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In this work we study of the dynamics of large-size random neural networks. Different methods have been
developed to analyze their behavior, and most of them rely on heuristic methods based on Gaussian assumptions
regarding the fluctuations in the limit of infinite sizes. These approaches, however, do not justify the underlying
assumptions systematically. Furthermore, they are incapable of deriving in general the stability of the derived
mean-field equations, and they are not amenable to analysis of finite-size corrections. Here we present a
systematic method based on path integrals which overcomes these limitations. We apply the method to a large
nonlinear rate-based neural network with random asymmetric connectivity matrix. We derive the dynamic mean
field (DMF) equations for the system and the Lyapunov exponent of the system. Although the main results
are well known, here we present the detailed calculation of the spectrum of fluctuations around the mean-field
equations from which we derive the general stability conditions for the DMF states. The methods presented here
can be applied to neural networks with more complex dynamics and architectures. In addition, the theory can be
used to compute systematic finite-size corrections to the mean-field equations.
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I. INTRODUCTION

The present paper aims to present a detailed derivation of
the path integral framework for the study of the dynamical
properties of neural networks. This framework can be applied
to a broad spectrum of network models. For concreteness,
we shall consider a class of model, extending the model first
introduced in 1972 by Amari [1]. This class of model is simple
enough to allow for a full analytical description yet presenting
a highly nontrivial dynamical behavior. In the models consid-
ered here, the state of the ith neuron of the network at time t is
represented by a continuous spin variable Si (t ), which repre-
sents the firing activity of the neuron. The state of a neuron is
determined by the “post-synaptic” potential hi (t ) acting on it
through the relationship Si (t ) = φ[ghi (t )], where g is a gain
parameter measuring the gain of the response. The function
φ(x) is usually a sigmoid function which defines the in-
put/output characteristic of the neurons. As a concrete exam-
ple we shall consider φ(x) = tanh(x) as prototype of generic
odd symmetric saturated sigmoid functions satisfying: φ(x) =
−φ(−x), φ(±∞) = ±1, and φ(0) = dφ(x)/dx|x=0 = 1, so
that g is the slope of the linear response of the neuron
to small post-synaptic potential. The theory can be easily
extended to transfer functions which are not odd symmetric.
The case of nonsaturated transfer functions have been studied
recently [2,3].

*andrea.crisanti@uniroma1.it

The dynamical behavior of a network of N neurons is
governed by the first-order differential equations:

d

dt
hi (t ) = −hi (t ) +

N∑
j=1

Jij Sj (t ), i = 1, . . . N. (1)

In electrical terms, Eq. (1) are the Kirchhoff current law
of the neuron, where the current charging the membrane
capacitance, the term on the left-hand side, must equal the
current through the membrane resistance, the first term on
the right-hand side, plus the current due to the activity of the
other cells, last term on the right-hand side. For simplicity the
microscopic time constant is taken equal to one.

The (real) matrix Jij , with Jii = 0, gives the properties of
the synaptic coupling between the pre-synaptic j th neurons
and the post-synaptic ith neuron. It defines the topology of the
network: Jij = 0 not connected Jij �= 0 connected; the type of
the synaptic connection: Jij > 0 excitatory Jij < 0 inhibitory;
the strength of the connection: |Jij |.

We shall focus on the steady state of the network, that is
the dynamical state in which the network settles down after
a reasonable time has elapsed from the initial time t0. Thus,
we shall assume that t0 → −∞, so that memory of the initial
state at t0 has been lost.

Clearly the dynamical behavior of the network depends on
Jij . Nevertheless, we can distinguish two classes. If the matrix
Jij is symmetric, i.e., Jji = Jij , then the dynamical Eq. (1)
describes the relaxation

d

dt
Si (t ) = − ∂

∂hi

E(h1, . . . , hN )|hi=hi (t ) (2)
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of the energy function:

E(h1, . . . , hN ) =
∑

i

∫ hi

0
dh h

dS

dh
− 1

2

∑
ij

Jij SiSi . (3)

The dynamics hence converges toward stable fixed
points, which correspond to the stable local minima of
E(h1, . . . , hN ). The structure of the fixed points can be
complex [4,5]; nevertheless, the asymptotically long-time
state is simple.

If the matrix is nonsymmetric, i.e., Jji �= Jij , then an
energy function cannot be defined and a richer steady-state be-
havior emerges: besides fixed points, limit cycles and chaotic
behavior are also possible.

We shall consider here the simple case of a fully con-
nected network with random, asymmetric, and independent
couplings:

Jij = 0, (Jij )2 = 1/N, Jij Jji = 0, i �= j. (4)

Here, and in the following, (· · · ) denotes averaging with
the coupling probability distribution P (J) = ∏

ij P (Jij ). The
scaling of the second moment with N ensures that the second
term on the right-hand side of Eq. (1) is O(1) as N → ∞
(thermodynamic limit).

The assumption of zero average implies that there is not a
preferred type of synaptic connection. This can be relaxed by
imposing a finite average J0/N to tune preferred inhibitory
(J0 < 0) or excitatory (J0 > 0) synaptic connections.

Provided the high order moments of P (J) do not grow too
fast with N , in the large N limit only the first two moments
are needed. Thus, we can assume that Jij are i.i.d. Gaussian
variables.

The full solution of the model, referred to as dynamic
mean-field theory (DMFT), has been presented and discussed
in Ref. [6]. Since then, several variations of this model have
been studied; see, e.g., Refs. [2,7–14]. This model has served
also as the basis for computational modeling in recurrent
networks in particular work on echo state networks, reservoir
computing, force learning.

Although the DMFT can be derived by an intuitive con-
struction of self-consistent equations for the fluctuations in
the system, the ad hoc derivation suffers from potentially
severe limitations. Most importantly, determining the stability
conditions for the network dynamical state is a considerable
challenge for such a naive approach. Also, computing vari-
ous response and correlation functions require going beyond
the DMFT themselves. Finally, extensions to more complex
architecture or dynamics may be less amenable to naive
approaches to the construction of the correct self consistent
DMFT equations. Last but not least, it is hard to compute
corrections to the theory without a more systematic formal-
ism. Here we present a systematic approach to the study
of dynamical states in random neural networks using path
integral method. Path integrals have been extensively used in
the study of stochastic dynamics in statistical mechanics, from
the pioneering work of the Martin-Siggia-Rose [15] to work
on critical phenomena and RG analysis [16–18] and to study
the stochastic dynamics of spin glasses [19–21].

The study of deterministic dynamical systems with path
integrals, such as in the present study, is less common.

Nevertheless, in our case this application is facilitated by the
presence of an asynchronous chaotic state, which generates
dynamical deterministic fluctuations with stationary statistics.
The present approach, which was used to derive the results
reported in Ref. [6], expands on unpublished manuscript by
the same authors from 1988. For a related approach, see
Ref. [22]. For an alternative study of neural networks based
on the analogy with conservative Newtonian dynamics, see,
e.g., Ref. [23].

The plan of the paper is as follows. In Sec. II we derive
the dynamical field theory (DFT) describing the dynamical
behavior of the model Eq. (1). The possible different solutions
of the DMFT valid in the limit N � 1 are discussed in
Sec. III, and their stabilities are analyzed in Sec. IV. Finally,
in Sec. V, as an illustration of how dynamical quantities can
be computed using DFT, we present the calculation of the
maximum Lyapunov exponent.

II. DYNAMICAL FIELD THEORY

In this section we shall show how the the dynamical
behaviour of the network can be described using path integral
methods. Prior to this we introduce the useful shorthand nota-
tion ha

i = hi (ta ) and rewrite the equation of motion, Eq. (1), as

∂ah
a
i = −ha

i +
N∑

j=1

Jij Sa
j , (5)

where ∂a = (d/dta ) + δ (δ → 0+) to ensure causality [24],
and Sa

i = φ(gha
i ).

A. Path integral and dynamical field theory

The strategy of the path integral approach is to derive
a generating functional for the relevant correlation and re-
sponse functions induced by the dynamics Eq. (5). To work
on a finite-dimensional space, one starts by dividing the
time interval of interest [t0, t] into n segments of length δt

and changing the differential equation ∂ah
a
i = f (ha

i ) into the
finite-difference equation:

ha+1
i − ha

i = f
(
ha

i

)
δt + ba

i δt + h0
i δ

Kr
a0 , (6)

with the (discrete) index a = 0, 1, . . . , n indicating the time.
Two terms have been added: an external field ba

i to evaluate
response functions and the initial condition h0

i δ
Kr
a0 , where δKr

ab

is the Kronecker δ, to enforce the initial condition at t0. The
continuum limit is recovered by taking n → ∞ and δt → 0
with nδt fixed [25].

Denoting by h̃a
i the solution to Eq. (6), the generating func-

tional of correlation and response functions of the dynamical
system Eq. (6) reads

Z[b̂, b] =
∫ ∏

a

∏
i

dha
i δ
(
ha

i − h̃a
i

)
e−ib̂a

i ha
i

=
∫ ∏

a

∏
i

dha
i δ
(
ha+1

i − ha
i − f

(
ha

i

)
δt

− ba
i δt − h0

i δ
Kr
a0

)
e−ib̂a

i ha
i . (7)

The second line is obtained by using the identity δ(ha
i − h̃a

i ) =
|F ′(ha

i )| δ[F (ha
i )], where F (ha

i ) = ha+1
i − ha

i − f (ha
i )δt −
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ba
i δt − h0

i δ
Kr
a0 and F ′(ha

i ) is the Jacobian of the transformation
ha

i − h̃a
i = 0 → F (ha

i ) = 0. The Jacobian depends on the dis-
cretization scheme used to translate the differential equation
into a finite-difference equation, even in the continuum limit
n → ∞ [26]. The role of the Jacobian is to ensure that
correlation and response functions do not depend on the dis-
cretization scheme used to construct the generating functional,
apart form the initial value of the response functions [27]. The
scheme adopted in Eq. (6), known as the Ito scheme in the
theory of stochastic differential equations, has the advantage
that the Jacobian is equal to one. Another consequence of this
scheme is that θ (0−) = 0 and θ (0+) = 1, where θ (x) is the
Heaviside step function; see, e.g., Ref. [28].

