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Percolation on an isotropically directed lattice
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We investigate percolation on a randomly directed lattice, an intermediate between standard percolation and
directed percolation, focusing on the isotropic case in which bonds on opposite directions occur with the same
probability. We derive exact results for the percolation threshold on planar lattices, and we present a conjecture
for the value of the percolation-threshold in any lattice. We also identify presumably universal critical exponents,
including a fractal dimension, associated with the strongly connected components both for planar and cubic
lattices. These critical exponents are different from those associated either with standard percolation or with
directed percolation.
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I. INTRODUCTION

In a seminal paper published some 60 years ago, Broadbent
and Hammersley [1] introduced the percolation model, in a
very general fashion, as consisting of a number of sites inter-
connected by one or two directed bonds that could transmit
information in opposite directions. However, over the years
most of the attention has been focused on the limiting cases
of standard percolation, in which bonds in both directions
are either present or absent simultaneously, and of directed
percolation, in which only bonds in a preferred direction
are allowed. While standard percolation represents one of
the simplest models for investigating critical phenomena in
equilibrium statistical physics [2], directed percolation has be-
come a paradigmatic model for investigating nonequilibrium
phase transitions [3]. Moreover, it has been shown that the
isotropic case, in which bonds in both opposite directions
are present with the same probability, is a very particular
case, with any amount of anisotropy driving the system into
the same universality class as that of directed percolation
[10,13,33].

The case of percolation on isotropically directed lattices
has received much less attention. This modified percolation
model should be particularly relevant to the understanding of
a large number of physical systems. For instance, in the same
way that standard percolation was shown to be related to other
models in statistical mechanics [4], one could expect percola-
tion on isotropically directed lattices to be related to statis-
tical systems with nonsymmetric interactions [5]. It has been
shown that identifying the connected component systems with
nonsymmetric interactions can elucidate questions regarding
the controllability [6] and observability [7] of these systems.
Percolation with directed bonds has also been investigated in
the field of traffic dynamics [8]. Redner [9–11] formulated the
problem of percolation on isotropically directed lattices as a
random insulator-resistor-diode circuit model, in which single
directed bonds represent diodes, allowing current to flow in

only one direction, while double bonds in opposite directions
represent resistors and absent bonds represent insulators.

Focusing on hypercubic lattices, he employed an approx-
imate real-space renormalization-group treatment that pro-
duces fixed points associated with both standard percolation
(in which only resistors and insulators are allowed) and
directed percolation (in which only insulators and diodes
conducting in a single allowed direction are present), as well
as other “mixed” fixed points controlling lines of critical
points, for cases in which all three types of circuit elements are
present. The crossover from isotropic to directed percolation
when there is a slight preference for one direction was studied
via computer simulations [12] and renormalized field theory
[13,14]. More recently, the same crossover problem was inde-
pendently investigated on the square and on the simple-cubic
lattices by Zhou et al. [15], who dubbed their model “biased
directed percolation.”

We are interested here in percolation of isotropically di-
rected bonds in which bonds in opposite directions are present
with the same probability, possibly along with vacancies and
undirected bonds. It has been conjectured that this model is
in the same universality class as standard percolation [13,15],
however these works have focused on the sets of nodes that
can be reached from a given point. In fact, when considering
directed bonds, it is possible that site A can be reached from
site B, while site B cannot be reached from site A, which
therefore calls for a redefinition of a cluster. Percolation of
directed bonds was investigated within the context of complex
networks [8,16–22], where the concept of strongly connected
components (SCCs) has been adopted [23], defined as those
sets of points that can be mutually reached following strictly
the bond directions. A critical state of the model can be
characterized as the point where a giant strongly connected
component (GSCC) is formed [16]. Alternatively, one can
define a giant cluster formed by all the sites that can be
reached from a given site following bond directions (GOUT)
[16], and determine the critical point where such a cluster is
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FIG. 1. A square lattice where each pair of nearest neighbors is
connected by a directed bond at the critical point [15]. The color code
is as follows: Black continous lines indicates nodes and bonds com-
prising the largest strongly connected component (GSCC), that is,
the largest set of nodes that can be mutally reached from each other.
Dotted orange lines indicates nodes and bonds outside the GSCC
that can be reached from nodes in the GSCC. Dashed purple lines
indicates nodes and bonds outside the GSCC from where nodes in the
GSCC can be reached. The largest outgoing (incoming) component
[GOUT (GIN)] includes all nodes of the GSCC augmented by the
orange (purple) nodes, respectively. Light grey indicates nodes and
bonds outside both GIN and GOUT. Bonds exiting the enclosing box
represent connections through the periodic boundary condition.

formed. Alternatively, one can define a giant cluster formed
by all the sites that can be reached from a given site following
bond directions [16], and determine the critical point where
such a cluster is formed. There is no logical need for these
two points to be the same, leaving the possibility of two
distinct phase transitions existing in this model [17]. However,
both for regular lattices, as we will show here, and for some
complex networks [16], these two objects form at the same
critical point. In Fig. 1 we show an example of a square lattice
at the critical point.

