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A solvable model is proposed and analyzed to reveal the mechanism underlying the diffusion enhancement
recently reported for a model of molecular motors and predicted to be observed in the biological rotary motor
F1-ATPase. It turns out that the diffusion enhancement for the present model can approximately be described by
a random walk in which the waiting time for a step to occur is exponentially distributed and it takes nonzero time
to proceed forward by the step. It is shown that the diffusion coefficient of such a random walk can significantly
be increased when the average waiting time is comparable to the average stepping time.
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I. INTRODUCTION

There can be various ways to produce an effective diffusion
coefficient larger than what is expected from the Einstein rela-
tion. A classical example of such diffusion enhancement is the
swimming of bacteria [1]. A bacterium swims with a constant
speed and occasionally changes its swimming direction. The
resulting motion is a random walk with an effective diffusion
coefficient much larger than that of the Brownian motion
it would undergo if it stopped swimming. This diffusive
motion helps bacteria find their food or move away from
harmful environments, for example. Recently, it was found
that a Brownian particle moving in a one-dimensional periodic
potential exhibits diffusion enhancement under a constant
external force of magnitude close to the maximum slope of
the potential [2–4]. This phenomenon was observed experi-
mentally in a colloidal system [5], a biomolecule having a
rotating subunit [6], and DNA diffusing in an array of entropic
barriers [7]. The diffusion enhancement also occurs in on-off
ratchets [8] in which an asymmetric, periodic potential for
colloidal particles is switched on and off periodically, if the
duration of potential-off interval is such that the root-mean-
square displacement of the particle by free diffusion in this
interval is comparable to the periodicity of the potential.

In our previous work [9], it is demonstrated theoretically
that the diffusion enhancement can occur in molecular motors
that move autonomously by consuming free energy available
from the chemical reaction catalyzed by themselves if a
constant external force of appropriate magnitude is applied.
In particular, it is suggested that diffusion enhancement can be
observed in the F1-ATPase, a biological rotary motor, which
catalyzes the hydrolysis of adenosine triphosphate (ATP). It
has turned out that the mechanism of enhancement in the
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case of high ATP concentration is essentially the same as
the one for the particle in a tilted periodic potential [2–4].
However, the mechanism in the case of low ATP concentration
has not been clarified yet. The purpose of the present work
is to study the diffusion of a simplified model of molecular
motors to elucidate the mechanism of diffusion enhancement
characteristic of chemically driven systems. In what follows
effective diffusion coefficients will simply be called the diffu-
sion coefficients.

The models considered here and in the previous work [9]
are of ratchet type [10–12], in which a moving part of the
motor (e.g., the rotor in a rotary motor) is represented by a
Brownian particle subject to a potential, which is switched
to another upon a chemical transition associated with the
reaction catalyzed by the motor. In the model used in the
previous paper [9], an external force, as well as rate constants,
can control the transition rates because the transition rates are
assumed to depend on the particle position, which is affected
by the force; the dependence of the diffusion coefficient on
the force for given rate constants exhibits enhancement in a
certain range of the force. By contrast, an external force is
not included in the model of the present paper, and a rate
constant is varied to study the diffusion enhancement. Another
simplification is that chemical transitions are supposed to take
place only when the particle is located at particular points,
which enable us to obtain a closed-form expression for the
diffusion coefficient.

The paper is organized as follows. The model is introduced
in Sec. II, and the closed-form expressions for the velocity and
diffusion coefficient are given in Sec. III. Explicit calculations
of the diffusion coefficient are carried out for a model with
piecewise linear potentials in Sec. IV, where the diffusion
enhancement is demonstrated. In Sec. V, we discuss the
mechanism of the diffusion enhancement observed in Sec. IV
on the basis of a simple random walk, which we call an
extended Poisson walk. Concluding remarks will be given in
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FIG. 1. Generic (a) and specific (b) models of molecular motors
considered in this work. The motor is represented by a Brownian
particle subject to one of the potentials Vn(x ) at a time. The poten-
tial is switched from Vn to Vn+1 or Vn−1 stochastically with rates
proportional to ω+ and ω−, respectively, if the particle is located at
x = a+ + nl or a− + nl; we set a+ = 0 and a− = −l for (b).