Equation (7) can be made more manageable by using the
Fourier representation of the Dirac δ function,

δ
(
za
i

) =
∫ +∞

−∞

dĥa
i

2π
e−iĥa

i za
i , (8)

to rewrite it as

Z[b̂, b] =
∫ ∏

a

∏
i

dĥa
i dha

i

2π

× e−iĥa
i (ha+1

i −ha
i −f (ha

i )δt−ba
i δt−h0

i δ
Kr
a0 )+ib̂a

i ha
i . (9)

Taking the continuum limit n → ∞ with nδt = t − t0,
Z[b̂, b] becomes a path integral over all possible paths
{ĥi , hi}ta∈[t0,t]:

Z[b̂, b] =
∫ ∏

i

Dĥi Dhi e
−S[ĥ,h]+∑ia (ib̂a

i ha
i +iĥa

i b
a
i ), (10)

where Dĥi = limn→∞
∏

a dĥa
i /2π , Dhi = limn→∞

∏
a dha

i ,∑
a ≡ ∫

dta and S[ĥ, h] is the dynamical action:

S[ĥ, h] =
∑
ia

iĥa
i

(
∂ah

a
i − f

(
ha

i

)− h0
i δa0

)

=
∑
ia

iĥa
i

⎛
⎝∂ah

a
i + ha

i −
∑

j

Jij S
a
j − h0

i δa0

⎞
⎠, (11)

of the equation of motion, Eq. (5), with initial condition h0
i =

hi (t0). Here δa0 ≡ δ(ta − t0). We have not included the term
ba

i into the dynamical action because the original problem
does not have an external field.

From the definition Eq. (7) it follows that Z[0, b] = 1, then

δ

δib̂
a1
i1

. . .
δ

δib̂
an

in

δ

δb
b1
j1

. . .
δ

δb
bm

jm

Z[b̂, b]

∣∣∣∣
b̂=b=0

= 〈
h

a1
i1

. . . h
an

in
ĥ

b1
j1

. . . ĥ
bm

jm

〉
J
, (12)

are the correlation functions of ha
i and ĥa

i over the dynamics
generated by the action Eq. (11) for fixed coupligs Jij .

Correlations of only h-fields are correlation functions of
the dynamics ruled by Eq. (5). Those involving both ĥ and h

fields the response functions, as can be inferred from Eq. (10)
by noticing that

〈
h

a1
i1

. . . h
an

in
ĥ

b1
j1

. . . ĥ
bm

jm

〉
J

= δ

δb
b1
j1

. . .
δ

δb
bm

jm

〈
h

a1
i1

. . . h
an

in

〉
Jb

∣∣∣∣
b=0

,

(13)

where the average 〈(· · · )〉Jb is over all trajectory gener-
ated by the equation of motion, Eq. (5), in the presence
of the external field ba

i . For this reason hat-fields are also
called response-fields. Note that since (δ/δb)Z[b̂, b]|b̂=b=0 =
(δ/δb)Z[0, b]|b=0 and Z[0, b] = 1 correlations involving only
ĥ-fields vanish.

The correlation functions Eq. (12) depends on the cou-
pling matrix Jij and are random quantities. Since Z[0, 0] = 1
averaged correlation functions can be obtained by averaging
Z[b̂, b] over the couplings Jij [19]. In the case of the i.i.d.
Gaussian Jij Eq. (4), this leads to

Z[b̂, b] =
∫ ∏

i

Dĥi Dhi exp

[
−
∑
ia

iĥa
i (1 + ∂a )ha

i

+ 1

2N

∑
ij

(∑
a

iĥa
i S

a
j

)2

− h0
i δa0

+
∑
ia

(
ib̂a

i h
a
i + iĥa

i b
a
i

)]
. (14)

The nonlocal term can be simplified by introducing Cab =∑
i S

a
i Sb

i /N [20] using the identity [29]

1 =
∫

dCab δ

(
Cab −

∑
i

Sa
i Sb

i /N

)

=
∫

N

4π
dĈab dCab exp

[
−1

2
iĈab

(
NCab −

∑
i

Sa
i Sb

i

)]
.

(15)

The exponent in Eq. (14) becomes diagonal in the site index i

with a residual site dependence due to the auxiliary fields ba
i

and b̂a
i , because the system is fully connected. The averaged

generating functional can then be written as the partition
function

Z[b̂, b] =
∫

DĈ DC e−NL[Ĉ,C;b̂,b], (16)

of a dynamical field theory for the fields {Ĉab, Cab}, with
Ĉba = Ĉab and Cba = Cab, described by the action

L[Ĉ, C; b̂, b] = 1

2

∑
ab

(
iĈabCab + ε

2
ĈabĈab

)

− W [Ĉ, C; b̂, b], (17)

where

NW [Ĉ, C; b̂, b] =
∑

i

ln
∫

Dĥi Dhi

× e−S[ĥi ,hi ;C,Ĉ]+∑a (iĥa
i b

a
i +ib̂a

i ha
i ), (18)

and

S[ĥi , hi ; Ĉ, C] =
∑

a

[
iĥa

i (1 + ∂a )ha
i − h0

i δa0
]

− 1

2

∑
ab

[
iĈabSa

i Sb
i + Cabiĥa

i iĥ
b
i

]
. (19)
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We have added a small regularizing term ε → 0+ in Eq. (17)
to make integrals well definite [30]. Note that the functional
W [Ĉ, C; b̂, b] is the generating functional of connected (time)
correlation functions of hi and ĥi generated by the action:

L[ĥ, h; Ĉ, C, b̂, b]

=
∑

i

S[ĥi , hi ; C, Ĉ] −
∑
ia

(
iĥa

i b
a
i + ib̂a

i h
a
i

)
. (20)

The relevant time correlation and response functions of the
field Sa along the dynamical evolution governed by Eq. (5)
can be obtained from averages of Ĉab and Cab with the action
L[Ĉ, C; 0, 0]. For example,

1

N

N∑
i=1

〈Si (ta )Si (tb )〉J = 〈SaSb〉 = 〈Cab〉, (21)

where 〈(· · · )〉 denotes DFT average with action L[Ĉ, C; 0, 0].
Details are in Appendix B. The last equality follows because
if b̂ = b = 0, or more generally if they do not depend on the
site, different sites decouples and are all equivalent.

The results obtained so far are valid for any value of N . In
the rest of this paper we shall consider the (thermodynamic)
limit N � 1.

B. Thermodynamic limit and dynamical mean-field theory

In the limit N → ∞ the integral in Eq. (16) is dominated
by the largest value of the exponent. Therefore,

Z[b̂, b] ∼ Z0[b̂, b] = e−NL0[Ĉ,C;b̂,b], N � 1, (22)

where L0[Ĉ, C; b̂, b] is the value of the action at the stationary
point:

δ

δCab
L[Ĉ, C; b̂, b] = 0 ⇒ iĈab = 1

N

∑
i

〈
iĥa

i iĥ
b
i

〉
0, (23)

δ

δiĈab
L[Ĉ, C; b̂, b] = 0 ⇒ Cab = 1

N

∑
i

〈
Sa

i Sb
i

〉
0 + εiĈab.

(24)

The (self-consistent) average 〈(· · · )〉0 is over all paths of
the dynamical process {ĥ, h}t∈[t0,t] governed by the action
L[ĥ, h; Ĉ, C, b̂, b] evaluated at the stationary point. The
normalization Z[0, b] = 1 implies that Ĉab = 0 is the cor-
rect self-consistent solution; see below. Then Z0[b̂, b] =∏

i Zi[b̂, b] with

Zi[b̂, b] =
∫

Dhi Dĥi e
−S[ĥi ,hi ;0,C]+∑a (iĥa

i b
a
i +ib̂a

i ha
i ), (25)

and the dynamical behavior of the network in the limit N →
∞ is fully described by the single-site dynamical processes
{ĥi , hi}.

Using the identity

exp

[
1

2

∑
ab

iĥa
i C

abiĥb
i

]
=
〈

exp
∑

a

iĥa
i η

a

〉
η

, (26)

where ηa is Gaussian field of mean 〈ηa〉η = 0 and

〈ηaηb〉η = Cab, (27)
Zi[b̂, b] can be written as

Zi[b̂, b] =
〈∫

Dĥi Dhi e
−∑a iĥa

i [(1+∂a )ha
i −ηa−h0

i δa0]+∑a (iĥa
i b

a
i +ib̂a

i ha
i )

〉
η

. (28)

Therefore, Zi[b̂, b] is the generating functional of the stochas-
tic process described by the stochastic differential equation,

∂ah
a
i = −ha

i + ba
i + ηa, (29)

with initial condition hi (t0) = h0
i averaged over the Gaussian

noise ηa . This process provides the full description of the
dynamics of the network in the limit N → ∞. While diagonal
in the site index, the process maintains memory of the other
sites through the Gaussian field ηa because 〈ηaηb〉η must be
computed self-consistently through the constraint Eq. (24).
Equations (24), (27), and (29) are the central equations of the
DMFT.