This paper is organized as follows. In Sec. II we define the
model and present calculations of percolation thresholds. In
Sec. III we discuss some exact results on a hierarchical lattice
that shed light on the critical state of this model. Our computer
simulation results are presented in Sec. IV, while Sec. V is
dedicated to a concluding discussion.

II. DEFINITION OF THE MODEL AND CALCULATION
OF PERCOLATION THRESHOLDS

We work on d-dimensional regular lattices. All sites are
assumed to be present, but there are a few possibilities for
the connectivity between nearest neighbors. With probability
p0 they may not be connected (indicating a vacancy). With
probability p1 they may be connected by a directed bond
(with equal probabilities for either direction). Finally, with
probability p2 neighbors may be connected by an undirected

bond (or equivalently by two having opposite directions). Of
course, we must fulfill p0 + p1 + p2 = 1.

A simple heuristic argument yields an expression for the
critical threshold for percolation of isotropically directed
bonds. Starting from a given site i on a very large lattice,
the probability pnn that a particular nearest-neighbor site
can be reached from i is given by the probability that both
directed bonds are present between these neighbors (p2) plus
the probability that there is only one directed bond and
that it is oriented in the appropriate direction ( 1

2p1). As the
distribution of orientations is on average isotropic, the critical
threshold must depend only on pnn. In fact, using the Leath-
Alexandrowicz method [24,25], it can be shown [15] that the
clusters of sites reached from a seed site in percolation of
directed bonds with a given pnn are identically distributed to
the clusters of standard percolation with an occupation psp,
as long as psp = pnn. Therefore, we conclude that the critical
percolation probabilities of our model should fulfill

p2 + 1
2p1 = pc, (1)

in which pc is the bond-percolation threshold for standard
percolation in the lattice.

We can use duality arguments to show that Eq. (1) is indeed
exact for the square, triangular, and honeycomb lattices. A
duality transformation for percolation of directed bonds on
planar lattices was previously introduced [10] to derive the
percolation threshold on the square lattice. The transformation
states that every time a directed bond is present in the original
lattice, the directed bond in the dual lattice that crosses the
original bond forming an angle of π

2 clockwise will be absent.
With the opposite also holding, namely every time a directed
bond is absent in the original lattice, in the dual lattice the
bond forming an angle π

2 clockwise will be present. Of course,
an undirected bond (or alternatively two bonds in opposite di-
rections) in the original lattice corresponds to a vacancy in the
dual lattice, and vice versa. Figure 2(a) shows a configuration
of percolation of directed bonds on the triangular lattice and
the corresponding dual honeycomb lattice.

Denoting by q0, q1, and q2 the respective probabilities that
there is a vacancy, a single directed bond, or an undirected
bond between nearest neighbors on the dual lattice, the trans-
formation allows us to write

q0 = p2, q1 = p1, q2 = p0. (2)

From these results and the normalization conditions

p0 + p1 + p2 = q0 + q1 + q2 = 1, (3)

we immediately obtain
1
2 (p2 + q2) + 1

2p1 = 1
2 ,

which is valid for any choice of the probabilities. As already
noticed by Redner [10], for the square lattice, which is its
own dual, we must have p2 = q2 at the percolation threshold,
yielding

p2 + 1
2p1 = 1

2 , (4)

in agreement with Eq. (1). Here, of course, we assume that
there is only one critical point.

The triangular and the honeycomb lattices are related by
the duality transformation, as illustrated in Fig. 2(a), and
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FIG. 2. (a) Illustration of a configuration of percolation of di-
rected bonds on the triangular (white sites, lighter purple arrows) and
honeycomb (black sites, darker blue arrows) lattices, related by the
dual transformation defined in the text. (b) The sites involved in the
star-triangle transformation discussed in the text.

we now use a star-triangle transformation [27] to calculate
their bond-percolation thresholds. Based on enumerating the
configurations of bonds connecting the sites identified in
Fig. 2(b), we can calculate the probabilities P and Q of
connections between the sites on the star and on the triangle,
respectively. For the probability that site A is connected only
to site B or only to site C, we obtain

PAB = 1
2p1p

2
2 + 1

2p2
1p2 + 1

8p3
1 + p0p

2
2 + p0p1p2 + 1

4p0p
2
1,

QAB = 1
4q2

1q2 + 1
8q3

1 + q0q1q2 + 1
2q0q

2
1 + q2

0q2 + 1
2q2

0q1,

with PAC = PAB and QAC = QAB. For the probability that site
A is connected to both sites B and C, we have

PABC = p3
2 + 3

2p1p
2
2 + 3

4p2
1p2 + 1

8p3
1,

QABC = q3
2 + 3q1q

2
2 + 9

4q2
1q2 + 1

2q3
1 + 3q0q

2
2

+ 3q0q1q2 + 3
4q0q

2
1 .

