dominant boundary condition) are found to be correlated
with more trivial overlap distributions (small I (0.2)) and all
instances are argued to become infinitely stiff (λ → ∞) in
the thermodynamic limit, similar to the above-mentioned
droplet picture. The correlation looks robust, but the latter is
questionable. The paper indeed stated that this may not occur
if a finite fraction of instances get increasingly more stiff
with �F ∼ Lθ while the others do not with �F ∼ O(1).
This scenario was simply rejected as there had been no
straightforward explanation to expect this, but chaos appears
to provide such a picture as we discuss below.

Our consideration is motivated by the following question:
Suppose in the thermodynamic limit, one boundary condition
dominates the ensemble as required by the droplet picture,
but not the same one as temperature varies. If the boundary
conditions are constantly exchanging their dominance, why
would we always see one boundary condition whenever we
measure their weights? We therefore propose the following
picture for the thermodynamic limit as shown in the top panel
of Fig. 6. Clearly if NC ∼ Lζ , each exchange event defined
from a central maximum to a nearby central crossing should
scale as 1/Lζ . Each exchange event has two regimes: an
O(Lθ ) regime and an O(1) regime in terms of free-energy
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FIG. 6. Top: One possible scenario of temperature chaos in the
TBC ensemble in the thermodynamic limit. Each exchange event
has two regimes: an O(Lθ ) regime and an O(1) regime in terms
of free-energy differences. In the former regime, one boundary
condition dominates and the overlap distribution is trivial (without
considering excitations within the same boundary conditions). In
the latter regime, two boundary conditions have comparable weights
and the overlap distribution is nontrivial. The width of both regimes
scales as 1/Lζ . The picture has a positive exponent θ but a nontrivial
overlap distribution function after taking disorder averages at any
arbitrarily chosen temperature, in agreement with numerical simula-
tions. Bottom: Another possible scenario to save the droplet picture
as a two-state picture [53]. In this picture, the two regions share very
unequal weights, the crossing region shrinks by an additional factor
1/Lθ compared with the flat region. In this way, the scaling relation
I (0.2) ∼ 1/Lθ is recovered.

differences. In the former regime, one boundary condition
dominates and the overlap distribution is trivial. In the latter
regime, two (or more perhaps with a smaller probability)
boundary conditions have comparable weights and the overlap
distribution is nontrivial. Motivated by the droplet scaling,
we further propose the most natural scenario that the two
regimes are of similar width and therefore they both scale as
1/Lζ . Notice that in our analysis excitations within a single
boundary condition are not considered, which would only
make the overlap distributions even less trivial.

The advantage of this picture is that it is in agreement
with all the aforementioned numerical results. At an arbitrarily
fixed temperature, an instance may be randomly observed in
either regime. When taking disorder average, the exponent
θ would be dominated by the O(Lθ ) regimes and on the
other hand the overlap distribution function is dominated by
the O(1) regimes. This picture is also compatible with the
distributions of λ of Ref. [41] where the distribution is found
to only change significantly at the tail of the distribution where
λ is large and the distribution at small λ hardly changes.
Therefore, our picture naturally provides a scenario of two
different classes of instances, and a finite fraction of instances
would not become stiff even in the thermodynamic limit.

The validity of this scenario depends crucially on the about
equal share of the two regimes. We have recently indeed heard
a possible way to save the droplet picture [53] and it is shown
in the bottom panel of Fig. 6. In this alternative picture, the
O(Lθ ) regime in each exchange event takes most of the share
and the O(1) regime has only a tiny share of 1/Lθ (of the
width 1/Lζ ); then the total length of the O(1) regimes would
shrink as 1/Lθ and the droplet behavior such as I (0.2) ∼
1/Lθ is recovered. While this exotic scenario would again
yield a two-state picture, we do not readily see an obvious
reason for such uneven shares. For example, the inversion
from Eqs. (11) to (13) would be much less straightforward
in this scenario. Moreover, we do not seem to see such uneven
shares and such a strong trend for the sizes we have studied.
In the rest of this section, we use an effective statistic to
quantitatively distinguish the two scenarios.