Note that if Ĉab were not zero then Zi[0, b] =
〈exp [

∑
ab iĈabSa

i Sb
i ]〉, where the average is over the stochas-

tic process Eq. (29), and Z[0, b] would not be necessarily
equal to 1.

III. SOLUTION OF DMFT EQUATIONS

In this section we discuss the solutions of the DMFT
equations. Without loss of generality we can take uniform
b̂a and ba and drop the site index. Moreover, since we are

interested in the steady state, we take the initial time t0 = −∞
and we can neglect the initial state hi (t0).

A. DMFT equations

To discuss the DMFT it is useful to rewrite the DMFT
equations as follows. Using the relation Sa = φ(gha ) the
DMFT Eqs. (24) and (27) can be reduced to

〈ηaηb〉η = Cab = 〈φ(gha )φ(ghb )〉η, (30)

where, from Eq. (29),

ha = h(ta ) =
∫ ta

−∞
dtb e−(ta−tb ) η(tb ). (31)

We have set ba
i = 0 because no external field is present in the

original problem.
The synaptic field ha is a linear functional of ηa , and hence

it is a Gaussian process with zero mean and correlation

〈hahb〉η = �ab. (32)

Equation (30) provides a nonlinear relation between
the field correlation �ab and the activity correlation Cab.
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Explicitly,

Cab =
∫∫

d2h

2π
√

det �
exp

[
−1

2
hT �−1h

]
φ(gha )φ(ghb ),

(33)

where hT = (ha, hb ), and � is the 2 × 2 symmetric matrix:

� =
[
�aa �ab

�ab �bb

]
. (34)

It is sometime convenient to write this relation as

Cab =
∫

Dz

∫
Dx φ(gx

√
�aa − |�ab| + gz

√
|�ab|)

×
∫

Dy φ(gy
√

�bb − |�ab| + gz
√

|�ab|), (35)

where Dx = dx exp(−x2/2)/
√

2π , and similarly Dy and
Dz, are Gaussian measures. Alternatively, introducing the
Fourier transform φ̃(k) of the function φ(x), the relation
between �ab and Cab can also be written as

Cab =
∫

dk

2π

dk′

2π
φ̃(k) φ̃(k′)

× exp

[
−g2

2
(�aak2 + �bbk′2) − g2�abkk′

]
. (36)

Details are in Appendix C.
However, by multiplying Eq. (29) by itself and averaging

over η, we obtain the relation

(1 + ∂a )(1 + ∂b )�ab = Cab, (37)

expressing �ab as function of Cab.
Equations (33) and (37) constitute the DMFT self-

consistent equations of our system.

B. Steady state solutions

The DMFT considerably simplifies in the steady-state
regime, which is the focus of the present paper. In this regime,
the dynamical correlation functions are time translation in-
variant and �ab depends on ta and tb only through the time
difference τ = ta − tb:

�ab = �(τ ) ≡ �, (38)

�aa = �bb = �(0) ≡ �0. (39)

In this case the DMFT Eq. (35) becomes

C(�; �0) =
∫

Dz

[∫
Dx φ(gx

√
�0 − |�| + gz

√
|�|)

]2

,

(40)

while, using the identities ∂a�(ta − tb ) = ∂τ�(τ ) and
∂b�(ta − tb ) = −∂τ�(τ ), Eq. (37) reduces to

� − ∂2
τ � = C(�; �0). (41)

Since �(τ ) is a correlation function, acceptable solutions to
Eq. (41) must obey

|�(τ )| � �(0), (42)

and in particular they must be bounded.

Equation (41) admits a two-parameter family of solutions
parametrized by the initial conditions �(0) and ∂τ�|τ=0 =
0. This choice is rather convenient because the initial
“velocity” is

∂τ�|τ=0 = 0, (43)

as follows from the explicit solution of the differential
Eq. (41),

�(τ ) = 1

2

∫ +∞

−∞
dτ ′ e−|τ−τ ′| C(τ ′), (44)

which implies that �(τ ) is a differentiable even function of
τ : �(−τ ) = �(τ ). The initial “position” �(0) is fixed by the
requirement

�(0) = �0, (45)

so that the steady-state DMFT solutions are a one-parameter
family of curve � ≡ �(τ ; �0) parameterized by �0.

1. Fixed point solution

The simplest solution is that of a fixed point: �(τ ) = �0 =
C, leading to the self consistent equation,

�0 = [φ2]�0 , (46)

where, for later use, we have introduced the notation

[f ]�0 =
∫

Dx f (gx
√

�0). (47)

For the odd-symmetric transfer function, such as φ(x) =
tanh(x), there is always a solution with �0 = 0, correspond-
ing to the zero fixed point hi = 0 of the original dynamics.
A solution with nonzero �0 appears when g > 1. The static
fixed-point solution is, however, unstable for g > 1, as shown
in the next section; see also Appendix A.

2. Time-dependent solution: Potential and energy

Solving the DMFT equations is greatly facilitated by
noting that for a fixed �0 the differential Eq. (41) can be
viewed as the inertial dynamics of a particle moving under
the influence of a potential V (�; �0), i.e.,

∂2
τ � = −∂�V (�; �0), (48)

where

V (�; �0) = −�2

2
+
∫ �

0
d�′ C(�′; �0). (49)

Introducing the function �(x) = ∫ x

0 dy φ(y), primitive of the
gain function φ(x), the potential can be expressed as

V (�; �0) = − �2

2
+ 1

g2

∫
Dz

[ ∫
Dx �(gx

√
�0 − |�|

+ gz
√

|�|)
]2

− 1

g2

[∫
Dx �(gx

√
�0)

]2

,

(50)

The last term ensures that V (0,�0) = 0. Details can be found
in Appendix C. All solutions to Eq. (48) conserve the energy:

Ec = 1
2 (∂τ�)2 + V (�; �0). (51)
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Hence, since DMFT solutions must have �(0) = �0,
∂τ�|τ=0 = 0, and be bounded, all solutions to Eq. (48) with
energy Ec = V (�0; �0) leading to bounded orbits are possi-
ble DMFT solutions � = �(τ ; �0). The qualitative behavior
of the solutions can be inferred from the shape of the potential
V (�; �0). Solutions with different properties are possible
because V (�; �0) depends parametrically on the value of �0,
reflecting the self-consistent nature of the DMFT.

3. Phase diagram

The exact form of V (�; �0) depends on φ(x). However,
its qualitative behavior can be determined. First, we note that
for � > 0:

∂3
�V (�; �0)

= g4
∫

Dz

[∫
Dx φ′′(gx

√
�0 − � + gz

√
�)

]2

> 0.

(52)

The “prime” denotes derivative of the function with respect
to its argument, hence φ′′(x) is the second derivative of
φ(x) with respect to x. Thus, ∂2

�V (�; �0) is monotonously
increasing and can vanish at most once for 0 < � < �0. As a
consequence, the shape of V (�; �0) is either a single-well or
a double-well depending on the sign of ∂2

�V (�; �0) at � = 0.
Expanding V (�; �0) for |�| � 1, gives, see Appendix C,

V (�; �0) = (−1 + g2[φ′]2
�0

)�2

2
+ g6[φ′′′]2

�o

�4

24
+ . . . .

(53)

If −1 + g2[φ′]�0 � 0, then the potential is a single well: The
energy Ec is positive and �(τ ) is time-periodic. It changes
sign during one oscillation.

In the case −1 + g2[φ′]�0 < 0 the potential has a double-
well shape, and qualitatively different solutions appears de-
pending on the sign of the energy

Ec = V (�0; �0) = −�2
0

2
+ 1

g2
[�2]�0 − 1

g2
[�]2

�0
. (54)

When Ec > 0 the solution is qualitatively similar to the previ-
ous case: �(τ ) is time-periodic and changes sign during one
oscillation. On the contrary if Ec < 0 and ∂�V (�; �0) at � =
�0 is positive then �(τ ) is time-periodic but does not change
sign during one oscillation. The two regimes are separated by
the boundary Ec = 0, where �(τ ) decays monotonously to 0
as τ → ∞. When Ec reaches the minimum of V (�; �0), the
solution becomes time-independent. This occurs for,

∂�V (�; �0)|�=�0 = −�0 + C(�0; �0) = 0, (55)

and one recovers the time-independent solution found previ-
ously. The different cases are shown in Fig. 1.

By drawing in the plane (�0, 1/g) the curves separating
the different type of solutions we obtain the phase diagram
shown in Fig. 2.

Above the curve f there are no solutions with �0 > 0.
Thus, for g < 1 only the time-independent solution � =
�0 = 0 exists. The vanishing of the equal time correlation �0

in the steady state implies that the system flows to the zero fix
point hi = 0. The stability of this solution for g < 1 can be

FIG. 1. Qualitative behavior of V (�; �0) for −1 + g2[φ′]�0 <

0. Labels denotes the different possible behaviours of the solution.
Label c: Ec > 0, �(τ ) is periodic and changes sign. Label e: Ec <

0, �(τ ) is periodic but remains positive. Label d: Ec = 0, �(τ )
decays to zero as τ → ∞. Label f : minimum allowable value of
Ec, �(τ ) = �0, static solution.

deduced by linearising Eq. (1) and noting that the maximum
real part of the eigenvalues of the matrix Jij is 1.

