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Jamming and percolation properties of random sequential adsorption with relaxation
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The random sequential adsorption (RSA) model is a classical model in statistical physics for adsorption on
two-dimensional surfaces. Objects are deposited sequentially at random and adsorb irreversibly on the landing
site, provided that they do not overlap any previously adsorbed object. The kinetics of adsorption ceases when no
more objects can be adsorbed (jamming state). Here, we investigate the role of post-relaxation on the jamming
state and percolation properties of RSA of dimers on a two-dimensional lattice. We consider that, if the deposited
dimer partially overlaps with a previously adsorbed one, a sequence of dimer displacements may occur to
accommodate the new dimer. The introduction of this simple relaxation dynamics leads to a more dense jamming
state than the one obtained with RSA without relaxation. We also consider the anisotropic case, where one dimer
orientation is favored over the other, finding a non-monotonic dependence of the jamming coverage on the
strength of anisotropy. We find that the density of adsorbed dimers at which percolation occurs is reduced with
relaxation, but the value depends on the strength of anisotropy.
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I. INTRODUCTION

Adsorption of geometrical objects on a substrate has been
a problem of great interest due to its applicability in a variety
of fields ranging from photonic crystals to quantum dots
including, e.g., surface coating and encapsulation [1–8]. The-
oretically, the model of random sequential adsorption (RSA)
has been studied intensively over the last several decades in
the context of irreversible processes of adsorption on surfaces
[9–11]. Flory introduced the RSA model in a one-dimensional
chain to study the interaction between blocks along a linear
polymer chain [12]. This model attracted great attention from
the scientific community and was later interpreted as a prob-
lem of critical phenomena by Rényi [13] and Feder [14].

In RSA, the objects are adsorbed sequentially and irre-
versibly at randomly selected vacant positions on a surface.
Selection of occupied positions are discarded due to the
excluded volume interaction with the previously adsorbed
objects. These objects are assumed to be inherently immobile,
i.e., they never move out from their positions after adsorption.
The interesting feature of this model is the existence of a non-
trivial jamming state where no more objects can be adsorbed
[5,15,16].

Subsequently, a number of variants of the RSA model have
been studied to explain the observations of various natural and
experimental scenarios [5,17–22]. For example, the model of
accelerated RSA was introduced to describe the mechanism of
precursor mediated chemisorption [18]. In this model, if the
deposited object lands on top of the already adsorbed objects
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it starts diffusing till it finds a vacant gap where it is adsorbed
irreversibly [19].

The configuration of objects at any arbitrary intermedi-
ate stage of the RSA process corresponds to a disordered
system and the study of their percolation properties [23–37]
is of interest. To describe briefly, in percolation the sites
(bonds) of a regular lattice are occupied with probability
p or kept vacant with probability (1 − p). These occupied
sites (bonds) form clusters of different sizes through their
neighboring connections. A continuous transition between the
ordered and disordered phases is observed at a critical value of
p = pc. For p > pc, there exists global connectivity through
macroscopic cluster that scales linearly with the volume of
the system. Numerically, this usually is the one that spans
between two opposite sides of the lattice [24]. To date, the
best value of pc for the site percolation on the square lattice
is 0.59274605079210(2) [38] and exactly 1/2 for the bond
percolation.

In this paper, we introduce a variant of RSA where the
objects (dimers) are adsorbed irreversibly onto the lattice sites
after going through a well-defined relaxation dynamics. We
consider a very simple relaxation dynamics where, during
the relaxation, a series of dimer displacements may occur to
accommodate the new dimer. The effect of such a relaxation
dynamics and anisotropy in the orientation of the adsorbed
dimers on the jamming state and percolation transition are
investigated here using numerical simulations.

II. MODEL

Dimers are adsorbed sequentially at random positions onto
an initially empty square lattice of size L × L with periodic
boundary condition. Each dimer occupies two lattice sites.
To attempt the adsorption of a dimer, its orientation (either
vertical or horizontal) is first selected randomly with equal
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probability for both orientations. A pair of neighboring sites
are then selected accordingly at random and the dimer is
deposited on them.