At the percolation threshold, we must have PAB = QAB and
PABC = QABC, and taking into account the normalization
conditions in Eq. (3), we obtain

p2 + 1

2
p1 = 1 − 2 sin

π

18
= p(honeycomb)

c (5)

and

q2 + 1

2
q1 = 2 sin

π

18
= p(triangular)

c , (6)

again in agreement with Eq. (1).
All these predictions show that at least one of the critical

percolation points of isotropically directed bonds, when a
giant out-going component (GOUT) is formed, can be simply
related to the model of standard percolation by Eq. (1). Our
numerical results indicate that the critical point defined by
the formation of a GSCC coincides with the formation of
a GOUT. However, as we show in the following section,
compared to the GOUT, the GSCC has a different set of
critical exponents.

III. CRITICAL STATE OF THE PERCOLATION
OF ISOTROPICALLY DIRECTED BONDS

Redner [9,10] and Dorogovtsev [26] solved exactly per-
colation of directed bonds on a hierarchical lattice obtained
by iterating the process shown in Fig. 3. Having the proba-
bilities p0, p1, and p2 at a given generation of the process,
renormalization-group calculations allow one to determine the
probabilities p′

0, p′
1, and p′

2 of the next generation. The scale-
invariant states are the fixed points of the renormalization

FIG. 3. Phase diagram for percolation of isotropically directed
bonds on the hierarchical lattice obtained as the limit of the process
displayed. Redner [9,10] and Dorogovtsev [26] used the renormal-
ization group to solve exactly this model on the shown hierarchical
lattice. The directions of the lines indicate the renormalization-group
flux. The critical line p2 + p1/2 = 1/2 coincides with the critical
line for percolation of isotropically directed bonds on the square
lattice. The renormalization group shows that any point on the critical
line, besides U = (0, 1/2), which corresponds to the critical point of
standard percolation, will display the same scale-invariant behavior
as a point S located along the critical line, suggesting the possibility
that percolation of isotropically directed bonds may be in a different
universality class from standard percolation.
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group. As shown in Fig. 3, two of those points represent
the trivial cases of a fully disconnected lattice p0 = 1 and a
fully connected lattice p2 = 1. Another fixed point is p1 = 0,
with p2 = 1/2 representing the critical scale-invariant state
for standard percolation in this hierarchical lattice, while
the remaining one, p1 = 0.491 42 with p2 = 0.254 29, is the
critical scale-invariant state for percolation of isotropically
directed bonds in this hierarchical lattice. Surprisingly, this hi-
erarchical lattice has similarities with the square lattice [9,10],
as it can predict exactly not only the critical point of standard
percolation, but also the whole critical line p2 + p1/2 = 1/2.
With the exception of the critical state of standard percolation,
all the other points along the critical line converge through
the renormalization process toward the scale-invariant state of
percolation of isotropically directed bonds.

Although these renormalization-group calculations do not
yield precise predictions for the correlation-length exponent ν

in two dimensions, they give the same value ν = ln2(13/8) ≈
1.428 for both standard percolation as well as percolation of
isotropically directed bonds [9,10]. Moreover, there are two
order-parameter exponents β1 = 0.1342 and β2 = 0.1550 that
are related to clusters that percolate in a single direction or in
both directions, respectively [9,10]. Again here the method
does not obtain exactly the value of the exponent β for two
dimensions, presented in the next section, but it shows that β1

is the same value as the one obtained for standard percolation
in this hierarchical lattice, while β2 is shown to be a different
exponent. These two different exponents indicate, at least
for this hierarchical lattice, that percolation on isotropically
directed bonds is tricritical.

In the next section, we show that simulation results for the
square, honeycomb, and triangular lattices confirm Eqs. (4)–
(6). Furthermore, we show that indeed the fractal dimensions
of the two forms of critical giant clusters, GSCC and GOUT,
are different from each other, but seemingly universal among
the different lattices.

IV. SIMULATION RESULTS

We start by describing our results for two dimensions,
while the 3D case will be discussed subsequently. We sim-

ulated bidimensional lattices with linear size ranging from
L = 32 to 8192, taking averages over a number of samples
ranging from 38 400 (for L = 32) to 150 (for L = 8192),
halving the number of samples each time that the linear size
was doubled. Periodic boundary conditions were employed.

Besides checking the predictions for the percolation thresh-
old, our goal is to obtain the values of the critical exponents
associated with (i) clusters that can be traversed in one direc-
tion and (ii) clusters that can be traversed in both directions. In
the language of complex networks, these clusters correspond
in case (i) to giant out-components (GOUT) and in case
(ii) to the giant strongly connected component (GSCC). For
each sample, we identified all the SCCs by using Tarjan’s
algorithm [23], and we calculated their size distribution. At
the percolation threshold, we also looked at the GOUT, which
corresponds to the GSCC augmented by sites outside of it that
can be reached from those in the GSCC. By symmetry, the
statistical properties of the GOUT must be the same as those
of the giant in-component (GIN), defined as the set of sites not
in the GSCC from which we can reach the GSCC, augmented
by sites in the GSCC itself. Figure 1 shows an example of a
square lattice with L = 16, indicating the GSCC, the GOUT,
and the GIN. Some of the results presented next were obtained
with the help of the GRAPH TOOL software library [28].

