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The driven diffusive system is a powerful tool to investigate properties of nonequilibrium state statistical
physics, vehicle traffic, and biological transport systems. This paper presents a two-channel asymmetric
exclusion process model, in which collective dynamics with interactions of particles between two lanes are
considered. Computer simulation and mean-field analysis are carried out to calculate the flow rate under periodic
boundary. On the whole, the results from the two-vertical-horizontal-cluster mean-field method are in good
agreement with the simulation results. Two types of phases including double peaked and single peaked appear in
the flow rate of the system. Based on investigating the coarsening process of the system, one can get a conjecture
that the system is homogeneous when the critical density at which normalized residence distribution turns into
nonmonotonous variability from monotonous decrease equals 0.5. These findings may be helpful to deeply
understand the dynamic features of nonequilibrium state systems and traffic or transport systems.
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I. INTRODUCTION

Driven diffusive systems, due to their simple rules and
rich dynamic features, are payed close attention to in various
fields including, but not limited to, physics [1], biology [2,3],
surface growth [4], polymer dynamics in dense media [5],
diffusion through membrane channels [6], fast ionic conduc-
tors [7], and traffic [8]. Especially, they have become basic
and critical tools to investigate properties of the systems far
from thermal equilibrium [1] and biological transport systems
[9,10].

The most prominent paradigm of driven diffusive systems
is the totally asymmetric exclusion process (TASEP) proposed
originally by MacDonald and Gibbs to model the motion
of multiple ribosomes along a mRNA strand during protein
synthesis inside living cells [11,12]. Hereafter, numerous
variants of the TASEP have been developed [8,9,13]. Some
of these extended TASEP models are considered in single-
channel systems, some are investigated in two-channel or
multiple-channel systems [14–17]. Thereinto, collective dy-
namics with interactions of particle transport were studied in
single-channel systems [18–20]. There are some investiga-
tions focusing on interactions between particles on different
lanes in two-channel systems [21–25]. However, the impacts
of various interactions on the transport of particles such as
molecular motors, pedestrians, and vehicles have not been
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fully explored in two-channel systems. Especially, the inter-
action between particles in two lanes is rarely studied in the
two-channel system without lane changing.

Besides computer simulation, mean-field analysis is also
one powerful tool in investigating driven diffusive systems.
Usually, the mean-field method includes simple mean field
and cluster mean field [8]. The simple mean field ignores
completely correlations and the cluster mean field takes into
account some correlations in the system. So mean-field anal-
ysis is an approximate method to study the systems owning
correlations under normal conditions. Except for the origi-
nal TASEP model with no correlation [26] and few TASEP
models owning correlations [27,28], the exact solution of
most TASEP models can barely be obtained by mean-field
analysis. Considering interactions of particles in one lane, the
horizontal cluster mean-field method can be employed. But
vertical cluster mean field should be used if the interactions of
particles in different lanes are investigated in two or multiple
channel systems [16,21,22].

In this paper, a two-channel TASEP model is proposed.
In the model, the interaction between particles in two lanes
without lane changing is studied, and the attractive and re-
pulsive effect of particles in different lanes is considered.
Computer simulation and mean-field analysis are carried out
to calculate the flow rate under periodic boundary. Double-
peaked and single-peaked properties are found in the curves of
flow rate with different model parameters p and q. The results
from the two-vertical-horizontal-cluster mean-field method
(CMF) are in good agreement with the results from computer
simulation. Through investigating the coarsening process of
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FIG. 1. Schematic illustration of the two-lane TASEP model.
Blue full circle indicates the particle in upper lane (lane 1), white
and black radial indicates the particle in lower lane (lane 2). The top
and bottom boundaries are closed. The left and right boundaries are
periodic. The four configurations marked with yellow dashed boxes
denote the four cases of particle hopping in our model for lane 1, and
similar cases for lane 2.

the system based on Monte Carlo simulation, we find that
the normalized residence distribution p(s) is monotonically
decreasing when the density is under a critical density ρc,
and p(s) is nonmonotonic when the density is above the ρc.
Interestingly, the ρc influences the accuracy of the CMF result.
In view of this, we present a speculation that the system is
homogeneous when the critical density ρc = 0.5.