Depending on the occupation state of the pair of sites, there
are three possible outputs. First, if the pair of sites are both
occupied by previously adsorbed dimers, adsorption fails.
Second, if both sites are vacant, the adsorption is successful
and the dimer is irreversibly adsorbed on them. Third, if only
one of the sites is vacant, a sequence of dimer displacements
is triggered, described as follows. When the deposited dimer
(A) overlaps with a previously adsorbed dimer (B) at one end,
the dimer B is displaced by a unit distance along its other end,
keeping A fixed. The displaced dimer may partially overlap
with another dimer (C) leading to similar displacement of C.
The system of adsorbed dimers thus relaxes and eventually
reaches a stable state when no more overlapping of dimers
exists. This concerted move completes the “successful” ad-
sorption of dimer A through a relaxation process. Here one
assumes the existence of two infinitely separated time scales,
as we consider that the relaxation process is always faster
than the inter-arrival time of deposited dimers. The trail of
dimer displacements originated by depositing A constitute a
path which is referred as the “relaxation path”. It has been
observed that often a relaxation path forms a closed loop. In
such a case, the deposition attempt fails and the deposited
dimer is discarded. The sequence of dimer adsorption attempts
is continued till a jamming state is reached, where no more
dimers can be adsorbed.

The coverage of the surface is defined as p = 2n/L2,
where n is the number of adsorbed dimers. An occupied site
can never become vacant, since there are no desorption events
during the relaxation. When p is small, adsorption of dimers
is mainly uncorrelated and post-relaxation is negligible. For
intermediate values of p, successful adsorptions are often as-
sociated with relaxation. In this case, the newly occupied pair
of sites are positioned at the two ends of the relaxation path
and are separated by a distance larger than unity. Clearly, these
two sites are perimeter sites. Given one of the sites, the other
can be determined from the overall configuration since the
orientations of the adsorbed dimers belonging to the cluster
are already known. Therefore, this relaxation is somewhat
different from the stochastic diffusional process. Evidently,
the relaxation process introduces spatial correlations between
occupied sites. Such a source of correlation is absent in the
model of RSA without relaxation. By further increasing the
value of p, the clusters of occupied sites start merging leading
to a percolation transition. The percolation threshold pc is
defined as the minimum value of p for which a giant cluster
emerges that spans the entire surface, touching opposite ends
of the lattice. This percolation transition is observed before
the jamming transition.

III. RESULTS

A. Jamming state and relaxation time

The averaged fraction of the occupied sites at the jamming
state defines the jamming coverage pj . Figure 1(a) depicts a
typical jamming state configuration of RSA model with relax-
ation and we compare it with one obtained for RSA without

(a) (b)

FIG. 1. Typical jamming state configuration of the dimers on a
64 × 64 square lattice for the RSA model (a) with and (b) without re-
laxation. The dimers oriented in the horizontal and vertical directions
have been painted in red and blue colors, respectively. The single
vacant sites are represented by white color.

relaxation, Fig. 1(b). The relaxation dynamics promotes the
reorganization and packing of the dimers more densely so
that the jamming state coverage is larger than that of the RSA
without relaxation. Numerically, we have estimated the jam-
ming state coverage pj (L) and its standard deviation �(L) =
(〈p2

j 〉 − 〈pj 〉2)1/2 for different system sizes L = 256, 512,
1024, 2048, and 4096. We observe no significant finite-size
effects for pj (L) and that its value is 0.99049(3) compared to
0.90682(3) for RSA without relaxation. The value of �(L) in-
deed varies significantly with L. Fitting to a power-law decay:
�(L) ∼ L−1/νj we have estimated νj = 1.002(3), consistent
with a linear decay with 1/L. A similar analysis predicts
νj ≈ 1 for the RSA without relaxation.

The duration of the relaxation process triggered by the
deposition of a dimer is termed as the “relaxation time”
T and it corresponds to the number of successive dimer
displacements before a successful adsorption. This relaxation
time has been measured for every dimer deposited from the
beginning till the jamming state and its distribution D(T ) is
plotted for four different system sizes in Fig. 2. Clearly, the tail
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FIG. 2. Plot of the binned data of the relaxation time distribution
D(T ) for the entire process of adsorption on a log-lin scale using
the lattice sizes L = 256 (black), 512 (red), 1024 (green), and 2048
(blue). The data points are averages over samples ranging from 2 ×
106 for L = 256 to 12000 for L = 2048.
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FIG. 3. Plot of the percolation threshold pc(L) against L−1/ν

with 1/ν = 0.756(6) for the lattice sizes L = 512, 1024, 2048, and
4096. The asymptotic value of the percolation threshold in the limit
L → ∞ has been estimated to be 0.5140(1). The data points are
averages over samples ranging from 9 × 105 for L = 512 to 8900
for L = 4096.

of the distribution decays exponentially in time suggesting a
characteristic time of ≈ 11.7, in units of dimer displacements.