Sec. VI. Some of the details of calculations and expressions
are given in the Appendices.

II. POTENTIAL-SWITCHING RATCHET

We consider a variant of pulsating ratchets as a model of
a biological molecular motor [10–12]. The motor is modeled
as a Brownian particle moving in one dimension, along the
x axis, subject to potentials Vn(x) (n = 0,±1,±2, . . . ) of
identical shapes arranged periodically with period l as shown
in Fig. 1(a), i.e., they satisfy

Vn+1(x) = Vn(x − l) (n = 0,±1,±2, . . . ). (1)

The potentials are assumed to be unbounded above. Only one
of the potentials acts on the particle at a time, say Vn, and it
is stochastically switched to Vn+1 or Vn−1. The motor will be
said to be in state n if potential Vn is acting. The dynamics
of the particle is assumed to be over-damped. The diffusion
coefficient of the particle in the absence of the potentials is
given by the Einstein relation D0 = kBT/γ , where γ is the co-
efficient of the drag force on the particle from the surrounding
fluid, T is the temperature, and kB is the Boltzmann constant.

Let Pn(x, t ) dx be the probability to find the motor in state
n and the particle in the interval (x, x + dx) on the x axis
at time t , and w±

n (x) be the rate of transition from state n

to state n ± 1 when the particle is located at x. Then the
time evolution of Pn(x, t ) is described by the Fokker-Planck
equations,

∂Pn

∂t
+ ∂Jn

∂x
= −(w+

n + w−
n )Pn

+w+
n−1Pn−1 + w−

n+1Pn+1, (2)

where Jn is the probability current in state n defined by

Jn ≡ −D0

(
∂

∂x
+ dUn

dx

)
Pn, (3)

with

Un(x) ≡ Vn(x)/kBT (4)

being the dimensionless potential. We remark that the argu-
ments given in this section apply also to the case in which
a constant external force F is applied to the particle if the
right-hand side of Eq. (4) is replaced by [Vn(x) − Fx]/kBT .

We assume that the transition from one state to another
takes place when the particle is located at a particular position
(this corresponds to the idea that the change in chemical
state of a motor protein occurs when it is in a particular
conformation [10]), and we adopt the following expressions
for w±

n (x):

w±
n (x) = ω±δ(x − a± − nl), (5)

where δ(x) is the δ function, ω± are positive constants, and
a+ and a− are constants satisfying a− = a+ − l; see Fig. 1(a).
The transition n → n + 1 and its reversal occur at x = a+ +
nl = a− + (n + 1)l. Supposing that the “forward” transition
n → n + 1 is triggered by a chemical reaction by which the
free energy of the environment is decreased by �μ, we have
the relation

ω+/ω− = exp[U0(a+) − U0(a−) + �μ/kBT ] (6)

from the condition of local detailed balance.
The velocity v and the diffusion coefficient D of the motor

are defined by

v≡ lim
t→∞

〈x(t ) − x(0)〉
t

, D ≡ lim
t→∞

〈[x(t ) − x(0) − vt]2〉
2t

,

(7)

where x(t ) is the location of the particle (motor) at time t

and the angular brackets indicate the statistical average. The
velocity can be obtained from the steady-state solutions Pn(x)
of the Fokker-Planck Eqs. (2), which satisfy the “periodicity
condition” Pn(x) = P0(x − nl). Let P (x) be the rescaled
P0(x), so that it satisfies∫ ∞

−∞
P (x) dx = 1. (8)

Then we have [10,11]

v =
∫ ∞

−∞
f (x)P (x) dx, f (x) ≡ −D0 dU0(x)/dx. (9)

To calculate the diffusion coefficient, we need to obtain the
auxiliary function Q(x) that satisfies

d

dx

[
D0

d

dx
− f (x)

]
Q(x) − [w+

0 (x) + w−
0 (x)]Q(x)