The paper is organized as follows. The model is described
in Sec. II. Simulation results and mean-field analysis are
presented in Sec. III. Finally, we give conclusions in Sec. V.

II. MODEL

The model is composed of two lanes. It is defined in a
2 × L lattice; each site can be either empty, or occupied
by a single particle. In each lane, a particle can move to
the right along the same lane according to some probability,
but particles are forbidden to change lanes. The transition
probability is not only related to the state of the next site in
each lane, but is also related to the state of neighbor sites in
the other lane. Here, the random update rule is employed. As
shown in Fig. 1, the hopping rule of the particle in this TASEP
model is as follows. If a particle in site i is chosen to update,

(i) if the right neighboring site i + 1 is occupied, the
particle stays at its site i;

(ii) if the right neighboring site i + 1 is empty;
(a) if the site i and i + 1 in the other lane are both empty,

the particle will hop forward to the right neighboring site i + 1
at rate 1[case (i) in Fig. 1];

(b) if the site i is empty and site i + 1 is occupied in
the other lane, the particle will hop forward to the right
neighboring site i + 1 at rate p [case (ii) in Fig. 1];

(c) if the site i in the other lane is occupied and the site
i + 1 in the other lane is empty, the particle will hop forward
to the right neighboring site i + 1 at rate q [case (iii) in
Fig. 1];

(d) if the site i and i + 1 in the other lane are occupied, the
particle will hop forward to the right neighboring site i + 1 at
rate 1 [case (iv) in Fig. 1].

When p = q = 1, the model reduces to the standard
TASEP model. This model rule can be regarded as the moti-
vation of biological transport [22], pedestrian flow, or vehicle
traffic flow [21,24]. Though changing lanes is not occurring,

the movement of a molecular motor (pedestrian, vehicle) in
one lane often is affected by that in the adjacent lane. For
instance, in vehicle traffic flow, considering safety, the driver
in lane 1 may slow down in case (ii) and speed up in case
(iii) as shown in Fig. 1. Under pedestrian traffic conditions, in
case (ii), the pedestrian in lane 1 may move forward with a
big rate to catch up with the acquaintance or friend in lane 2,
otherwise, the pedestrian in lane 1 may move forward with a
small rate to keep away from the stranger in lane 2. Similarly,
in case (iii), the pedestrian in lane 1 may move forward with
a small rate to keep side by side with the acquaintance or
friend in lane 2, otherwise, the pedestrian in lane 1 may move
forward with a big rate to surpass the stranger in lane 2. In
cases (i) and (iv), the states of two neighbor sites in the other
lane (lane 2) are the same, that is, both are empty or occupied,
so the hopping rates are set to 1 for simplicity.

III. MEAN-FIELD ANALYSIS AND SIMULATION

This section carries out mean-field analysis and Monte
Carlo simulations for the model. The density ρ of each lane
is set to be equal; here the density ρ is defined as particle
numbers in one lane divided by L. In the Monte Carlo
simulations, random initial distributions are employed.

A. Simple mean-field method

Ignoring correlations, we analyze the current of system
by the simple mean-field method (SMF). We investigate the
four probabilities P0, P1, P2, P3 corresponding to four vertical
cluster configurations 0, 1, 2, and 3 as shown in Fig. 2(a).
Obviously, according to the conservation of probability, one
can get

P0 + P1 + P2 + P3 = 1. (1)

Moreover, the definition of density gives

P1 + P3 = ρ (2)

and

P2 + P3 = ρ. (3)