We define the order parameter here as the fraction of sites
belonging to the largest SCC. For an infinite planar lattice, this
order parameter should behave as

lim
L→∞

〈S〉
L2

∼ (p − pc )βscc , (7)

where 〈S〉 is the average size of the largest SCC, p is a
parameter that controls the distance to the critical point pc,
and βscc is expected to be a universal critical exponent. A
finite-size scaling ansatz for the order parameter is

〈S〉
L2

∼ L−βscc/νf1((p − pc )L1/ν ), (8)

in which ν is the correlation-length critical exponent and
f1(x) is a scaling function. From this ansatz, we see that
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FIG. 4. These results correspond to a honeycomb lattice where each possible directed bond is occupied with probability p, with opposite
bonds between the same pair of sites being present with probability p2, as parametrized in Eq. (13). (a) The order parameter for percolation of
isotropically directed bonds defined as the fraction of nodes in the largest strongly connected component (GSCC). (b) At the critical point, the
fraction occupied by the GSCC decays as a power law, yielding the exponent βscc/ν. (c) Using the value obtained for βscc/ν, and assuming that
the exponent ν for percolation of isotropically directed bonds is the same as in standard percolation, ν = 4/3, we can collapse all the curves
near the critical point. Here, and in all other plots, error bars are smaller than the symbols.
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FIG. 5. These results correspond to a honeycomb lattice where each possible directed bond is occupied with probability p, with opposite
bonds between the same pair of sites being present with probability p2, as parametrized in Eq. (13). (a) The second moment of the distribution
of sizes of SCCs, excluding the largest SCC. (b) At the critical point, the second moment grows as a power law, yielding the exponent γscc/ν.
(c) Using the value obtained for γscc/ν, and assuming ν = 4/3, we can collapse all the curves near the critical point.

precisely at the critical point we should have

〈S〉
L2

∼ L−βscc/ν . (9)

Similarly, we can look at the second moment of the SCC
size distribution (excluding the GSCC), which, for an infinite
lattice, should behave as

lim
L→∞

〈S2〉 ∼ (p − pc )−γscc , (10)

with γscc being another universal critical exponent. The corre-
sponding finite-size scaling ansatz is

〈S2〉 ∼ Lγscc/νf2((p − pc )L1/ν ), (11)

where f2(x) is also a scaling function, and precisely at the
critical point we should have

〈S2〉 ∼ Lγscc/ν . (12)

To obtain values for these critical exponents, we have to
introduce a parametrization of the probabilities p0, p1, and p2.
We performed two different sets of simulations, with different
parametrizations. In the first set of numerical experiments,
bonds were occupied with probabilities parametrized as

p0 = (1 − p)2, p1 = 2p(1 − p), p2 = p2, (13)

with 0 � p � 1, so that, according to Eq. (1), we have p = pc

at the percolation threshold. This corresponds to randomly
assigning one directed bond with probability p on each
possible direction of each pair of nearest neighbors; two
opposite directed bonds between the same pair correspond to
an undirected bond.

Figure 4 shows results for the SCC order parameter for
honeycomb lattices with sizes ranging from L = 32 to 1024.
As depicted in Fig. 4(a), the threshold probability is consistent
with the result p 	 0.653 predicted by Eq. (5). Figure 4(b)
plots the SCC order parameter at the critical point, which is
expected to scale as in Eq. (9), a scaling form from which
we extract βscc/ν = 0.196 ± 0.005. Finally, Fig. 4(c) shows a
rescaling of the finite-size results according to Eq. (8). It is a
well known fact [29] that percolation has a single length scale
given by the correlation length ξ that diverges at the critical
point as ξ ∼ N−ν . Since there is no reason to expect that
percolation on isotropically directed lattices introduces other

length scales, it is reasonable to assume that the exponent ν

controlling the scale divergence of SCCs near the critical point
is the same as in traditional percolation. This conjecture is
supported by the renormalization-group predictions of Redner
[9] and of Janssen and Stenull [13,15] for the square lattice.
Therefore, the best data collapse is obtained assuming for
the correlation-length critical exponent the same value as in
standard percolation, ν = 4

3 , which leads to

βscc = 0.264 ± 0.008.

For the second moment of the SCC size distribution, Fig. 5
shows results for honeycomb lattices. As shown in Fig. 5(a),
the value of the percolation threshold is compatible with the
prediction of Eq. (5), while from Fig. 5(b) and Eq. (12) we
obtain γscc/ν = 1.61 ± 0.05. Again, the best data collapse of
Eq. (11), shown in Fig. 5(c), is obtained by using ν = 4

3 ,
yielding

γscc = 2.15 ± 0.07.

Table I summarizes the critical exponents obtained under
the first parametrization for the triangular, square, and honey-
comb lattices. We mention that the values obtained for βscc

and γscc are all compatible with values extracted from the
simulation results by fitting the data for the largest linear size
with the scaling predictions in Eqs. (7) and (10). We also
measured the mass of the GSCC, denoted by Mscc, which is
predicted to follow

Mscc ∼ Ldscc ,

TABLE I. Values of the critical exponents related to the SCCs,
as obtained for the triangular, square, and hexagonal lattices, for
the cases in which each possible directed bond is occupied with
probability p, with opposite bonds between the same pair of sites
being present with probability p2, as parametrized in Eq. (13).
Numbers in parentheses indicate the estimated error in the last digit.