It is clear that our sizes are far away from the limit where
only two boundary conditions dominate; therefore, it is of
crucial importance to design a good statistic that is not very
sensitive to this to look for a trend. Since we are basically
interested in the shape of the curves, we define a statistic γ to
quantify the shape or the concavity of the probability curves of
such exchange events. First, we define a dominant exchange
event. We have already defined a dominant crossing; now we
define a dominant maximum which is a local maximum of
a dominant boundary condition. We define a dominant ex-
change as such a maximum and its nearest dominant crossing.
Some typical examples of these are shown as black boxes,
red circles, and blue squares, respectively, in Fig. 7. Such
exchanges are the finite versions of the exchanges shown in
Fig. 6. We numerically integrate the area below the probability
curve in the box A2. The area above the curve A1 can also be
easily computed as the total area A = A1 + A2 can be easily
computed. We define

γ = A1

A1 + A2
, (29)

which captures the relative width of the two regimes or the
sharpness of the crossings shown in Fig. 6. More precisely,
we expect

γ = const ∈ [0, 0.5] (equal shares), (30)

γ ∼ 1/Lθ (unequal shares). (31)

In practice, we study the exchange events in the interval β ∈
[3/(2TC ), 3/TC], and we require also the size of an exchange
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FIG. 7. A dominant maximum (red circles) and a dominant
crossing (blue square) constitute a dominant exchange event (black
box), and examples are typical instances with such dominant ex-
changes chosen from L = 7. If the maximum occurs at a smaller β,
it is defined as a forward exchange. On the other hand, it is defined
as a backward exchange. We define a statistic γ = A1/(A1 + A2) to
distinguish the two scenarios shown in Fig. 6.

event to satisfy �β � 0.1 and �p � 0.02 for the purpose of
numerical accuracy.

The results of γ as a function of 1/L are shown in Fig. 8
along with a linear fit and the droplet fit. The values of γ are
converging to a constant that significantly differs from zero for
the leading linear fit. The droplet fit which requires γ → 0 in
the thermodynamic limit, on the other hand, gives a poor fit,
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1/L

All exchange

Forward exchange
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γ ∼ 1/Lθ

FIG. 8. The statistic γ as a function of 1/L along with linear fits
and the droplet fit. The small decrease of γ with increasing L is most
likely a finite-size effect from the subdominant boundary conditions.
The droplet fit does not appear to fit the data very well. See the text
for more details.

questioning the rapid shrinking of the crossing regions in the
second scenario of Fig. 6. In the droplet fit, we have restricted
the value of θ to our earlier estimate.