The evolution of four probabilities can be described with
master equations according to the configuration in Fig. 3(a).
Specifically, for P1, the master equation is

dP1

dt
= P3P0q + P3P0q + P3P1 + P1P0

−P1P2p − P2P1p − P3P1 − P1P0. (4)

When the system reaches a stationary state, dP1
dt

= 0. Thus

pP1P2 = qP0P3. (5)

Substituting (1)–(3) into (5), we obtain

(q − p)P 2
3 + (q + 2pρ − 2qρ)P3 − pρ2 = 0. (6)

Solving Eq. (6), we get the solution

P3 =
{

2qρ−q−2pρ+
√

4p(q−p)ρ2+(q+2pρ−2qρ)2

2(q−p) , p �= q,

ρ2, p = q.
(7)
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FIG. 2. Possible configurations of a vertical cluster for (a) simple mean field (four configurations) and (b) two-cluster mean field
(16 configurations, here only partly listed). The number labeled below vertical cluster indicates the type of the vertical cluster.

Substituting (7) into (1)–(3), P0, P1, P2 can be calculated
respectively. Consequently, the currents on lanes 1 and 2 are

J1 = P1P0 + P3P2 + P1P2p + P3P0q (8)

and

J2 = P2P0 + P3P1 + P2P1p + P3P0q. (9)

From Eqs. (2) and (3), we have P1 = P2. Therefore, the
currents on lanes 1 and 2 are equal, i.e., J1 = J2. In the case
of p �= q, the expression of current is

J = 1

2(p − q )2
((p + q − 2pq )

×
√

q[q(1 − 2ρ)2 − 4p(ρ − 1)ρ]

+pq[4ρ(p + ρ − pρ − 1) − 1]

+ q2{p[2 + 4(ρ − 1)ρ] − (1 − 2ρ)2}), (10)

and in the case of p = q, the expression of flow rate is

J = ρ + (2p − 3)ρ2 + (4 − 4p)ρ3 + (2p − 2)ρ4. (11)

B. Cluster mean-field method

To consider the correlation between particles, now we use
the cluster mean-field method. Here we define an n cluster
to be a collection of n successive vertical clusters, and use
P (σ1, σ2, . . . , σn) to denote the probability of finding an n

cluster in the state (σ1, σ2, . . . , σn) under the steady state of
the system. Taking into account that hop rates in the model
only depend on the states of two adjacent vertical clusters, we
only carry out two-cluster mean-field analysis. In this case,
the state of the two-cluster (σi, σi+1) at time t + 1 depends on
the state of the three-cluster (σi−1, σi, σi+1) or (σi, σi+1, σi+2)
at time t as shown in Fig. 3(b). Here the σi = 0, 1, 2, 3,
corresponds to the four states shown in Fig. 2(a), respectively.

lane 1

lane 2

i+1i-1 i 

(a)

i+1i-1 i 

(b)

i+2

FIG. 3. Site configurations to be considered in (a) simple mean
field (SMF) analysis and (b) two-cluster mean field (CMF) analysis.
The thick orange box indicates the target vertical cluster to be
considered.

So there are 16 two-cluster probabilities P (σi, σi+1) to be
solved. Figure 4 shows the configurations of three-cluster
probabilities (1,2,3), (2,1,0). To make a distinction between
three-cluster (σi−1, σi, σi+1) and (σi, σi+1, σi+2), we add a
line under σi and σi+1 in the following expressions. For
example, three-cluster probabilities P (1, 2, 3) and P (2, 1, 0)
corresponding to Fig. 4 can be denoted as P (1, 2, 3) and
P (2, 1, 0), respectively.