Lattice βscc γscc dscc

Triangular 0.264(8) 2.15(7) 1.804(5)
Square 0.261(5) 2.13(3) 1.801(8)
Hexagonal 0.27(1) 2.15(7) 1.80(1)
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TABLE II. Values of the critical exponents related to the SCCs,
as obtained for the triangular, square, and hexagonal lattices for
the case in which undirected bonds appear only when all possi-
ble vacancies have already been occupied by a directed bond, as
parametrized by Eq. (14). Numbers in parentheses again indicate the
estimated error in the last digit. Within the error bars, these values
are compatible with those of Table I.

Lattice βscc γscc dscc τscc

Triangular 0.26(1) 2.16(8) 1.805(8) 2.07(9)
Square 0.26(1) 2.17(4) 1.802(8) 2.11(8)
Hexagonal 0.27(1) 2.16(7) 1.80(1) 2.12(8)

with a fractal dimension

dscc = 2 − βscc/ν.

This is confirmed by the measurements of dscc reported in the
last column of Table I.

In the second set of simulations, bonds were occupied with
probabilities

p0 = max (0, 1 − 2p), p1 = 2 min (p, 1 − p),

p2 = max (0, 2p − 1), (14)

again with 0 � p � 1. These probabilities mean that for p �
1
2 there are no undirected bonds, while for p � 1

2 there are no
vacancies. Exactly at p = 1

2 there is a randomly directed bond
between each pair of nearest neighbors. Again, according
to Eq. (1), we have p = pc at the percolation threshold.
The results for the GSCC properties measured under this
second parametrization are compatible with those obtained
under the first parametrization. As shown in Table II, the
critical exponents βscc and γscc and the fractal dimension dscc

are all compatible with the values obtained under the first
parametrization.

Under the second parametrization, besides measuring the
mass of the GSCC associated with the fractal dimension dscc,
we also measured the mass of the GOUT, denoted by Mout,
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ln L
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ln
S

dout = 1.895 ± 0.005

dscc = 1.802 ± 0.008

FIG. 6. The fractal dimensions for the GSCC (squares) and the
GOUT (circles). These results concern square lattices where all
nearest neighbors are connected by a directed bond. This corresponds
to the critical condition when using the parametrization given by
Eq. (14). While the fractal dimension of GOUT is compatible with
that of standard percolation clusters, the GSCCs have a smaller
fractal dimension.
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p(

S
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c
) τscc = 2.11 ± 0.01

FIG. 7. Scaling behavior of the SCC size distribution p(S ) for a
square lattice with L = 8196, under the second parametrization.

which scales as

Mout ∼ Ldout ,

where dout is a fractal dimension. We expect dscc � dout, as the
GSCC is a subset of the GOUT. Indeed, as shown in Fig. 6, for
the square lattice at the critical point, the fractal dimension dout

of the GOUT is compatible with the exact fractal dimension
df = 91/48 [29] of the critical percolating cluster in standard
percolation, while the value for dscc is about 10% smaller.

Finally, we looked at the exponents τscc and σscc associated
with the SCC size distribution, expected to scale as

p(S) ∼ S−τsccf3[(p − pc )Sσscc ], (15)

where f3(x) is yet another scaling function. The Fisher expo-
nent τscc associated with the scaling behavior of the SCC size
distribution p(S) at the critical point is defined as

p(S) ∼ S−τscc .

Figure 7 shows p(S) as a function of S for a square lattice with
linear size L = 8196 at the percolation threshold. The value
τscc = 2.11 ± 0.08 obtained is compatible with the scaling
relation τscc = 2 + βscc/(βscc + γscc). Values of τscc for the
three lattices are reported in the last column of Table II. On the

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0

(p − pc)S
σscc

−6

−4

−2

0

2

4

6

ln
(p

(S
)S

τ s
c
c
)

FIG. 8. Scaling behavior of the SCC size distribution p(S ) for
a square lattice with L = 4096, under the second parametrization.
The results are for p = pc + δ with δ = −0.01 (black squares),
δ = −0.005 (red circles), δ = −0.0025 (green diamonds), δ =
−0.000 75 (blue cross), δ = 0.000 75 (violet ×), δ = 0.0025 (lime
up-triangles), δ = 0.005 (black right triangles), and δ = 0.01 (red
stars).
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FIG. 9. These results correspond to a cubic lattice where each possible directed bond is occupied with probability p, with opposite bonds
between the same pair of sites being present with probability p2, as parametrized in Eq. (13). (a) The order parameter for percolation of
isotropically directed bonds, corresponding to the fraction occupied by the largest SCC. (b) At the critical point, the fraction occupied by
the largest cluster decays as a power law, yielding the exponent βscc/ν. The red dotted line corresponds to the form L−2β/ν , with β = 0.418
and ν = 0.876 being the exponents for standard percolation in three dimensions. Given the error bar of the points and the possibility of
finite-size deviations, our results allow for the possibility that in three dimensions, βscc = 2β. (c) Using the value obtained for βscc/ν = 0.87,
and assuming that the exponent ν = 0.876 as in standard percolation, we can collapse all the curves near the critical point.

other hand, Fig. 8 shows rescaled plots of p(S) for a triangular
lattice with L = 1000, exhibiting good data collapse based on
Eq. (15) with τscc = 2.11 and σscc = 0.414, in agreement with
the scaling relation σscc = 1/(βscc + γscc).