B. Percolation transition

As the surface coverage p increases, the size of the largest
cluster grows monotonically. Numerically, the precise value of
the percolation threshold pα

c for a specific run α is determined
using the bisection method [39] described as follows. We
select a pair of initial values of p, namely, ph and pl such
that there exists a global connectivity through the spanning
cluster for p = ph but not for p = pl. Starting from an empty
lattice the adsorption is continued till the density of occupied
sites p = (ph + pl )/2 is reached. Here, connectivity between
the top and the bottom sides of the lattice is checked using
the burning algorithm [24] while imposing periodic boundary
condition along the horizontal direction. If the opposite sides
of the lattice are connected by the same cluster, ph is reduced
to p, otherwise pl is raised to p. In this way, the interval is
iteratively bisected until ph − pl < 2/L2, when (ph + pl )/2
defines the value of pα

c . The entire procedure is then repeated
for a large number of independent runs and the individual
percolation thresholds are averaged to obtain the estimated
percolation threshold pc(L) = 〈pα

c (L)〉 for the surface of size
L. These values are then extrapolated to obtain the asymptotic
value pc in the limit L → ∞ using

pc(L) = pc − AL−1/ν, (1)

where ν is known as the correlation length exponent in per-
colation theory and its value is 4/3 for random percolation
in two dimensions [24,40]. The obtained values of pc(L) are
plotted against L−1/ν in Fig. 3. Tuning the value of 1/ν,
the data are found to be fit best by a straight line (using
the least square fit of a straight line with minimal error) for
1/ν = 0.756(6). By extrapolating to the thermodynamic limit
(L → ∞), we obtain pc = 0.5140(1). This value is much
smaller than the value of pc = 0.5618(1) for the RSA without
relaxation [41,42].

Qualitatively, one can try to understand the reduction in
the value of percolation threshold in the following way. Let us
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FIG. 4. For L = 1024, the jamming state coverage pj (pv ) has
been plotted against the selection probability pv of the vertically
oriented dimers. The data points are averages over (at least) 105

samples.

consider a situation where a single vacant site P separates two
distinct clusters connected to the top and bottom boundaries.
In RSA without relaxation, it needs a dimer to be adsorbed
precisely on this vacant site to connect the two. With relax-
ation, a dimer may be deposited at many other locations, yet
due to the relaxation process another dimer may be displaced
to the site P and connect the two clusters.

To investigate the critical properties of the percolation
transition of RSA with relaxation, several critical exponents
have been estimated. Using extensive numerical simulations,
at p = pc, we have determined the fractal dimension of the
largest cluster df = 1.892(2), the exponent γ /ν = 1.790(2)
associated with the second moment of the cluster size
distribution and the fractal dimension of the shortest path
dl = 1.1307(5). These values are consistent, within error
bars, with the values known for random percolation in two
dimensions, namely, df = 91/48, γ /ν = 43/24 [24] and
dl = 1.13077(2) [43].

C. Effect of anisotropy on jamming and percolation

So far, we have considered that the orientation of the de-
positing dimers is drawn at random with equal probability for
horizontally and vertically oriented dimers. We now consider
the anisotropic case, where these probabilities are different.
More specifically, when the nth dimer is deposited, its orien-
tation is randomly selected with probability pv or 1 − pv for
vertical and horizontal, respectively. If the deposition attempt
fails, another dimer is deposited with the same orientation but
at another location (selected at random) until the adsorption is
successful.

For pv > 1/2, we observe that the clusters are elongated
along the vertical direction. For this regime, the jamming state
is defined as a configuration where no more vertically oriented
dimers can be adsorbed. It turned out that the anisotropy af-
fects significantly the value of the jamming state coverage, as
shown in Fig. 4, with pj = 0.99049 for pv = 1/2, a minimum
value of 0.98605 for pv ≈ 0.71, and 1.0 for pv = 1. This
variation does not show any appreciable finite-size effects. We
observed also that the exponent νj that characterizes the fluc-
tuation of the jamming state coverage remains consistently the
same (within error bars) for all 1/2 � pv < 1. It may be noted
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FIG. 5. Plot of the deviation of the percolation threshold
pc(pv ) − pc(1/2) against pv − 1/2, pv being the selection prob-
ability of the vertical dimers, on a log-log scale with pc(1/2) =
0.5140(1) and 0.5619(1) for the RSA with (open circles) and without
(filled circles) relaxation, respectively. For each value of pv , the
pc(pv ) in the limit of L → ∞ has been obtained using the values
of pc(pv, L) for L = 256, 512, 1024, 2048, and 4096 and an extrap-
olation given by Eq. (1). The slopes of fitted straight lines have been
measured as 2.05(6) and 2.07(7), respectively. The data points are
averages over samples ranging from (at least) 1.6 × 106 for L = 256
to 5000 for L = 4096.

that for the RSA without relaxation, pj (pv ) monotonically
decreases from 0.9068 for pv = 1/2 to 1 − e−2 ≈ 0.8647 for
pv = 1 [44].