According to cluster mean-field theory and our model
rules, the master equation corresponding to the temporal
evolution of two-cluster probability P (0, 0) can be expressed
as

dP (0, 0)

dt
= P (0, 1, 0) + P (0, 1, 2)p + P (0, 2, 0)

+P (0, 2, 1)p − P (1, 0, 0)

−P (2, 0, 0) − 2P (3, 0, 0)q. (12)

In general n-cluster approximation, one divides the n cluster
into “clusters” of length n such that two adjacent clusters have
n − 1 vertical clusters in common. In the two-cluster mean-
field analysis, P (σi−1, σi, σi+1) and P (σi, σi+1, σi+2) can be
expressed mathematically as

P (σi−1, σi, σi+1) = P (σi−1|σi )P (σi, σi+1), (13)

and

P (σi, σi+1, σi+2) = P (σi, σi+1)P (σi+1|σi+2), (14)

respectively, where

P (σi−1|σi ) = P (σi−1, σi )∑
σi−1

P (σi−1, σi )
(15)

and

P (σi+1|σi+2) = P (σi+1, σi+2)∑
σi+2

P (σi+1, σi+2)
(16)

lane 1

lane 2

ii-1 i+1 

(1, 2, 3)

i i+1 i+2 

(2, 1, 0)
FIG. 4. Configurations sketch of three cluster (1,2,3), (2,1,0).

The thick orange box indicates the target vertical cluster to be
considered.
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FIG. 5. Diagrams of current vs density ρ for (a) large values of q, and (b) small values of q. The symbol, solid line, and broken line present
simulation result, simple mean-field result, and cluster mean-field analysis, respectively.

are two-cluster conditional probabilities. Applying Eqs. (13)
and (14) to the three-cluster probabilities involved in the right-
hand side of Eq. (12), and noting dP (0,0)

dt
= 0 in the stationary

state, Eq. (12) can be simplified as

P (0, 1)P (1, 0) + P (0, 1)P (1, 2)p

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3)

+ P (0, 2)P (2, 0) + P (0, 2)P (2, 1)p

P (2, 0) + P (2, 1) + P (2, 2) + P (2, 3)

− P (1, 0)P (0, 0) + P (2, 0)P (0, 0) + 2P (3, 0)P (0, 0)q

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)

= 0. (17)

According to the symmetry of the two lanes in the model, one
can get the following six equations:

P (2, 0) = P (1, 0), (18)

P (0, 2) = P (0, 1), (19)

P (2, 2) = P (1, 1), (20)

P (2, 1) = P (1, 2), (21)

P (3, 2) = P (3, 1), (22)

FIG. 6. Contours of current deviation of mean-field analysis from simulation. (a) Maximum deviation corresponding SMF, (b) mean square
deviation corresponding SMF, (c) maximum deviation corresponding CMF, (d) mean square deviation corresponding CMF. The dashed line in
(c) and (d) is a guide for eyes to observe and compare the contour in Fig. 12.
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FIG. 7. Phase diagram. Boundary separating double-peaked
from single-peaked current-density relation in (p, q ) space; region I
indicates single-peaked from CMF and simulation, region II denotes
double-peaked from CMF and simulation, and region III indicates
double-peaked from CMF, but single-peaked from simulation.

P (2, 3) = P (1, 3). (23)

Moreover, the conservation of probability requires that

3∑
i,j=0

P (i, j ) = 1. (24)

Furthermore, the definition of density gives

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3) + P (3, 0)

+P (3, 1) + P (3, 2) + P (3, 3) = ρ. (25)

To form closed equations about 16 variables P (σi, σi+1), we
have to obtain seven other independent equations. According
to the similar derivation of Eq. (17), we can get the seven
independent equations shown in the Appendix [(A1)–(A7)].

It is difficult to get the analytical solutions of the nonlinear
equations including (17)–(25) and (A1)–(A7). But numerical
solutions could be obtained by the Newton iteration method.
By the way, in this work, we compute the numerical solutions
of nonlinear equations by the function FindRoot based on the
Newton method in software Mathematica 10.3. After getting
the numerical solutions of the 16 probabilities P (σi, σi+1), the

current of the system can be calculated as

J = P (1, 0) + P (3, 2) + P (1, 2)p + P (3, 0)q, (26)

or

J = P (2, 0) + P (3, 1) + P (2, 1)p + P (3, 0)q. (27)

C. Simulations and discussions

In our Monte Carlo simulations, the system length L =
500, and system evolutes 106 Monte Carlo time steps (MCSs).
Simulations show that the dynamical properties of the two
lanes are the same, so we only carry out calculations and
investigation for lane 1.