For g > 1 different scenarios appears. On the curve f the
energy Ec attains its minimum value and the solution is time-
independent: �(τ ) = �0. On this curve the state the network
flows to a nonzero fix-point characterized by a nontrivial dis-
tribution of hi . In the region below the curve f the energy Ec

is larger than the minimum of V (�; �0) and �(τ ) becomes
time-dependent. Here time-periodic solutions appear, either
changing sign in one period, below curve d, or not, between
curves d and f . In either cases these solutions imply that
the dynamical behaviour of the network in the steady state is

FIG. 2. Dynamical mean-field theory phase diagram. The curves
delimit the regions of qualitative different behaviours. On the curve f

the energy Ec is equal to the minimum of V (�; �0) and �(τ ) is time-
independent. Between the curve f and the curve d the energy Ec < 0
and �(τ ) is time-periodic but positive. On the curve d the energy Ec

vanishes and �(τ ) decays to 0 as τ → ∞. Below the curve d the
energy Ec > 0 and �(τ ) is time-periodic with not definite sign. On
the curve b the potential V (�; �0 ) changes from a double well shape
to a single well shape. Above the curve f there are no solution to the
DMFT equations. For g > 1 all curves collapse and only the static
solution �(τ ) = �0 = 0 survives. Numerical values are for φ(x ) =
tanh(x ).
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a limit cycle. On the curve d, corresponding to Ec = 0 and
separating the two types of periodic solutions, �(τ ) is not
periodic and decays monotonously to 0 as τ → ∞. On this
curve the dynamical behavior of the network is chaotic.

IV. FLUCTUATIONS AROUND THE DMFT
AND SOLUTION SELECTION

The large number of solutions of the DMFT for g > 1
raises the question of what are the criteria of selection of one
or a few of those solutions as the physically relevant ones.
The problem is twofold. The DMFT follows from a saddle
point calculation of the path integrals. Thus, only solutions
leading to a stable saddle point, i.e., a local maximum of the
action, must be retained. An analysis of the Hessian of the
fluctuations reveals that all solutions are stable saddle point
(see below); the steady state of the network is hence given by
all the above mentioned solutions: fixed points, limit cycles
and chaos.

The second problem is which of these solutions represent
a stable attractor of the network dynamics. Stated differently,
toward which steady state will the dynamics flow with prob-
ability one as the system size N → ∞? We address this
question by studying the behavior of two copies (replicas) of
the network as N → ∞.

A. Two replica formalism

The stability of an attractor is related to the properties
of the linear response matrix 〈∂hi (t + τ )/∂hj (t )〉J ∼ 〈hi (t +
τ )ĥj (t )〉J . Due to the quenched random couplings Jij insta-
bility in this matrix may be washed out by averaging over Jij ,
hence to uncover instability, one needs to consider quantities

such as 〈hi (t + τ )ĥj (t )〉2
J . Such averages can be computed

using DMFT starting from two identical copies of the system,
namely, hα

i (t ), α = 1, 2, obeying

d

dt
hα

i (t ) = −hα
i (t ) +

N∑
j=1

Jij φ(ghα
j (t )), i = 1, . . . , N,

(56)
and evaluating

〈hi (t + τ )ĥj (t )〉2
J = 〈

h1
i (t + τ )h2

i (t ′ + τ )ĥ1
j (t )ĥ2

j (t ′)
〉
J

(57)

with t �= t ′. Hence, the full dynamic stability can be deter-
mined from a stability analysis of the path integral formulation
of the replicated system Eq. (56).

Conveniently, our above results incorporate readily the
replicated system, if we replace the index a in Eq. (7) by a =
(α, a) = (α, ta ) representing both replica index and time, e.g.,
ha

i = h
α,a
i = hα

i (ta ). For example, the averaged generating
functional Z[b̂, b] of the replicated system can be read directly
from Eqs. (16)–(19). In particular, the action can be written as

L[Ĉ, C; b̂, b] = 1

2

∑
ab

(
iĈabCab + ε

2
ĈabĈab

)

− W [Ĉ, C; b̂, b], (58)

where

NW [Ĉ, C; b̂, b] =
∑

i

ln
∫

Dĥi Dhi

× e−S[ĥi ,hi ;C,Ĉ]+∑a (iĥa
i b

a
i +ib̂a

i ha
i ), (59)

and

S[ĥi , hi ; Ĉ, C] =
∑

a

[
iĥa

i (1 + ∂a )ha
i − h

0,a
i δa0

]

− 1

2

∑
ab

[
iĈabSa

i Sb
i + Cabiĥa

i iĥ
b
i

]
, (60)

where
∑

a ≡ ∑
α=1,2

∫
dta , Cab = Cαβ,ab = Cαβ (ta, tb ) and

similarly, Ĉab = Ĉαβ,ab = Ĉαβ (ta, tb ). As a consequence, the
results of Sec. II can be immediately extended to the repli-
cated system. Hence, in the limit N → ∞ the behavior
of the replicated system is described by the saddle point
of the functional Eq. (58), leading to the 2-replica DMFT. At
the saddle point Ĉab = 0 while Cab, solution of the stationary
point equations, may in general depend on both replica and
time indexes. However, since the two copies of the system
are identical (including their initial value), the DMFT order
parameters cannot depend on the replica index and hence
Cab = Cab = C(ta, tb ) for all α, β.

1. Fluctuations of the replicated DMFT

The stability of the 2-replica DMFT solutions can be
inferred from the analysis of the Gaussian fluctuations about
the stationary point of the action L[Ĉ, C; b̂; b] of the repli-
cated system. Denoting by Qab and Q̂ab the fluctuations and
expanding the action Eq. (58) to second order in Q and Q̂

leads to

Z[b̂, b] ∼ Z0[b̂, b]
∫

DQ̂DQe−NL2[Q̂,Q;b̂,b], N � 1,

(61)

where

L2[Q̂,Q; b̂, b] = 1

2

∑
ab

iQ̂abQab − 1

8

∑
ab,cd

iQ̂abMab;cd iQ̂cd

− 1

4

∑
ab,cd

iQ̂ab〈SaSbiĥciĥd〉0Q
cd, (62)

with

Mab;cd = ε δab,cd + 〈SaSbScSd〉0 − 〈SaSb〉0〈ScSd〉0, (63)

and

δab,cd = δacδbd + δadδbc (64)

is the symmetrized δ function. The average 〈(· · · )〉0 is over the
dynamical process governed by the action Eq. (60) with Ĉab

and Cab evaluated at the stationary point of L[Ĉ, C; b̂; b].
Using the identity

e−S[ĥ,h;Ĉ,C] iĥaiĥb = δ

δCab
e−S[ĥ,h;Ĉ,C], (65)

the average 〈SaSbiĥciĥd〉0 is equal to

〈SaSbiĥciĥd〉0 = δ

δCcd
〈SaSb〉0. (66)
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The derivative is evaluated by recalling that 〈SaSb〉0 =
〈φ(gha )φ(ghb)〉0, where ha is the solution of the DMFT
stochastic differential equation

∂ah
a = −ha + ηa, (67)

with ηa Gaussian field of zero mean and variance 〈ηaηb〉η =
Cab, cf. Sec. II B. The average 〈SaSb〉0 is thus a function of the
field-field correlation function �ab = 〈hahb〉η, so that using
the chain rule 〈SaSbiĥciĥd〉0 is given by

〈SaSbiĥciĥd〉0 = ∂

∂�cd
〈SaSb〉0

δ�cd

δCcd
, (68)

where, from the DMFT equations, δ�ab/δCcd is solution of

(1 + ∂a )(1 + ∂b )
δ�ab

δCcd
= δac,bd . (69)

To further proceed, it is then more convenient to transform
L2 to the equivalent quadratic form

L2[Q̂,�; b̂, b] = − 1

8

∑
ab,cd

iQ̂abMab;cd iQ̂cd

+ 1

4

∑
ab,cd

iQ̂abAab;cd� cd, (70)

where �ab is defined through

(1 + ∂a )(1 + ∂b )�ab = Qab, (71)

and the operator A is acting on � via

Aab;cd := (1 + ∂a )(1 + ∂b )δac,bd − ∂

∂�cd
〈SaSb〉0. (72)

The (Gaussian) integration over Q̂ in Eq. (61) is well
defined and can be performed. It leads to a term of the form
exp[−(const)�A†M−1A�], where A† is the adjoint of A.
Stability of the stationary point requires that the operator A
has no zero eigenvalue.

Making use of the explicit form of ∂〈SaSb〉0/∂�cd :

∂

∂�cd
〈SaSb〉0 = ∂

∂�ab
〈SaSb〉0δacδbd + ∂

∂�aa
〈SaSb〉0δcaδda

+ ∂

∂�bb
〈SaSb〉0δcbδdb, (73)

the eigenvalue equation for the operator A reads:

(1 + ∂a )(1 + ∂b )�ab − ∂

∂�ab
〈SaSb〉0�

ab

− ∂

∂�aa
〈SaSb〉0�

aa − ∂

∂�bb
〈SaSb〉0�

bb = ��ab. (74)

The stability condition requires that this equation must not
admit a solution with � = 0. The stability criterion does not
require an evaluation of M.

Note that the intra-replica fluctuations α = β are decou-
pled and independent of the inter-replica fluctuations α �= β.

Note also that since A is a symmetric operator, the solu-
tions to the eigenvalue Eq. (74) can be classified as either
symmetric eigenvectors �ab = �ba or antisymmetric eigen-
vectors �ab = −�ab, where the symmetry operation is the
simultaneous exchange of both replica and time indices.