+ w+
0 (x + l)Q(x + l) + w−

0 (x − l)Q(x − l)

=
[
v − f (x) + 2D0

d

dx

]
P (x) (10)
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and the boundary condition that Q(x) → 0 as |x| → ∞. The
diffusion coefficient is calculated as [9,13,14]

D = D0 +
∫ ∞

−∞
[f (x) − v]Q(x) dx. (11)

III. CLOSED-FORM EXPRESSIONS

The specific functional forms of w±
n (x) given in Eq. (5)

enable us to derive closed form expressions for v and D, as
explained in Appendix A. To express the result for v concisely,
we introduce constants ζ , φ0, φ1, and u± defined by

ζ ≡
∫ ∞

−∞
e−U (x) dx, (12)

φ0 ≡
∫ a+

a−
eU (x) dx, (13)

φ1 ≡
∫ a+

a−
eU (y) dy

∫ y

−∞
e−U (x) dx, (14)

u± ≡ ω± exp[−U (a±)], (15)

where

U (x) ≡ U0(x). (16)

Then, the velocity is expressed as

v = (u+ − u−)D0l

ζ (D0 + φ0u−) + φ1(u+ − u−)
. (17)

Note that we have u+ > u− for �μ > 0 according to the
detailed-balance condition in Eq. (6) and that the denominator
in Eq. (17) is positive since ζφ0 − φ1 > 0, which can be
verified from Eqs. (12)–(14). Therefore, Eq. (17) indicates
that v > 0 for �μ > 0, as expected.

The result for D can be expressed as

D = λl + v

∫ ∞

−∞
W (x) dx, (18)

with the constant λ and function W (x) given below. The
function W (x) is defined by

W (x) ≡ h(x) −
∫ x

−∞
P (y) dy, (19)

where the function h(x) is defined by

h(x) ≡
⎧⎨
⎩

0 (x < a−),
(x − a−)/l (a− � x � a+),
1 (x > a+),

(20)

and the rescaled steady-state distribution P (x) is given by

P (x) = g(x) exp[−U (x)], (21)

with

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

C− (x < a−),

C− − v

D0l

∫ x

a−
eU (y) dy (a− � x � a+),

C+ (x > a+).

(22)

Here, the constants C± are defined by

C± ≡ (1 + φ0u∓/D0)v

(u+ − u−)l
. (23)

The constant λ in Eq. (18) is given by

λ ≡ − ζψ0u− + ψ1(u+ − u−)

ζ (D0 + φ0u−) + φ1(u+ − u−)
, (24)

where ψ0 and ψ1 are integrals

ψ0 ≡
∫ a+

a−
R(x)eU (x) dx, (25)

ψ1 ≡
∫ ∞

−∞
e−U (x) dx

∫ a+

x

R(y)eU (y) dy, (26)

involving a new function R(x) defined by

R(x) ≡ vW (x) − D0P (x). (27)

IV. MODEL WITH PIECEWISE-LINEAR POTENTIALS

As a specific example, we consider a model with piecewise
linear potentials for which V0(x) is given by

V0(x) = K|x|, (28)

with a positive parameter K; see Fig. 1(b). The parame-
ter for the locations of transitions is set as a+ = 0 (which
implies a− = −l). For this model the integrals needed to
calculate the velocity and diffusion coefficient can be carried
out analytically, as explained below. This particular model
will be referred to as the ratchet model (or the ratchet) for
convenience, though it is merely an example of ratchet-type
models, to distinguish it from other models to be discussed in
Sec. V.