The calculation results of current are shown in Fig. 5. It
can be seen that the SMF result is in good approximation
with simulation result only for large values of p and q,
and SMF result deviates from the simulation result generally
due to stronger correlations. But it is nice to see that the
CMF result is good. The CMF result is in good agreement
with the simulation result for a large value of q with a
fixed value of p [see Fig. 5(a)], and there are some fluc-
tuations between the CMF result and the simulation result
for a small value of q with the same p [see Fig. 5(b)]. In
order to investigate in approximation the effect of mean-
field analysis, contours of current deviation of mean-field
analysis from the simulation drawn in (p, q ) space are shown
in Fig. 6. Figures 6(a) and 6(b) correspond to the devia-
tion from SMF, and (c) and (d) correspond to the deviation
from CMF. Here two deviation measures are employed: one
is maximum deviation—corresponding results are shown in
Figs. 6(a) and 6(c); the other is mean square deviation
(standard deviation)—corresponding results are shown in
Figs. 6(b) and 6(d). Here the step of density is taken
as 0.05 in calculating the deviation. Based on the con-
tour maps of the current deviate, one can note that
the CMF result is much better than the SMF result;
it agrees with simulation well in most areas of (p, q )
space.

Additionally, Fig. 5 also shows that two maxima (double-
peaked) can appear in the current-density relation, which
is similar to the Katz, Lebowitz, and Spohn model [7,29].
The phase diagram for the single-peaked and double-peaked
current-density relation is shown in Fig. 7. In order to analyze
the appearance of these two phases, the flow rate J can be
divided into four parts corresponding to four cases of model

FIG. 8. Diagrams of various types current vs density ρ for (a) p = 0.1, q = 0.3, (b) p = 0.5, q = 0.3, and (c) p = 0.9, q = 0.3.
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FIG. 9. Diagrams of three types of current vs p at ρ = 0.4 and ρ = 0.5 for (a) q = 0.1, (a) q = 0.3, and (c) q = 1. The pc presents critical
value of p from double-peaked phase to single-peaked phase corresponding to the phase boundary from simulations in Fig. 7.

rules as shown in Fig. 1. That is to say,

J = Ji + Jii + Jiii + Jiv, (28)

where

Ji = 1P (1, 0), (29)

Jii = pP (1, 2), (30)

Jiii = qP (3, 0), (31)

Jiv = 1P (3, 2). (32)

Additionally, the sum of Ji and Jiv is written as J11 and the
sum of Jii and Jiii is written as Jpq , namely, J11 = Ji +
Jiv and Jpq = Jii + Jiii . By simulations, Fig. 8 shows the
diagrams of Ji , Jii , Jiii , Jiv , J11, Jpq , and J with p = 0.1, q =
0.3 and p = 0.5, q = 0.3. One can note that the curve of J11

is double peaked whether J is double peaked [Fig. 8(a)] or
single peaked [Figs. 8(b) and 8(c)]. Obviously, if ρ = 0.5 is
the minimum value point of J , flow rate J is double peaked;
contrarily, if ρ = 0.5 is the maximum value point of J , the
flow rate J is single peaked. So the investigation can be done
only in the neighborhood of ρ = 0.5. Here ρ = 0.4 or ρ = 0.6
is taken as a representative. One can fix q, let p increase
gradually, and compute flow rate J , J11, Jpq at ρ = 0.5,
ρ = 0.4, or ρ = 0.6. As shown in Fig. 9, when p is small, J11