B. Stability of the time-independent solution

The general expression of time-independent DMFT so-
lution �αβ = Cαβ = 〈φ(ghα )φ(ghβ )〉0 can be written as in
Eq. (36):

�αβ =
∫

dk

2π

dk′

2π
φ̃(k) φ̃(k′)

× exp

[
− g2

2
(�ααk2 + �ββk′2) − g2�αβkk′

]
, (75)

where φ̃(k) is the Fourier transform of the function φ(x).
The relevant solution to these equations is �αβ = �, where

� is obtained from the self-consistent equation:

� =
∫

dη√
2π

e−η2/2 φ(g
√

�h)2 = [φ2]�, (76)

as in the single replica time-independent solution. For
this solution, using Eqs. (C4) and (C5), ∂〈SaSb〉0/∂�ab =
g2[(φ′)2]� and ∂〈SaSb〉0/∂�aa = (g2/2)[φφ′′]�, and the
eigenvalue Eq. (74) becomes

[(1 + ∂a )(1 + ∂b ) − g2[(φ′)2]�]�ab

− g2

2
[φφ′′]�[�aa + �bb] = ��ab. (77)

Since φ(0) = 0 Eq. (76) admits the trivial solution � = 0
for all g. In this case, recalling that by assumption φ′(0) = 1,
the eigenvalue Eq. (77) reduces to

[(1 + ∂a )(1 + ∂b ) − g2]�ab = ��ab. (78)

Taking the Fourier transform with respect to ta and tb, we find

� = (1 − iωa + δ)(1 − iωb + δ) − g2, (79)

where δ → 0+ to ensure causality. A null eigenvalue can only
occur if ωb = −ωa; otherwise, � would be complex. Since
ω2

a � 0, the equation

(1 + δ)2 + ω2
a − g2 = 0 (80)

does not have solution for g < 1. The time-independent so-
lution � = 0 is hence stable for g < 1; however, it becomes
unstable for g > 1.

For g < 1 only the solution � = 0 exists. When g > 1 a
nontrivial � > 0 solution to Eq. (76) exists. The fluctuations
around this solution consists of two different branches.

The first are diagonal, within replica, fluctuations �ab =
�(ta, tb ) δKr

αβ . The eigenvalue Eq. (77) then becomes

[(1 + ∂a )(1 + ∂b ) − g2[(φ′)2]�]�(ta, tb )

− g2

2
[φφ′′]�[�(ta, ta ) + �(tb, tb )] = ��S(ta, tb ). (81)

The eigenfunctions are of the form �S(ta, tb ) = �(ta ) +
�(tb ). Taking the Fourier transform with respect to time we
find

� = 1 + δ − iω − g2[[(φ′)2]� + [φφ′′]�]. (82)

For ω = 0 and φ(x) = tanh(x) it is well known that � >

0 for all g. In the theory of spin glasses this is equal to
the second eigenvalue of the Hessian of the fluctuations of
the replica symmetric solution of the Sherrington-Kirkpatrick
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(SK) model; see Ref. [31]. Thus, the static solution is stable
against within replica fluctuations. Note that this implies that
in a one-replica system the time-independent solution is stable
for all g.

Equation (77) admits also off-diagonal, between replica,
fluctuations �ab = �(ta, tb ) (1 − δKr

αβ ). For these fluctuations
the eigenvalue Eq. (77) reduces to

[(1+∂a )(1+∂b )−g2[(φ′)2]�]�(ta, tb ) = ��(ta, tb ). (83)

Fourier transforming we find as before

� = (1 − iωa + δ)(1 − iωb + δ) − g2[(φ′)2]�, (84)

which for ωb = −ωa gives

� = (1 + δ)2 + ω2
a − g2[(φ′)2]�. (85)

The quantity 1 − g2[(φ′)2]� with φ(x) = tanh(x) appears
also in the mean-field theory of spin glasses. There it is the
relevant eigenvalue of the Hessian of the fluctuations of the
replica symmetric solution of the SK model, see Ref. [31], and
it is known to be negative for g > 1. Thus, � can vanish for
some ωa and the time-independent solution �αβ = Cαβ = �

is unstable for g > 1.

C. Stability of time-dependent solutions

The stability analysis of the steady-state solutions follows
the same path as the time-independent solutions and it shall
not be repeated in details.

As for the time-independent case, the relevant self-
consistent solution of the DMFT equations is replica indepen-
dent: �ab = �ab = �(τ ), τ = ta − tb, where �(τ ) is solution
of Eq. (48).

By denoting with � = �(τ ) and �0 = �(τ = 0) the
derivatives occurring in the eigenvalue Eq. (74) can be
written as

∂

∂�ab
〈SaSb〉0 = 1 + ∂2

�V (�; �0), (86)

∂

∂�aa
〈SaSb〉0 = 1

2
∂�0∂�V (�; �0), (87)

where V (�; �0) is the potential Eq. (50) function of � and
�0. Details are in Appendix C. The eigenvalue Eq. (74) then
reads [

∂a + ∂b + ∂a∂b − ∂2
�V (�; �0)

]
�ab

− 1

2
∂�0∂�V (�; �0)[�aa + �bb] = ��ab. (88)

Since � would be complex if �αβ (ta, tb ) does not depend on
τ = ta − tb, we will restrict to fluctuations depending only on
τ . Hence, making explicit the time dependence of �ab, we
have the equation[

2δ − ∂2
τ − ∂2

�V (�; �0)
]
�αβ (τ )

− 1

2
∂�0∂�V (�; �0)[�αα (0)+�ββ (0)]=��αβ (τ ). (89)

The term δ2 has been neglected because δ → 0+.
Again the critical fluctuations are off-diagonal: �αβ (τ ) =

�(τ ) (1 − δKr
αβ ). The second term in Eq. (89) then vanishes

and, defining ε = � − 2δ, the eigenvalue equation reduces to

FIG. 3. Qualitative construction of the quantum potential
Eq. (91) from the potential Eq. (50).

a one-dimensional time-independent Schrödinger equation in
the variable τ :

Hτ�(τ ) := [− ∂2
τ + VQM (τ )

]
�(τ ) = ε�(τ ), (90)

with the quantum mechanical potential

VQM(τ ) = −∂2
�V (�; �0)

∣∣∣
�=�(τ )

= 1 − g2
∫

Dz

[ ∫
Dx φ′(gx

√
�0 − |�|

+ gz
√

|�|)
]2∣∣∣∣

�=�(τ )

, (91)

where �(τ ) ≡ �(τ ; �0) is the solution to Eq. (48).
Equation (90) always admits the eigenvalue ε = 0 with the

eigenfunction �0(τ ) = ∂τ�(τ ), as follows by differentiating
Eq. (48) with respect to τ . This corresponds to eigenvalue
� = 2δ, which is marginally positive for δ → 0+.

The structure of the other eigenvalues depends on the form
of the quantum potential which ultimately depends on the
solution �(τ ; �0); see Fig. 3.

1. Time-periodic solutions

For time-periodic solutions the quantum potential VQM(τ )
is periodic with the qualitative form shown in Fig. 4. The
eigenfunction �0(τ ) is also periodic and changes sign once
within one period T , vanishing at τ = 0, T . Thus, there is
exactly one periodic eigenfunction of Hτ with eigenvalue
ε0 < 0 which vanishes only at τ = 0, T . However, since
the potential is periodic there are bands of solutions where
ε0 is the bottom of the lowest band and ε = 0 the top of
the next band. Therefore, the eigenvalue � = ε + 2δ passes
continuously through zero whatever small δ is, and hence the
time-periodic solutions are unstable.
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FIG. 4. Qualitative behavior of the quantum potential Eq. (91)
for time-periodic solutions.

2. Time-decaying solution

If �(τ ) is the time-decaying solution, then VQM(τ ) has
the qualitative form shown in Fig. 5. Again the eigenfunction
�0(τ ) has exactly one node and from elementary quantum
mechanics we know that there is exactly one eigenfunction
of Hτ with no nodes and eigenvalue ε0 < 0. However, in this
case the eigenvalues of VQM(τ ) are isolated and � = ε0 + 2δ,
δ → 0+, cannot be zero and the solution is stable.

Summarizing, when g > 1 only the time-decaying solution
represents a stable attractor of the dynamics.

We conclude this section by noticing that the Lagrangian
Eq. (70) can be used also to evaluate correlation functions
of fluctuations around the mean field as well as response
functions. In the next section we are using it to calculate the
Lyapunov exponent of the time-decaying solution and prove
that it represents a chaotic state.

V. MAXIMUM LYAPUNOV EXPONENT

The decay of the time-dependent h-correlation function
�(τ ) suggests that the underlying neural dynamics is chaotic.
A chaotic dynamics exhibits an exponential sensitivity to ini-
tial conditions. A measure of the extent to which the dynamics
is chaotic is provided by the maximal Lyapunov exponent
which measures the sensitivity of the dynamics to small
changes in the initial condition. To evaluate this exponent,
we consider a small (infinitesimal) change in the state of the
system at time t0 by δhi (t0), i = 1, ..., N . After a time t the

FIG. 5. Qualitative behavior of the quantum potential Eq. (91)
for the time-decaying solution.

perturbation has grown as

|δh(t )| ∼ |δh(t0)| eλ(t−t0 ), (92)

where λ is the maximal Lyapunov exponent. Positive λ im-
plies that the dynamic is chaotic.

As long as the perturbation is small, the perturbed tra-
jectory hi (t ) + δhi (t ) is close to the unperturbed trajectory,
and the time evolution of δhi (t ) is ruled by the differential
equation,

∂t δhi (t ) = −δhi (t ) + g

N∑
j=1

Jij φ′[ghj (t )] δhj (t ), (93)

obtained linearizing the dynamical Eq. (1) about the unper-
turbed trajectory hi (t ). The solution to this linear equation
with initial condition δhi (t0) can be written as

δhi (t ) =
N∑

j=1

χij (t, t0) δhj (t0), (94)

where

χij (t, t ′) = δhi (t )/δbj (t ′), t � t ′, (95)

is the linear response of hi (t ) to an infinitesimal perturbation
in the form of a small external field δbj (t ′) added to the right-
hand side of the dynamical Eq. (1) at earlier time t ′. From the
multiplicative ergodic theorem of Oseledec, the Lyapunov of
the stationary dynamics is [32]

λ = lim
t−t0→∞

1

2(t − t0)
ln

⎡
⎣ 1

N

∑
ij

χij (t, t0)2

⎤
⎦, (96)

and it gives the dominant exponential growing rate of the
linear response as t − t0 � 1.