The effect of anisotropy on the percolation threshold has
also been studied. For a given value of the anisotropy pa-
rameter pv , the asymptotic value of the percolation threshold
pc(pv ) has been determined using the extrapolation method
described before. The deviation of pc(pv ) − pc(1/2) from
the isotropic case has been observed to follow a power law
against pv − 1/2 (Fig. 5). On a double logarithmic scale the
data points fit with an exponent = 2.06(6). Therefore, we
conjecture that pc(pv ) − pc(1/2) ∼ (pv − 1/2)2. Our simu-
lation results also predict that this behavior holds for the RSA
without relaxation (Fig. 5). In Table I, the values of pc(pv )
for a few values of pv are listed for RSA with and without
relaxation.

TABLE I. Our numerical estimates of the percolation threshold
pc(pv ) in the thermodynamic limit L → ∞, for different values of
the selection probability pv of vertically oriented dimers for RSA
with and without relaxation. Every reported value has an error bar
not more than 2 in the last digit.

pc(pv )

pv RSA with relaxation RSA without relaxation

0.50 0.5140 0.5619
0.58 0.5150 0.5624
0.66 0.5181 0.5640
0.74 0.5232 0.5668
0.82 0.5306 0.5708
0.90 0.5407 0.5764
0.98 0.5539 0.5840
1.00 0.5578 0.5862

The measured values of the critical exponents ν, γ, df

and dl in the entire range of pv for RSA with and without
relaxation have been found to be consistent within error bars
with their respective values for random percolation in two
dimensions.

D. Percolation through the sites occupied by similarly oriented
dimers in the jamming state

Let us now distinguish the clusters of adsorbed dimers by
the orientation of the corresponding dimers in the jamming
state. The size s of a cluster is the number of sites occupied
by the cluster. It is well known that for RSA without relaxation
with pv = 1/2, the largest among all clusters does not form a
spanning path between two opposite boundaries of the lattice
[45]. As our model with relaxation dynamics enables more
surface coverage, we thus address the question on whether
such a spanning cluster appears with relaxation. Identifying
different clusters using the burning algorithm [24] and using
many independent runs, we find that the cluster size distri-
bution D(s) follows an exponential distribution [Fig. 6(a)].
Further, the average size of the largest cluster 〈smax(pv, L)〉 is
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FIG. 6. Right at the jamming state for the anisotropy parameter
pv = 1/2, (a) the binned data for cluster size distribution D(s ) of
the vertically oriented dimers has been exhibited on a semilog scale
for L = 256 (black), 512 (red), 1024 (green), 2048 (blue), and 4096
(magenta); (b) the average size of the largest cluster 〈smax(pv, L)〉 for
the same values of L has been plotted against L on a lin-log scale.
The data points fit considerably well with a straight line indicating
the logarithmic growth of the largest cluster. The results are averages
over samples ranging from 6.1 × 106 for L = 256 to 6300 for L =
4096.
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FIG. 7. (a) For L = 256 (black), 512 (red), and 1024 (blue) the
percolation probability �(pv, L) has been plotted with the probabil-
ity of selection pv of the vertically oriented dimers. (b) Scaling plot
of the same data as in (a). A plot of �(pv, L) against (pv − pvc )L1/ν

using pvc = 0.5577(5) and 1/ν = 0.754(5) exhibits a nice data
collapse. The data points are averages over samples ranging from
(at least) 2.4 × 106 for L = 256 to 105 for L = 1024.

observed to grow logarithmically with the size of the system
[Fig. 6(b)]. These results indicate clearly that for pv = 1/2,
there exists no such spanning cluster and therefore, the system
remains in the sub-critical phase of the percolation transition,
when clusters are distinguished by the orientation of the
dimers in the jamming state. However, 〈smax(pv, L)〉 for the
RSA with relaxation is higher in comparison to the RSA
without relaxation and we see that the ratio between them
asymptotically approaches to ≈2.23.

By increasing the value of pv from 1/2, the 〈smax(pv, L)〉
monotonically increases and at a critical value of pv = pvc,
in the limit L → ∞, the largest cluster first spans the system
and percolation of equal-oriented dimers occurs. In numerical
simulations, imposing periodic boundary conditions along the
horizontal direction, global connectivity along the vertical
direction is checked through the neighboring sites occupied
by vertically oriented dimers.