at ρ = 0.5 is smaller than that at ρ = 0.4 or ρ = 0.6, and they
approach gradually with the increase of p. But Jpq at ρ = 0.5

is bigger than that at ρ = 0.4 or ρ = 0.6 for arbitrary p. As
a result, the total flow rate J that is the sum of J11 and Jpq

at ρ = 0.5 can exceed that flow rate J at ρ = 0.4 or ρ = 0.6
when p is greater than the critical value pc. It indicates that
ρ = 0.5 is the minimum value point of J when p < pc, and
ρ = 0.5 is the maximum value point of J when p > pc. Thus
J changes into single peaked from double peaked with the
increase of p.

In addition, one also notes that two curves of Ji and
Jiv appear in a certain symmetry in Fig. 8. In fact, ac-
cording to the particle-hole symmetry, case (i) is equivalent
to case (iv) when particle and hole are exchanged. Fig-
ure 8 also shows that Jii = Jiii , which can be proved as
follows. Considering the temporal evolution of two-cluster
probability P (3, 0), one can have the equation dP (3,0)

dt
=

pP (1, 2) − qP (3, 0). When the system reaches stationary
state, dP (3,0)

dt
= 0. Thus pP (1, 2) = qP (3, 0), that is to

say, Jii = Jiii .
To investigate deeply the mechanism causing current de-

viation of mean-field analysis from simulation, we explore
the coarsening process of the system based on Monte Carlo
simulation. To this end, we define a cluster of size s as s

particles connected by each other, then discuss the normalized
residence distribution, p(s), which is the probability that
a randomly chosen particle belongs to a cluster of size s.
For a homogeneous state, p(s) is monotonically decreasing.
In contrast, for a jammed system, it is nonmonotonically
decreasing with two distinct peaks [30]. This coarsening

FIG. 10. Contour of normalized residence distribution p(s, ρ ) at (a) p = 0.1, q = 0.08, (b) p = 0.1, q = 0.02, and (c) p = 0.01,

q = 0.01. The dashed line is a guide for eyes to see transformation trend of p(s ) at fixed ρ.
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FIG. 11. Plots of normalized residence distribution p(s ) vs s at (a) p = 0.1, q = 0.08, ρ = 0.4, (b) p = 0.1, q = 0.08, ρ = 0.8,
(c) p = 0.1, q = 0.02, ρ = 0.4, and (d) p = 0.01, q = 0.01, ρ = 0.4.

process in local domains may result in the macroscopic phase
separation phenomenon eventually in some systems. In our
simulations, we find that there exists a critical density ρc

for given p and q as shown in Fig. 10. When ρ < ρc, p(s)
is monotonically decreasing [see Fig. 11(a)]. When ρ > ρc,
p(s) is nonmonotonic [see Figs. 11(b)–11(d)].

In fact, the critical density ρc is a function of p and q.
Figure 12 presents the contour of function ρc(p, q ). One
can note that values of ρc can be divided into roughly three
intervals, ρc < 0.5, ρc = 0.5, and ρc > 0.5. When the value
of q is small as shown in region I of Fig. 12, ρc < 0.5. With
the increase of q as shown in region II of Fig. 12, ρc > 0.5.

FIG. 12. Contour of critical density ρc(p, q ).

For large values of q as shown in region III of Fig. 12,
ρc = 0.5. By simulation and investigation, one can speculate
that the system is homogeneous when ρc = 0.5, otherwise,
the system is macroscopic or microscopic inhomogeneous.
First, the spatiotemporal diagram can demonstrate the above
conclusion. As shown in Figs. 13(a), 13(b) 13(d), and 13(e),
whether at low density or at high density, the system is in
an inhomogeneous state when q is small, which is out of
the range of ρc = 0.5 and corresponds to regions I and II in
Fig. 12, and Figs. 13(c) and 13(f) show the system becomes a
homogeneous state when q is in the range of ρc = 0.5, which
corresponds to region III in Fig. 12. Second, the mean value
and standard deviation of cluster size s as shown in Table I
also verifies that. With the increase of q, the mean value and
standard deviation of cluster size s decrease. The data for
p = 1, q = 1 are referenced in the table, because the model
with p = 1, q = 1 is the original TASEP model, which is
homogeneous. It indicates the system becomes homogeneous
from the macroscopic or microscopic inhomogeneous state
with the increase of q.