For finite systems the dynamics depends on the cou-
plings Jij . Hence, for finite N the exponent λ is a random
quantity. However, in the limit N → ∞ the dynamics con-
verges to a nonrandom behaviour, as described by the DMFT,∑

ij χij (t, t0)2/N becomes self-averaging and λ converges to
the nonrandom value:

λ = lim
t−t0→∞

1

2(t − t0)
ln

⎡
⎣ 1

N

∑
ij

χij (t, t0)2

⎤
⎦. (97)

The maximum Lyapunov exponent can be computed using
the DFT developed so far. However, to illustrate the power,
and limitations, of the intuitive construction of self-consistent
equations for fluctuations for N � 1, we first present the
intuitive calculation of λ. This uses some results discussed
in the previous sections supplemented by some reasonable
assumptions. The systematic approach using the DFT will be
present next.

A. Intuitive calculation of the Lyapunov exponent

The quantity
∑

ij χij (t, t0)2/N appearing in Eq. (97) can
be computed from the Green function

G(ta, tb, tc, td ) = 1

N

N∑
i,j

χij (ta, tc )χij (tb, td ), (98)
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by taking ta = tb = t and tc = td = t0. An equation for
G(ta, tb, tc, td ) can be constructed noticing that from the dy-
namical Eq. (1) it follows that the linear response χij (t, t ′)
obeys the differential equation(

1 + d

dt

)
χij (t, t ′) = g

N∑
k=1

Jikφ
′[ghk (t )] χkj (t, t ′)

+ δ(t − t ′) δKr
ij , (99)

where the Kronecker and Dirac δ functions denote a local
spatiotemporal perturbation. Thus, by multiplying Eq. (99) by
itself and taking the spatial average, we find(

1 + ∂

∂ta

)(
1 + ∂

∂tb

)
G(ta, tb, tc, td )

− ∂C(ta − tb )

∂�(ta − tb )
G(ta, tb, tc, td )

= δ(ta − tb − tc + td )δ(ta + tb − tc − td ). (100)

To arrive at this equation we have used the fact that under av-
eraging φ′(t )φ′(t ′) can be replaced by ∂C(t − t ′)/∂�(t − t ′)
and assumed that the cross term in squaring Eq. (99) vanishes
or, equivalently, vanishes in the large N limit due to the
summation in Eq. (98).

Defining the new time variables

s = ta + tb, s ′ = tc + td , (101)

τ = ta − tb, τ ′ = tc − td , (102)

Eq. (100) can be written as[
2∂s + ∂2

s + Hτ

]
G(s, s ′, τ, τ ′) = 2 δ(s − s ′) δ(τ − τ ′),

(103)

where Hτ = −∂2
τ − ∂2

�V (�; �0) is the quantum mechanical
Hamiltonian acting on variable τ introduced in Sec. IV C. The
solution to this equation can be written as

G(s, s ′, τ, τ ′) = 2
∑

n

gn(s, s ′) ϕn(τ ) ϕ∗
n (τ ′), (104)

where ϕn(τ ) is the set of orthonormal eigenfunctions of Hτ :
Hτ ϕn = εn ϕn, and the function g(s, s ′) is solution of the
differential equation:[

2∂s + ∂2
s + εn

]
gn(s, s ′) = δ(s − s ′). (105)

The sum in Eq. (104) is over all eigenfunctions of Hτ and may
include a continuum part of the spectrum of Hτ . Taking now
ta = tb = t and tc = td = t0 we finally arrive at

1

N

∑
ij

χij (t, t0)2 = 2
∑

n

gn(2t, 2t0) ϕn(0) ϕ∗
n (0). (106)

The maximum Lyapunov exponent is related to the asymptotic
behavior of gn(t, t ′) as t − t ′ → ∞. While this equation leads
to the correct λ, its derivation is clearly not systematic. It is
difficult to have control on the approximations and, moreover,
in more complex cases it can be difficult to be constructed.
Therefore, before discussing the Lyapunov exponent, we
show how equations like Eq. (103) can systematically derived
within the DFT.

B. DFT calculation of the Lyapunov exponent

Within the replica formalism introduced in Sec. IV A, it is
more convenient to calculate Lyapunov exponent via the spin
susceptibility,

χ̃ij (t, t0) = δSi (t )

δbj (t0)

∣∣∣∣
b=0

= gφ′(ghi ) χij (t, t0), (107)

the linear response of Si (t ) to an infinitesimal external field
δbj (t0) at the earlier time t0.

The Lyapunov exponent λ is related to the fluctuations∑
ij χ̃ij (t, t0)2/N of the spin susceptibility. Introducing two

identical replicas of the system these can be computed in using
the DFT as

1

N

∑
ij

(
δ〈Si (t )〉Jb

δbj (t0)

∣∣∣∣
b=0

)2

= 1

N

∑
ij

〈Si (t )iĥj (t0)〉J 〈Si (t )iĥj (t0)〉
J

= 1

N

∑
ij

〈
Sa

i Sb
i iĥc

j iĥ
d
j

〉
, (108)

with replica indexes α = γ �= β = δ, α and β being the
replica indices of a and b while γ and δ those of c and d,
and time arguments ta = tb = t and tc = td = t0.

Evaluating the average leads to

1

N

∑
ij

〈
Sa

i Sb
i iĥc

j iĥ
d
j

〉 = N
〈
CabiĈcd 〉− 1

2
δab,cd . (109)

Details can be found in Appendix D. This relation is an exact
relation valid for any N . In the limit N → ∞ the two-point
correlation function 〈CabiĈcd〉 reduces to the two-point corre-
lation function 〈QabiQ̂cd〉 of the Gaussian fluctuations about
the saddle point. This can be evaluated from the quadratic
action L2[Q̂,�; b̂, b] as

(1 + ∂a )(1 + ∂b )〈�abiQ̂cd〉 = 〈QabiQ̂cd〉, (110)

where, from Eq. (70), 〈�abiQ̂cd〉 satisfies the equation∑
e f

Aab;e f 〈�e f iQ̂cd〉 = 1

2N
δab,cd, (111)

with the operator A defined in Eq. (72).
For the particular choice of replica indexes γ = α and δ =

β but α �= β, and changing time variables as in Eqs. (101) and
(102), Eq. (110) becomes[

1 + 2∂s + ∂2
s − ∂2

τ

]〈�αβ (s, τ ) iQ̂αβ (s ′, τ ′)〉
= 〈Qαβ (s, τ ) iQ̂αβ (s ′, τ ′)〉. (112)

Similarly, working out the explicit form of A as done in
Sec. IV C, Eq. (111) becomes[

2∂s + ∂2
s + Hτ

]〈�αβ (s, τ ) iQ̂αβ (s ′, τ ′)〉

= 1

N
δ(s − s ′) δ(τ − τ ′), (113)

with the quantum mechanical Hamiltonian Hτ acting on the
(time) variable τ .
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The solution to Eq. (113) reads

〈�αβ (s, τ ) iQ̂αβ (s ′, τ ′)〉 = 1

N

∑
n

gn(s, s ′) ϕn(τ ) ϕ∗
n (τ ′),

(114)

where ϕn(τ ) are the orthonormal eigenfunctions of Hτ and
gn(s, s ′) is the solution of the differential Eq. (105). However,
subtracting Eq. (113) from Eq. (112) leads to

〈Qαβ (s, τ ) iQ̂αβ (s ′, τ ′)〉
= [1 − VQM(τ )]〈�αβ (s, τ ) iQ̂αβ (s ′, τ ′)〉

+ 1

N
δ(s − s ′) δ(τ − τ ′). (115)

Inserting these expressions into Eq. (109) gives

1

N

∑
ij

〈
Sα

i (ta )Sβ

i (tb )iĥα
j (tc )iĥβ

j (td )
〉

= [1 − VQM(τ )]
∑

n

gn(s, s ′) ϕn(τ ) ϕ∗
n (τ ′), (116)

and taking ta = tb = t and tc = td = t0 finally leads to

1

N

∑
ij

χ̃ij (t, t0)2 = [1 − VQM(0)]
∑

n

gn(2t, 2t0) ϕn(0) ϕ∗
n (0),

(117)

which is identical to Eq. (106) apart from a constant, related to
the transformation Eq. (107) between the two susceptibilities.

The solution to Eq. (105) which vanishes for s < s ′ is

gn(s, s ′) = θ (s − s ′)√
1 − εn

e−(s−s ′ ) sinh[
√

(1 − εn)(s − s ′)].

(118)

Thus, in the limit t − t0 � 1,

1

N

∑
ij

χ̃ij (t, t0)2 ∼ [1 − VQM(0)]
∑

n

ϕn(0) ϕ∗
n (0)√

1 − εn

e2λn(t−t0 ),

(119)

with λn = −1 + √
1 − εn, and hence the maximal Lyapunov

exponent is

λ = max
n

λn = −1 +
√

1 − ε0, (120)

where ε0 is the lowest eigenvalue of Hτ .
For g < 1 we have seen that only the time-independent so-

lution � = 0 exists. In this case VQM = 1 − g2, see Eq. (91),
therefore ε0 = 1 − g2 and λ = −1 + g < 0, showing that
� = 0 is a stable fix point for g < 1. When g > 1 the stable
solution is the time-dependent decaying solution which leads
to a negative ε0. The Lyapunov exponent is then positive and
the solution is chaotic.