It does appear γ is decreasing slightly as L is increased,
although very slowly and also by limited amounts. We at-
tribute this to finite-size effects of the subdominant boundary
conditions. To illustrate this, we divide the exchanges into two
classes: forward exchanges and backward exchanges. If the
maximum occurs at a smaller β or the dominant boundary
condition is losing weight, it is a forward exchange. On the
other hand, if the maximum occurs at a larger β or the dom-
inant boundary condition is gaining weight, it is a backward
exchange. Note that due to the “boundary condition” pi = 1/8
at β = 0, it is most likely to encounter a forward exchange
first than a backward exchange when β is increased. The
reason we do this classification is because the effects of the
subdominant boundary conditions on γ are opposite in these
two cases. Considering the forward exchange, the dominant
boundary condition loses weight; it is statistically more likely
the subdominant ones (the little ones at the bottom of the
probability curves like the forests in the bottom panel of
Fig. 7) are gaining weights. This would make the dominant
boundary condition have a less concave shape and as a result γ
gets larger. Similar arguments show that γ tends to be smaller
for the backward exchange. One finite-size effect comes in
when considering that a larger size is more likely to produce
a backward exchange, because it is more chaotic. It is less
likely for L = 4 to make a backward exchange following a
forward exchange, but L = 7 can make this more frequently.
We have looked at the fractions of such backward exchanges,
which is indeed an increasing function of L. The fractions
are 0.0743, 0.1794, 0.2574, and 0.2949 for L = 4, 5, 6, and
7, respectively. The averages using only forward exchanges
or backward exchanges are also shown in Fig. 8. It is clear
that the forward exchanges are larger and backward exchanges
are smaller, in agreement with our expectations. Ideally, these
two averages should be flat now; both are certainly more flat
than the full average. However, there is an additional finite-
size effect whereby the subdominant boundary conditions are
getting suppressed as L increases, which is why we count
only dominant crossings in our study of chaos. This is more
pronounced for the forward class because they tend to occur at
higher temperatures, which explains why smaller sizes deviate
further from the thermodynamic limit in the forward class.
On the other hand, the backward class is more flat because
they tend to occur at lower temperatures, where the effects of
subdominant boundary conditions should be smaller. There-
fore, we believe the subdominant boundary conditions are the
source of the finite-size effects and the backward average is
closer to the thermodynamic limit. In conclusion, our data of
γ are more consistent with many pure states (γ = const) with
minor finite-size corrections from the subdominant boundary
conditions, and do not fit the droplet two-state picture (γ ∼
1/Lθ ) very well.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have successfully extended the thermal
boundary condition technique to partial thermal boundary
conditions, and applied it to study the temperature chaos
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and bond chaos of the four-dimensional Edwards-Anderson
model with Gaussian disorder to low temperatures. We have
measured the three scaling exponents of chaos, and found
with good accuracy that they are related through the chaos
equality of the droplet picture and the two forms of chaos
share the same set of scaling exponents. Our results and the
literature values also suggest that the scaling exponents are
the same for the Gaussian disorder and the ±J model in four
dimensions, unlike two dimensions. Quantitative comparison
of the relative strength of bond chaos and temperature chaos
are also made at T = TC/2 and compared with three dimen-
sions. The relative strength is found to be slightly smaller
but still similar in four dimensions and this is explained as
the increase of entropy relative to energy in four dimensions.
Temperature chaos distributions in three and four dimensions
are also qualitatively similar, but nonetheless also quantita-
tively different, where four dimensions have a larger exponent
in the exponential distribution. Finally, we have proposed a
tentative scenario that chaos may imply many pure states in
the TBC ensemble. This picture agrees with the numerical
results of the TBC ensemble, and it is consistent with the
scaling properties of chaos, a positive domain-wall exponent,
and also many pure states.

Our results pave the way for the (partial) thermal bound-
ary condition technique to be applied to a wide range of
models, as the number of fluctuating boundary conditions
can be chosen flexibly (up to factors of 2). For example, it
is possible to use the method efficiently to study chaos of
one-dimensional long-range models on a ring such as the
mean-field Sherrington-Kirkpatrick model [50] by also keep-
ing eight boundary conditions by introducing three equally

spaced points as boundaries. In particular, the model also has a
spin-glass phase in a magnetic field, and therefore temperature
chaos, bond chaos, and field chaos can be characterized and
compared on the same footing. It is also straightforward and
interesting to apply the method to other spin-lattice models
such as Potts, clock, XY , and Heisenberg spin glasses. Chaos
of these models is far less studied but may exhibit new in-
teresting phenomena. For example, the clock spin glasses can
have an extremely rich phase diagram like a chiral spin-glass
phase, which is also chaotic [54]. Finally, we look forward
to seeing Monte Carlo simulations of the Edwards-Anderson
model in yet higher dimensions as a result of Moore’s law and
parallel computing. Using the strong-disorder renormalization
group ds [44] and the domain-wall stiffness exponent θ [42]
and assuming the droplet description of chaos is correct up to
six dimensions [55,56], we estimate ζ = 1.56(5) and 1.89(10)
in five and six dimensions, respectively.
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