Interestingly, comparing Fig. 12 with Figs. 6(c) or 6(d),
one can note that the CMF result is in good agreement with
simulation result around region III of Fig. 12 corresponding
ρc = 0.5, and the CMF result deviates from the simulation
result around regions I and II of Fig. 12 corresponding to
ρc > 0.5 or ρc < 0.5. This can also confirm the conjecture
that the system is homogeneous when ρc = 0.5, otherwise,
the system is macroscopic or microscopic inhomogeneous.
Meanwhile, it indicates that deviation of mean-field anal-
ysis from simulation is due to the inhomogeneity of the
system.
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FIG. 13. Spatiotemporal diagram. (a), (b), (d), and (e) are inhomogeneous states corresponding to regions I and II in Fig. 12, (c) and (f)
are macroscopic homogeneous states corresponding to region III in Fig. 12. The parameters are p = 0.4, q = 0.05, ρ = 0.3 in (a), p = 0.4,

q = 0.2, ρ = 0.3 in (b), p = 0.4, q = 0.4, ρ = 0.3 in (c), p = 0.4, q = 0.05, ρ = 0.7 in (d), p = 0.4, q = 0.2, ρ = 0.7 in (e), and p = 0.4,

q = 0.4, ρ = 0.7 in (f). 500 snapshots of the system are shown every 20 MCSs after 5 × 104 time steps are discarded.

IV. CONCLUSION

To summarize, this paper has presented a driven diffusive
two-lane model. The dynamic characteristics under periodic
boundaries are discussed by simulations and mean-field anal-
ysis methods. Simple mean-field and cluster mean-field meth-
ods are employed to calculate the flow rate. In most of the
region of (p, q ) space, two-cluster mean-field (CMF) results
are in good agreement with simulation results. There are two
types of phases about the flow rate curve: double peaked and
singe peaked. Through investigating the coarsening process
of the system based on Monte Carlo simulation, we find that
the normalized residence distribution p(s) is monotonically
decreasing under the critical density ρc, and p(s) is non-
monotonic above the ρc. Moreover, ρc is different for different

TABLE I. Mean value and standard deviation of cluster size s

with p = 0.4 and different values of q.

ρ = 0.3 ρ = 0.7

Mean Standard Mean Standard
q value deviation value deviation

0.05 7.12 6.08 16.29 12.03
0.2 2.73 2.10 7.60 5.46
0.4 2.00 1.29 5.88 4.01

p = 1, q = 1 1.85 1.10 5.62 3.90

parameter values of p and q. We present a conjecture that the
system is homogeneous when the critical density ρc = 0.5,
so in this case, CMF results are in good agreement with
simulation results.
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APPENDIX

In this Appendix, we present the other independent master
equations for two-cluster probabilities under periodic bound-
ary. The derivation method of the seven master equations is
similar to that of Eq. (17). Therefore, here we only give the
result ignoring the derivation process.

062111-8



THEORETICAL ANALYSIS AND COMPUTER SIMULATION … PHYSICAL REVIEW E 98, 062111 (2018)

Considering the temporal evolution of the two-cluster probability P (1, 0), we can obtain

P (1, 0)P (0, 0) + P (3, 0)P (0, 0)q

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)
+ P (1, 1)P (1, 0) + P (1, 1)P (1, 2)p

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3)

+ P (1, 2)P (2, 0) + P (1, 2)P (2, 1)p

P (2, 0) + P (2, 1) + P (2, 2) + P (2, 3)
− P (1, 0) − P (3, 1)P (1, 0) + P (2, 1)P (1, 0)p

P (0, 1) + P (1, 1) + P (2, 1) + P (3, 1)
= 0. (A1)