Tuning the value of pv and averaging over different un-
correlated jamming state configurations for each pv , we plot
the percolation probability �(pv, L) in Fig. 7(a) for three
different values of the surface sizes. The curves become more
and more sharp as L is increased. All these curves intersect
approximately at the same point [pvc,�(pvc )] with pvc ≈
0.5577 and �(pvc ) ≈ 0.61, which is slightly lower than the
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FIG. 8. (a) For L = 256 (black), 512 (red), and 1024 (blue) the
scaled second moment M ′

2(pv, L)/L2 has been plotted against the
selection probability pv of the vertically oriented dimers. (b) Finite-
size scaling of the same data as in (a). Plot of the rescaled second mo-
ment M ′

2(pv, L)L−γ /ν with the scaling variable (pv − pvc )L1/ν using
pvc = 0.5577(5), 1/ν = 0.754(5), and γ /ν = 1.795(5) exhibits a
nice data collapse. The data points are averages over samples ranging
from (at least) 2.4 × 106 for L = 256 to 105 for L = 1024.

value 0.636454001 [46] obtained using Cardy’s formula for
cylindrical geometry [47]. Figure 7(b) exhibits a scaling plot
of �(pv, L) against (pv − pvc )L1/ν . The best data collapse
for all three curves corresponds to pvc = 0.5577(5) and
1/ν = 0.754(5), implying a finite-size scaling form

�(pv, L) = F[(pv − pvc )L1/ν]. (2)

Similarly, scaling analyses have been performed for the or-
der parameter �(pv, L) = 〈smax(pv, L)〉/L2 and susceptibil-
ity, defined by the fluctuation of the order parameter as
χ (pv, L) = 〈�(pv, L)2〉 − 〈�(pv, L)〉2 (not shown here). We
also find that the associated scaling exponents, β and γ follow
within error bars the hyperscaling relation 2β/ν + γ /ν = 2 in
two dimensions [24].

The second moment of the cluster size distribution M ′
2

is defined as M ′
2 = ∑

k s2
k /L

2 − 〈smax〉/L2, where sk is the
size of the cluster k. In Fig. 8(a), the behavior of M ′

2(pv, L)
has been shown for same three system sizes. By suitably
scaling the abscissa and ordinate when the same data are
re-plotted, an excellent data collapse is observed using pvc =
0.5577(5), 1/ν = 0.754(5) and γ /ν = 1.795(5), indicating a
scaling form

M ′
2(pv, L) = Lγ/νG[(pv − pvc )L1/ν]. (3)
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The same set of scaling analyses have been performed for
RSA without relaxation, and we obtain pvc = 0.6056(5).

IV. FINAL REMARKS

We introduce a model of adsorption of dimers on a
two-dimensional surface, with relaxation. The dimers are
sequentially and irreversibly adsorbed on a square lattice at
random locations by following a set of predefined conditions.
Most importantly, a relaxation dynamics is involved with the
adsorption process. When a newly deposited dimer partially
overlaps with a previously adsorbed dimer, a sequence of
dimer displacements may occur to accommodate the new
dimer. Every adsorption followed by the relaxation dynamics
includes a pair of new occupied sites separated by a distance
larger than unity and therefore, setting in spatial correlations.
The effect of the relaxation dynamics and anisotropy in the
orientation of the adsorbed dimers on the jamming state and
percolation transition have been investigated in detail.

The percolation transition for the isotropic case occurs
at a critical density of occupied sites pc = 0.5140(1). The
increase of anisotropy, pv , of the occurrence of vertical dimers
results in an increase of the percolation threshold. In com-
parison to the random sequential adsorption (RSA) model
without relaxation, the percolation threshold in the entire
range of pv is much lower for our model with relaxation.

Using extensive numerical simulations and measuring differ-
ent critical exponents associated with the transition lead us to
conclude that, despite the developed spatial correlations, the
percolation transition always fall into the random percolation
universality class.

The jamming state coverage is higher for RSA with relax-
ation than without relaxation. A non-monotonic variation of
jamming state coverage with the strength of anisotropy pv has
been observed for RSA with relaxation. Further, separating
out the vertically oriented dimers from the horizontal ones in
the jamming state, a percolation transition through the cluster
of sites occupied by vertically oriented dimers is observed
when the control parameter pv is tuned to the critical value
pvc = 0.5577(5). Also here, the directionality does not affect
the critical (universal) properties of the percolation transition.

Future studies might consider the effect of the size of
the objects, size dispersion and the dimensionality on the
jamming and percolation transitions.
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