Finally, we have also performed simulations on a cubic
lattice under the first parametrization, Eq. (13). We simulated
lattices with linear size going from L = 16 to 128, taking
averages over a number of samples going from 9600 (L = 16)
to 1000 (L = 128). Figure 9 shows results concerning the
order parameter, while Fig. 10 shows results concerning the
second moment of the distribution of sizes of SCCs. As in
the case of two dimensions, the critical point has the same
value as for standard percolation, pc = 0.2488 [30,31]. At the
critical point, both quantities scale as power laws, yielding the
exponents βscc/ν and γscc/ν. Assuming that the exponent ν is
the same as in standard percolation, ν = 0.876 [32,33], we
have βscc = 0.76(1) and γscc = 3.6(1). As we show in Figs. 9
and 10, the curves for different system sizes can be collapsed
using these values for the exponents. Figure 11 shows the
distribution of sizes of SCCs for cubic lattices with L = 128.
The value obtained for the Fisher exponent τscc = 2.40 ± 0.01
is, within error bars, consistent with the hyperscaling relation
τscc = 1 + 3/dscc, with dscc = 3 − βscc/ν ≈ 2.13 ± 0.01.

V. DISCUSSION

We investigated the percolation of isotropically directed
bonds, and we presented a conjectured expression for the
location of the percolation threshold, which we showed to be
exact for the square, triangular, and honeycomb lattices.

We have also performed extensive computer simulations
and investigated the percolation properties of the strongly con-
nected components (SCC), the out-components (OUT), and
the in-components (IN). Contrary to what happens in directed
scale-free networks [17], on the regular lattices considered in
this paper the percolation threshold is the same for SCCs,
OUTs, and INs. This is related to the fact that, once we
are slightly above pc, there is an infinite number of paths
(in the thermodynamic limit) connecting the opposite sides
of the lattice. We also obtain an apparently universal order-
parameter exponent for the SCCs that is larger (or, equiva-
lently, a fractal dimension which is smaller) than the one for
both the OUTs and the INs. Moreover, the exponents obtained
for the giant out-components are the same as those obtained
for standard percolation [15]. This is in agreement with an
approximate real-space renormalization-group prediction [9]
that the order-parameter exponents are different for clusters
that can be traversed only in one direction and for clusters
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FIG. 10. These results correspond to a cubic lattice where each possible directed bond is occupied with probability p, with opposite bonds
between the same pair of sites being present with probability p2, as parametrized in Eq. (13). (a) The second moment of the distribution of
sizes of SCCs, excluding the largest SCC. (b) At the critical point, the second moment grows as a power law, yielding the exponent γscc/ν. (c)
Using the value obtained for γscc/ν, and assuming ν = 0.876 as in standard percolation, we can collapse all the curves near the critical point.
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FIG. 11. Scaling behavior of the SCC size distribution p(S ) for
a cubic lattice with L = 128, under the second parametrization.

that can be traversed in both directions. Also, simulations in
a cubic lattice allowed us to confirm that the critical point
for this case also coincides with that of standard percolation.
Finite-size scaling for this case shows that the exponent ν is
the same as that of standard percolation, while the exponents
βscc and γscc for the giant strongly connected component in
percolation of isotropically directed bonds differ from those
of standard percolation.

Note that the value of the order-parameter exponent ob-
tained for the SCCs from Figs. 4(b) and 5(b) is also dis-
tinct from the value of the GOUT order-parameter exponent
obtained in Refs. [12,13] as a function of the anisotropy
introduced by allowing a preferred direction. In that case, the
exponent is simply given by the product of a crossover expo-
nent and the usual GOUT exponent of standard percolation.

The correlation function gives the probability that two sites
separated by a distance r belong to the same cluster and, at the
critical transition, decay for large distances r as g(r ) ∼ r−2β/ν