VI. EXPLICIT EXPRESSIONS FOR λ

IN TIME-DEPENDENT STATE

To find the expression of λ we first have to solve the DMFT
Eq. (48) and then find the lowest eigenvalue of the associated

quantum mechanical problem:

Hτ�(τ ) := [−∂2
τ − ∂2

�V (�; �0)
]
�(τ ) = ε�(τ ). (121)

This is not an easy task for an arbitrary g > 1. However, in
the limit g → 1+ and g → ∞ the leading behavior of λ(g)
can be determined, as shown below.

A. Limit g → 1+

The energy Eq. (51) of the decaying DMFT is Ec = 0.
The solution to the DMFT Eq. (48) can then be written in the
implicit form as

τ = −
∫ �

�0

d�√−2V (�; �0)
. (122)

In the limit g → 1+ the equal-time field correlation �0

vanishes, thus |�| � �0 � 1 for all t as σ = g − 1 � 1.
Expanding the potential V (�; �0) in powers of � and �0 to
the leading nontrivial (fourth) order gives

V (�; �0) ∼ (−1 + g2 − 2g4�0 + 5g6�2
0

)�2

2
+ g6 �4

6
.

(123)

The value of �0 is found from the condition V (�0; �0) = 0,
and reads �0 ∼ σ − 4σ 2/3 + O(σ 3) as σ → 0+. Thus,

V (�; �0) ∼ −σ 2

6
�2 + 1

6
�4, σ → 0+. (124)

Substituting this expression into Eq. (122) leads to

τ ∼
√

3

σ

∫ �/σ

�0/σ

dx

x
√

1 − x2
, σ → 0+, (125)

which to the leading term in σ gives

�(τ ) = σ cosh−1

(
στ√

3

)
+ O(σ 3/2), σ → 0+. (126)

Note that as σ → 0+ the amplitude of �(τ ) vanishes linearly
with σ while the characteristic decaying time diverges as
σ−1. Thus, as g → 1+ the dynamics slows down and the
chaotic attractor goes continuously to the fix point � = 0 at
the critical point g = 1.

Evaluating the quantum potential VQM(τ ) =
−∂2

�V (�; �0)|�=�(τ ) relative to the solution Eq. (126)
the associated quantum mechanical problem becomes[

∂2
τ − 2σ 2

[
cosh−1

(
στ√

3

)]2
]
ϕn =

(
εn − σ 2

3

)
ϕn. (127)

The solution to this differential equation are the generalized
Legendre functions with eigenvalues εn = −σ 2[(2 − n)2 −
1]/3; see, e.g., Ref. [33]. Thus, ε0 = −σ 2 and

λ = −1 +
√

1 − ε0 ∼ 1

2
(g − 1)2, g → 1+. (128)

Notice that near the onset of chaos the rate λ−1 of the
exponential divergence of close-by trajectories scales as the
square of the rates of the decay of memory along the chaotic
trajectory.
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B. Limit g → ∞
The quantum potential behaves as VQM(τ ) ∼ −g for τ =

O(1/g), while it converges to a finite values independent of
the value of g as τ → ±∞. Thus, in the limit g � 1 the
potential VQM(τ ) becomes a very deep and narrow potential
well close to τ = 0; see Fig. 5. The ground state eigenfunction
ϕ0(τ ) is localized in a region of width O(1/g) � 1 at τ = 0
and decays exponentially fast outside this region.

In this scenario the leading behavior of the lowest eigen-
value ε0 of Ht as g → ∞ can be obtained replacing the
original quantum mechanical problem by[−∂2

τ − V0 δ(t )
]
ϕ0(τ ) = ε0 ϕ0(τ ), (129)

where

−V0 =
∫ +�

−�

dτ VQM(τ ) = 2
∫ +�

0
dτ VQM(τ ), (130)

because the quantum potential is an even function of τ . The
parameter � = O(1) is an arbitrary cut-off whose precise
value is irrelevant as long as we are interested in the leading
behavior as g � 1. The solution to this equation is ϕ0(τ ) ∝
exp(−√−ε0|τ |), with ε0 = −(V0/2)2.

To compute V0 we introduce a point a/g, where a is an
arbitrary positive constant, and split the integration as

−V0

2
=
∫ a/g

0
dτ VQM(τ ) +

∫ +�

a/g

dτ VQM(τ ). (131)

The first integral is O(1) as g � 1 because VQM(τ ) = O(g)
is this region. Thus, the leading behavior of V0 as g � 1 is
fully determined by the behavior of VQM(τ ) as τ = O(1/g).

Expanding �(τ ) about τ = 0 we find to the leading order
in τ :

�(τ ) = �0 + (�0 − 1)
τ 2

2
+ O(τ 3), τ � 1. (132)

To obtain this expression we have used the initial condition
∂τ�(τ )|τ=0 = 0, the DMFT Eq. (48) to evaluate ∂2

τ �(τ )|τ=0

and

∂�V (�; �0)|�=�0 = − �0 + [φ2]�0 ∼ −�0 + 1 + O(1/g),

g � 1. (133)

The value of �0 is again fixed by the requirement
V (�0; �0) = 0, which as g → ∞ gives �0 = 2(1 − 2/π ) to
the leading order.

Using Eq. (132) leads the following asymptotic expansion
of VQM(τ ) valid for g � 1 and τ to O(1/g):

VQM(τ ) ∼ −C

τ
+ 1 + O(1/g2), (134)

where C = 2
π
/
√

�0(1 − �0). Thus, from Eq. (131) it follows

−V0

2
∼ C ln q + O(1), g � 1, (135)

so that

λ = −1 +
√

1 − ε0 ∼ C ln g, g � 1. (136)

Notice that while the rate of exponential divergence of
close-by trajectories diverges in the large g limit, the decay

rate of memory along a trajectory remains finite. Indeed, in
the limit g → ∞ the DMFT Eq. (48) becomes

∂2
τ � = � − 2

π
sin−1

(
�

�0

)
∼

��1

(
1 − 2

π�0

)
�, (137)

so that �(τ ) decay exponentially for τ � 1 with a character-
istic time

√
1 − 2/π�0, cf. Ref. [34].

VII. DISCUSSION

In this paper we have described a systematic approach to
the dynamics of randomly connected neural networks based
on the Path Integral Formalism originally introduced to study
the stochastic dynamics in statistical mechanics. The problem
of studying the dynamical behavior of the networks is for-
mulated in terms of a dynamical field theory. For the sake of
simplicity, we focused on a class of network models with sim-
ple architecture and odd-symmetric sigmoidal nonlinearity, as
in model Eqs. (1) and (4). Using the path integral formalism,
we have shown how the DMF equations can be derived as
a saddle point of the path integrals, which becomes exact in
the large N limit. Next, we studied the fluctuations around
the saddle point and derived expressions for the multiple
response and correlation functions. This fluctuation analysis
yielded stability conditions for the stability of the DMF so-
lutions. Finally, using the well-known relations between the
maximal Lyapunov exponent of a dynamical system to an
appropriate linear response function, we derived equations for
the Lyapunov exponent of the random network. Interestingly,
in this simple network, the DMF equations for the order
parameter bear a mechanical analog of a conservative New-
tonian dynamics, whereas the susceptibility associated with
the Lyapunov exponent have a quantum mechanical analog
in the form of one dimensional (which is time) Schrodinger
equation. In the simplest network architectures and dynamics,
such as model Eqs. (1)–(4), the DMF equations can be derived
by an intuitive construction of the self-consistent equation
governing the fluctuations in the system, using Gaussianity
ansatz of the fluctuating synaptic fields. Likewise, heuristic
assumptions about the statistics of response functions can
be used to calculate the maximal Lyapunov exponent, as we
have shown here. However, this heuristic approach suffers
from considerable limitations. First, it is hard to control
the underlying ad-hoc assumptions. Notably, the extension
to more complex connectivity or dynamics may be difficult
to derive by heuristic methods, as for example the case of
connections which are not fully asymmetric, or dynamics
involving non-Gaussian stochasticity (e.g., Poisson neurons).
An additional difficulty is deriving stability conditions for the
DMF solutions. As shown in Ref. [2], even the derivation of
stability conditions for fixed points in random networks with
more complex architecture may be quite challenging. Finally,
in principle, the path integral method can be used to study sys-
tematic perturbations analysis to a finite-dimensional systems
as well as systematic finite-size corrections. Such applications
of the path integral methods have been extensively developed
for nonrandom stochastic dynamics in statistical mechanics,
as well as in spin glasses. It will be very interesting to explore
these directions in deterministic dynamics of random neural
networks.
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APPENDIX A: CHAOTIC BEHAVIOR IN THE ISING LIMIT

In the Ising limit g → ∞ the spin (or field) autocorrelation
function decays exponentially in time with a finite characteris-
tic time τa [34]. Thus, if we discretize the time in step δt ∼ τa

the evolution of the model is described by the N -dimensional
map,

hi (n + 1) = (1 − δt ) hi (n) + δt

N∑
j=1

JijS[hj (n)]. (A1)

The maximal Lyapunov exponent λ is obtained from the time-
evolution of the tangent vector [32,35,36],

ξ (n + 1) = A(n)ξ (n), (A2)

Aij (n) = (1 − δt ) δij + gδtJij φ′[ghj (n)]. (A3)

Since δt ∼ τa , we can assume that hi (n) and hi (n′) are
uncorrelated if n �= n′. Moreover, if g � 1, then the leading
contribution to A(n) comes from |hj | < 1/g. Thus, we can
replace in Eq. (A3) φ′ by a constant, so that ξ (n) is given by a
product of independent N × N random matrices. In the limit
N � 1 the diagonal part of A(n) does not contribute and one
has [37,38]

λ ∼
{

ln Aij , if Aij �= 0,

ln A2
ij , if Aij = 0,

(A4)

where (·) means averaging over the different realizations of
Jij ’s. Therefore,

λ ∼ ln g, g � 1, (A5)

and the dynamics is chaotic.