Considering the temporal evolution of P (0, 1), we can obtain

P (1, 0) + P (0, 3)P (3, 1) + P (0, 3)P (3, 0)q

P (3, 0) + P (3, 1) + P (3, 2) + P (3, 3)
− P (0, 1)P (1, 0) + P (0, 1)P (1, 2)p

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3)

− P (1, 0)P (0, 1) + P (2, 0)P (0, 1) + 2P (3, 0)P (0, 1)q

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)
= 0. (A2)

Considering the temporal evolution of P (3, 0), we can get

P (2, 1)P (1, 0)p + P (3, 1)P (1, 0)

P (0, 1) + P (1, 1) + P (2, 1) + P (3, 1)
+ P (1, 2)P (2, 0)p + P (3, 2)P (2, 0)

P (0, 2) + P (1, 2) + P (2, 2) + P (3, 2)

+ P (3, 1)P (1, 2)p + P (3, 1)P (1, 0)

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3)
+ P (3, 2)P (2, 1)p + P (3, 2)P (2, 0)

P (2, 0) + P (2, 1) + P (2, 2) + P (2, 3)
− 2P (3, 0)q = 0. (A3)

Considering the temporal evolution of P (1, 2), we can have

P (3, 0)P (0, 2)q + P (1, 0)P (0, 2)

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)
+ P (1, 3)P (3, 0)q + P (1, 3)P (3, 2)

P (3, 0) + P (3, 1) + P (3, 2) + P (3, 3)
+ P (3, 0)q

− P (2, 1)P (1, 2)p + P (3, 1)P (1, 2)

P (0, 1) + P (1, 1) + P (2, 1) + P (3, 1)
− P (1, 2)P (2, 1)p + P (1, 2)P (2, 0)

P (2, 0) + P (2, 1) + P (2, 2) + P (2, 3)
− P (1, 2)p = 0. (A4)

Considering the temporal evolution of P (0, 3), we can obtain

P (1, 2)p + P (2, 1)p − 2P (3, 0)P (0, 3)q + P (1, 0)P (0, 3) + P (2, 0)P (0, 3)

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)

− 2P (0, 3)P (3, 0)q + P (0, 3)P (3, 1) + P (0, 3)P (3, 2)

P (3, 0) + P (3, 1) + P (3, 2) + P (3, 3)
= 0. (A5)

Considering the temporal evolution of P (3, 1), we can obtain

P (1, 2)P (2, 1)p + P (3, 2)P (2, 1)

P (0, 2) + P (1, 2) + P (2, 2) + P (3, 2)
+ P (2, 1)P (1, 1)p + P (3, 1)P (1, 1)

P (0, 1) + P (1, 1) + P (2, 1) + P (3, 1)

+ P (3, 3)P (3, 0)q + P (3, 3)P (3, 1)

P (3, 0) + P (3, 1) + P (3, 2) + P (3, 3)
− P (3, 1)P (1, 2)p + P (3, 1)P (1, 0)

P (1, 0) + P (1, 1) + P (1, 2) + P (1, 3)
− P (3, 1) = 0. (A6)

Considering the temporal evolution of P (1, 3), we can obtain

P (3, 1) + P (3, 0)P (0, 3)q + P (1, 0)P (0, 3)

P (0, 0) + P (1, 0) + P (2, 0) + P (3, 0)
− P (2, 1)P (1, 3)p + P (3, 1)P (1, 3)

P (0, 1) + P (1, 1) + P (2, 1) + P (3, 1)

− 2P (1, 3)P (3, 0)q + P (1, 3)P (3, 1) + P (1, 3)P (3, 2)

P (3, 0) + P (3, 1) + P (3, 2) + P (3, 3)
= 0. (A7)
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