[34,35]. In the case of percolation of directed bonds, different
correlation functions can be defined. Here we define gout(r )
as the probability that a given node is in the out-component
of another node separated by a distance r . Alternatively,
we define gscc(r ) as the probability that two sites separated
by a distance r belong to the same SCC. Assuming that

finding a path in one direction or the other are uncorrelated
events, we have gscc(r ) = gout(r ) × gin(r ). Since the in (out)
components are in the same universality class as standard
percolation, we have that, considering uncorrelated events, the
value of βscc should be twice that for standard percolation. If
in fact these events are correlated, one could expect βscc/2
to be smaller than the exponent β of standard percolation.
In standard percolation, a cutting bond [36] is a bond that
if removed results in the loss of connection in a cluster. In
our extension, a directed bond can be a cutting bond in each
direction or possible in both directions; we call this latter
case a double cutting bond. The presence of double cutting
bonds should lead to correlations between the connectivity
events in the opposite directions. Note that the same event
(including or removing this cutting bond) would determine
the presence or not of a path from one side to the other in
both directions. In standard percolation, the density of cutting
bonds decays as L1/ν−d [36]. Considering that being a cutting
bond in each direction are independent events, the density of
these double cutting bonds should be the square of the density
of cutting bonds in standard percolation L2/ν−2d . Since this
density decreases faster than L−d , the number of such double
cutting bonds should be zero in large enough lattice sizes,
indicating that no correlation should be observed. In the
case of two dimensions, this relation is true within the error
bars, βscc = 0.27 ± 0.01 ≈ 2 × 5/36 = 0.2777. In the case of
three dimensions, the obtained value for βscc = 0.76 ± 0.08
is smaller than expected, as the value of standard percolation
is β = 0.418 ± 0.001 [32]. However, this deviation is still
within the error bars and may also arise from finite-size
effects.

ACKNOWLEDGMENTS

We thank the Brazilian agencies CNPq, CAPES, FUN-
CAP, NAP-FCx, the National Institute of Science and Tech-
nology for Complex Fluids (INCT-FCx), and the National
Institute of Science and Technology for Complex Systems
(INCT-SC) in Brazil for financial support.

[1] S. R. Broadbent and J. M. Hammersley, Math. Proc. Cambridge
Philos. Soc. 53, 629 (1957).

[2] D. Stauffer and A. Aharony, Introduction To Percolation Theory
(Taylor & Francis, London, 1994).

[3] J. Marro and R. Dickman, Nonequilibrium Phase Transitions
in Lattice Models (Cambridge University Press, Cambridge,
2005).

[4] C. Fortuin and P. Kasteleyn, Physica 57, 536 (1972).
[5] F. W. S. Lima, J. Phys.: Conf. Ser. 246, 012033 (2010).
[6] Y.-Y. Liu and A.-L. Barabási, Rev. Mod. Phys. 88, 035006

(2016).
[7] M. Santolini and A.-L. Barabási, Proc. Natl. Acad. Sci. USA

27, E6375 (2018).
[8] D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H. E. Stanley, and S.

Havlin, Proc. Natl. Acad. Sci. USA 112, 669 (2015).
[9] S. Redner, J. Phys. A 14, L349 (1981).

[10] S. Redner, Phys. Rev. B 25, 3242 (1982).

[11] S. Redner, Phys. Rev. B 25, 5646 (1982).
[12] N. Inui, H. Kakuno, A. Yu. Tretyakov, G. Komatsu, and K.

Kameoka, Phys. Rev. E 59, 6513 (1999).
[13] H.-K. Janssen and O. Stenull, Phys. Rev. E 62, 3173 (2000).
[14] O. Stenull and H.-K. Janssen, Phys. Rev. E 64, 016135 (2001).
[15] Z. Zhou, J. Yang, R. M. Ziff, and Y. Deng, Phys. Rev. E 86,

021102 (2012).
[16] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.

Rev. E 64, 025101 (2001).
[17] N. Schwartz, R. Cohen, D. ben Avraham, A.-L. Barabási, and

S. Havlin, Phys. Rev. E 66, 015104 (2002).
[18] M. Boguñá and M. A. Serrano, Phys. Rev. E 72, 016106 (2005).
[19] E. Kenah and J. M. Robins, Phys. Rev. E 76, 036113 (2007).
[20] M. Ángeles Serrano and P. De Los Rios, Phys. Rev. E 76,

056121 (2007).
[21] M. Franceschet, J. Am. Soc. Inform. Sci. Technol. 63, 837

(2012).