APPENDIX B: 〈SS〉 CORRELATION FUNCTION

The average 〈F[ha]〉h of any functional of ha
i over the

solutions of the dynamical Eq. (5) can be written as a path
integral over all trajectories {ĥi , hi}t∈[t0,t] weighted with the
dynamical action S[ĥ, h] (11). Thus,

N∑
i=1

〈
Si (ta )Si (tb )

〉
J

=
∫ ∏

i

Dĥi Dhi e
−S[ĥ,h]

N∑
i=1

Si (ta )Si (tb ).

(B1)

Averaging over the couplings Jij , and introducing the aux-
iliary fields Cab and Ĉab, a straightforward calculation
leads to

N∑
i=1

〈Si (ta )Si (tb )〉J

=
∫

DĈ DC e−N
∑

(ab) iĈabCab

×
∫ ∏

i

Dĥi Dhi e
−S[ĥi ,hi ;Ĉ,C]

N∑
i=1

Si (ta )Si (tb ), (B2)

where S[ĥi , hi ; Ĉ, C] is defined in Eq. (19). Using the identity

e−∑i S[ĥi ,hi ;Ĉ,C]
N∑

i=1

Si (ta )Si (tb ) = δ

δiĈab
e−∑i S[ĥi ,hi ;Ĉ,C],

(B3)

and Eqs. (17) and (18), the average Eq. (B2) can be written as,

N∑
i=1

〈Si (ta )Si (tb )〉J

=
∫

DĈ DC e− N
2

∑
ab iĈabCab δ

δiĈab
e−NW [Ĉ,C;0,0],

=
∫

DĈ DC

[
δ

δiĈab
+ NCab

]
e−NL[Ĉ,C;0,0]. (B4)

The first terms in the square brackets leads to surface terms
and gives no contribution. Thus,

1

N

N∑
i=1

〈Si (ta )Si (tb )〉J =
∫

DĈ DC e−NL[Ĉ,C;0,0] Cab

= 〈Cab〉. (B5)

APPENDIX C: AVERAGES IN THE DMFT

This Appendix shows how the basic relations used in
the main text to express averages over the solution of the
DMFT are obtained. These are then used to derive the explicit
expression of the potential V (�; �0) and its derivatives.

Given two generic functions φ(x) and ψ (x), and their
Fourier representation

φ(x) =
∫ +∞

−∞

dk

2π
φ̃(k) e−ikx,

ψ (x) =
∫ +∞

−∞

dk

2π
ψ̃ (k) e−ikx, (C1)

then

〈φ(ha ) ψ (hb )〉η =
∫

dk

2π

dk′

2π
φ̃(k) ψ̃ (k′)

〈
e−ikha−ik′hb 〉

η

=
∫

dk

2π

dk′

2π
φ̃(k) ψ̃ (k′) exp

[
− 1

2
(�aak2 + �bbk′2) − �abkk′

]

=
∫

dk

2π

dk′

2π
φ̃(k) ψ̃ (k′) exp

[
− �0

2
(k2 + k′2) − �kk′

]
. (C2)
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In the last line we use �0 = �aa = �bb and � = �ab for a �=
b. The integral is well defined because |�| � �0. Taking the
derivative with respect to �ab brings down a factor −kk′, thus

∂

∂�ab
〈φ(ha ) ψ (hb )〉η = 〈φ′(ha ) ψ ′(hb )〉η, (C3)

while the derivative with respect to �aa and �bb gives

∂

∂�aa
〈φ(ha ) ψ (hb )〉η = 〈φ′′(ha ) ψ (hb )〉η, (C4)

∂

∂�bb
〈φ(ha ) ψ (hb )〉η = 〈φ(ha ) ψ ′′(hb )〉η. (C5)

The “prime” stands for the derivative of the function with
respect its argument, e.g., φ′(x) = (d/dx)φ(x).

Using the above relations it follows that

∂V (�; �0)

∂�
= −� + C(�; �0)

= −� + 〈φ(gha )φ(ghb )〉η

= ∂

∂�

[
−�2

2
+ 1

g2
〈�(gha ) �(ghb )〉η

]
, (C6)

where �(x) = ∫ x

0 dy φ(y) is the primitive of the gain function
φ(x). Integrating now over � leads to

V (�; �0) = −�2

2
+ 1

g2
〈�(gha ) �(ghb )〉η + Constant,

(C7)

while taking successive derivatives,

∂nV (�; �0)

∂�n
= − ∂n

∂�n

(
�2

2

)

+ g2n−2〈φ(n−1)(gha ) φ(n−1)(ghb )〉η, (C8)

where φ(n)(x) = (d/dx)nφ(x).
The expressions in the main text are obtained by

substituting

φ̃(k) =
∫ +∞

−∞
dx φ(x) eikx,

ψ̃ (k) =
∫ +∞

−∞
dx ψ (x) eikx, (C9)

into Eq. (C2) and performing the resulting Gaussian integrals
over the wave number:

〈φ(ha ) ψ (hb )〉η =
∫

dx dy

2π

√
�2

0 − �2
φ(x) ψ (y)

× exp

{
− 1

2
(
�2

0 − �2
) [�0(x2 + y2)

− 2� xy]

}
. (C10)

Introducing an auxiliary Gaussian variable z the average can
be further written as the integral over independent Gaussian

variables:

〈φ(ha ) ψ (hb )〉η =
∫

Dz

∫
Dx φ(ξ )

∫
Dy ψ (ε�ζ )

=
∫

Dz

∫
Dx φ(ε�ξ )

∫
Dy ψ (ζ ),

(C11)

where ε� = sign(�), ξ = √
�0 − |�| x + √|�| z,

ζ = √
�0 − |�| y + √|�| z, and Dz = dz exp(−z2/2)/

√
2π

is the Gaussian measure. Notice that if the functions φ(x) and
ψ (x) have a definite parity then the average vanishes unless
they have the same parity. Taking ψ (x) = φ(x) we recover
Eq. (40) of C(�,�0) given in the main text.

If the gain function is odd, as the case discussed in the main
text, then from the above expressions it easily follows that

∂n

∂�n
V (�; �0)

∣∣∣∣
�=0

= 0, n = odd. (C12)

This also implies that �(x) is even, and hence the potential
V (�; �0) reads

V (�; �0) = −�2

2
+ 1

g2

∫
Dz

[∫
Dx �(gξ )

]2

+ Constant.

(C13)

APPENDIX D: PROOF OF EQ. (109)

The four-point correlation in Eq. (109) can be evaluated
following the same procedure as in Appendix B using the
identity

e−S[Ĉ,C,ĥ,h]
∑
i,j

Sa
i Sb

i iĥc
j iĥ

d
j = δ

δiĈab

δ

δCcd
e−S[Ĉ,C,ĥ,h].

(D1)

Then,

1

N

∑
i,j

〈
Sa

i Sb
i iĥc

j iĥ
d
j

〉 = 1

N

∫
DĈ DC e− N

2

∑
ab iĈabCab

× δ

δiĈab

δ

δCcd
e−NW [Ĉ,C,0,0]. (D2)

Integrating by parts, since the surface terms do not contribute,

1

N

∑
i,j

〈
Sa

i Sb
i iĥc

j iĥ
d
j

〉

=
∫

DĈ DC Cab e− N
2

∑
ab iĈabCab δ

δCcd
e−NW (Ĉ,C,0,0)

=
∫

DĈ DC

[
NCab iĈcd − 1

2
δab,cd,

]
e−NL[Ĉ,C,0,0]

= N〈Cab iĈcd〉 − 1

2
δab,cd, (D3)

where δab,cd = δacδbd + δadδbc is the symmetrized δ and
δab = δKr

αβ δ(ta − tb ).
Alternatively, one may notice that∫

DĈ DC
δ

δiĈab

δ

δCcd
e−NL[Ĉ,C;0,0] = 0, (D4)
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because this is a surface term and vanishes. However, from the form Eq. (58) of L[Ĉ, C; 0, 0] we obtain∫
DĈ DC

δ

δiĈab

δ

δCcd
e−NL[Ĉ,C;0,0] =

∫
DĈ DC

δ

δiĈab

⎡
⎣∑

j

iĥc
j iĥ

d
j − NiĈab

⎤
⎦ e−NL[Ĉ,C;0,0]

=
∫

DĈ DC

⎡
⎣∑

j

iĥc
j iĥ

d
j − NiĈcd

⎤
⎦
⎡
⎣∑

j

Sa
j S

b
j − NCab

⎤
⎦ e−NL[Ĉ,C;0,0] − N

2
δab,cd .

Thus, since cross terms vanishes,
N

2
δab,cd =

∑
ij

〈
Sa

j S
b
j iĥ

c
j iĥ

d
j

〉− N2〈Cab iĈcd〉, (D5)

i.e.,
1

N

∑
i,j

〈
Sa

i Sb
i iĥc

j iĥ
d
j

〉 = N〈Cab iĈcd〉 − 1

2
δab,cd . (D6)
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