062116-8

https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1088/1742-6596/246/1/012033
https://doi.org/10.1088/1742-6596/246/1/012033
https://doi.org/10.1088/1742-6596/246/1/012033
https://doi.org/10.1088/1742-6596/246/1/012033
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1088/0305-4470/14/9/007
https://doi.org/10.1088/0305-4470/14/9/007
https://doi.org/10.1088/0305-4470/14/9/007
https://doi.org/10.1088/0305-4470/14/9/007
https://doi.org/10.1103/PhysRevB.25.3242
https://doi.org/10.1103/PhysRevB.25.3242
https://doi.org/10.1103/PhysRevB.25.3242
https://doi.org/10.1103/PhysRevB.25.3242
https://doi.org/10.1103/PhysRevB.25.5646
https://doi.org/10.1103/PhysRevB.25.5646
https://doi.org/10.1103/PhysRevB.25.5646
https://doi.org/10.1103/PhysRevB.25.5646
https://doi.org/10.1103/PhysRevE.59.6513
https://doi.org/10.1103/PhysRevE.59.6513
https://doi.org/10.1103/PhysRevE.59.6513
https://doi.org/10.1103/PhysRevE.59.6513
https://doi.org/10.1103/PhysRevE.62.3173
https://doi.org/10.1103/PhysRevE.62.3173
https://doi.org/10.1103/PhysRevE.62.3173
https://doi.org/10.1103/PhysRevE.62.3173
https://doi.org/10.1103/PhysRevE.64.016135
https://doi.org/10.1103/PhysRevE.64.016135
https://doi.org/10.1103/PhysRevE.64.016135
https://doi.org/10.1103/PhysRevE.64.016135
https://doi.org/10.1103/PhysRevE.86.021102
https://doi.org/10.1103/PhysRevE.86.021102
https://doi.org/10.1103/PhysRevE.86.021102
https://doi.org/10.1103/PhysRevE.86.021102
https://doi.org/10.1103/PhysRevE.64.025101
https://doi.org/10.1103/PhysRevE.64.025101
https://doi.org/10.1103/PhysRevE.64.025101
https://doi.org/10.1103/PhysRevE.64.025101
https://doi.org/10.1103/PhysRevE.66.015104
https://doi.org/10.1103/PhysRevE.66.015104
https://doi.org/10.1103/PhysRevE.66.015104
https://doi.org/10.1103/PhysRevE.66.015104
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.76.056121
https://doi.org/10.1103/PhysRevE.76.056121
https://doi.org/10.1103/PhysRevE.76.056121
https://doi.org/10.1103/PhysRevE.76.056121
https://doi.org/10.1002/asi.22608
https://doi.org/10.1002/asi.22608
https://doi.org/10.1002/asi.22608
https://doi.org/10.1002/asi.22608


PERCOLATION ON AN ISOTROPICALLY DIRECTED LATTICE PHYSICAL REVIEW E 98, 062116 (2018)

[22] Y.-X. Zhu, X.-G. Zhang, G.-Q. Sun, M. Tang, T. Zhou, and
Z.-K. Zhang, PLoS ONE 9, e103007 (2014).

[23] R. E. Tarjan, SIAM J. Comput. 1, 146 (1972).
[24] P. L. Leath, Phys. Rev. B 14, 5046 (1976).
[25] Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980).
[26] S. N. Dorogovtsev, J. Phys. C 15, L889 (1982).
[27] M. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 (1964).
[28] T. P. Peixoto figshare (2014), doi:10.6084/m9.figshare.1164194.
[29] A. Stauffer and D. Aharony, Introduction to Percolation Theory

(CRC Press, Boca Raton, FL, 1994).
[30] J. Wang, Z. Zhou, W. Zhang, T. M. Garoni, and Y. Deng, Phys.

Rev. E 87, 052107 (2013).

[31] C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230
(1998).

[32] H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor, A. M.
Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 32, 1
(1999).

[33] H. Hu, H. W. J. Blöte, R. M. Ziff, and Y. Deng, Phys. Rev. E 90,
042106 (2014).

[34] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
[35] N. R. M. Kim Christensen, Complexity and Criticality, Imperial

College Press Advanced Physics Texts Vol. 1 (Imperial College
Press, London, 2005).

[36] A. Coniglio, J. Phys. A 15, 3829 (1982).

062116-9

https://doi.org/10.1371/journal.pone.0103007
https://doi.org/10.1371/journal.pone.0103007
https://doi.org/10.1371/journal.pone.0103007
https://doi.org/10.1371/journal.pone.0103007
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1103/PhysRevB.14.5046
https://doi.org/10.1103/PhysRevB.14.5046
https://doi.org/10.1103/PhysRevB.14.5046
https://doi.org/10.1103/PhysRevB.14.5046
https://doi.org/10.1016/0375-9601(80)90023-7
https://doi.org/10.1016/0375-9601(80)90023-7
https://doi.org/10.1016/0375-9601(80)90023-7
https://doi.org/10.1016/0375-9601(80)90023-7
https://doi.org/10.1088/0022-3719/15/26/001
https://doi.org/10.1088/0022-3719/15/26/001
https://doi.org/10.1088/0022-3719/15/26/001
https://doi.org/10.1088/0022-3719/15/26/001
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1103/PhysRevE.87.052107
https://doi.org/10.1103/PhysRevE.87.052107
https://doi.org/10.1103/PhysRevE.87.052107
https://doi.org/10.1103/PhysRevE.87.052107
https://doi.org/10.1103/PhysRevE.57.230
https://doi.org/10.1103/PhysRevE.57.230
https://doi.org/10.1103/PhysRevE.57.230
https://doi.org/10.1103/PhysRevE.57.230
https://doi.org/10.1088/0305-4470/32/1/004
https://doi.org/10.1088/0305-4470/32/1/004
https://doi.org/10.1088/0305-4470/32/1/004
https://doi.org/10.1088/0305-4470/32/1/004
https://doi.org/10.1103/PhysRevE.90.042106
https://doi.org/10.1103/PhysRevE.90.042106
https://doi.org/10.1103/PhysRevE.90.042106
https://doi.org/10.1103/PhysRevE.90.042106
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1088/0305-4470/15/12/032
https://doi.org/10.1088/0305-4470/15/12/032
https://doi.org/10.1088/0305-4470/15/12/032
https://doi.org/10.1088/0305-4470/15/12/032