A. Results

It is straightforward to obtain the constants involved in
Eq. (17) for v; the results are as follows:

ζ = 2/κ, φ0 = (eκl − 1)/κ, φ1 = l/κ, (29)

u+ = ω+, u− = ω−e−κl, (30)

where

κ ≡ K/kBT . (31)

Substituting expressions in Eqs. (29) and (30) into Eq. (17),
we obtain the average velocity v of the motor for this model:

v = κD0(ω+ − ω−e−κl )

ω+ + (2/κl)(ω− + κD0) − (1 + 2/κl)ω−e−κl
. (32)

Note that v monotonically increases with ω+, which is pro-
portional to the forward transition rate w+

n (x), Eq. (5), and
tends to the limiting value κD0 = K/γ . This is identical to
the average velocity of a particle subject to a constant external
force K . This is because, in the limit of large ω+, the particle
stays only on the left-side slopes of potentials Vn of Fig. 1(b),
since the potential is switched from Vn to Vn+1 right after
the particle on the left-side slope of Vn reaches the potential
minimum at x = nl, and this switching brings the particle to
the left-side slope of Vn+1, and so on.

The expressions for the steady-state probability density
P (x) and the auxiliary function W (x), both needed for calcu-
lating the diffusion coefficient, are presented in Appendix B.
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FIG. 2. Dependence of the diffusion coefficient D̃ on the forward
transition rate ω̃+ for the ratchet model. (a) The results for several
choices of K̃ are shown in the case of ω̃− = 0.1. (b) The results for
several choices of the rate ω̃− of backward transition, in the cases of
K̃ = 40 and 20.

From the expressions for W (x) given in Eqs. (B3) and (B4),
we have ∫ ∞

−∞
W (x) dx = l

2
− vl

2κD0

(
1 + 2

κl

)
, (33)

which contributes to the second term in Eq. (18) for D.
The integrals ψ0 and ψ1 defined by Eqs. (25) and (26),
respectively, can be carried out by substituting Eq. (27) with
W (x) and P (x) given in Eqs. (B1)–(B4) into these definitions
to obtain

ψ0 = 2v2

κ2D0

(
1 + κl

4
− eκl − 1

κl

)
− D0κl

2
, (34)

ψ1 = vl

2κ

(
1 − 4

κl

)
− v2l

2κ2D0
. (35)

From these results and Eqs. (29) and (30), we find λ defined
by Eq. (24), which contributes to the first term in Eq. (18).
Substituting this result for λ together with Eq. (33) into
Eq. (18) provides us with the analytic expression for D.

The dependence of the diffusion coefficient on ω+ is shown
in Fig. 2(a) for several choices of K and a fixed value of ω−.

The result is represented in terms of dimensionless parameters
defined by

D̃ ≡ D/D0, ω̃± ≡ lω±/D0, K̃ ≡ lK/kBT . (36)

We observe that D̃ increases monotonically with ω̃+ for K̃ =
5, whereas it has a peak around at ω̃+ ∼ 1 for large values
of K̃ . The peak height increases with K̃ . In either case, D̃

tends to 1 (D tends to D0) from below as ω̃+ → ∞ (therefore,
the curve D̃(ω̃+) exhibits a shallow dip when it has a peak).
The reason why D converges to D0 is that, in this limiting
case, the particle always experiences a constant external force
as explained above, and hence its diffusion coefficient is the
same as that of a free particle. The increase in the diffusion
coefficient controlled by the transition rate shown in Fig. 2(a)
is the diffusion enhancement in our model for molecular
motors.

Figure 2(b) shows how the diffusion enhancement is af-
fected by the rate parameter ω̃− of the backward transition
for the cases of K̃ = 20 and 40. In the both cases, the peak
height does not depend very much on ω̃−, while the peak
position moves to the right (the direction of increasing ω̃+)
as ω̃− increases.

B. Limit of small ω−

We see from Fig. 2(b) that, as ω̃− decreases, D̃ as a
function of ω̃+ for a given K̃ converges to a certain function
[indicated by the solid line in Fig. 2(b)]. This limiting function
is obtained by setting ω− = 0 in the expression for D obtained
above; we have

D = v3

κ3D2
0

[
1 + 2D0

lω+
+ 2κl

(
D0

lω+

)2
]
, (37)

with the limiting velocity

v = κD0ω+
ω+ + 2D0/l

, (38)

which has the “Michaelis-Menten–type” dependence [15] on
ω+. We are interested in this limiting case because this case
corresponds to the limit of low ATP concentration of the
previous model [9] for molecular motors, and the mechanism
of the diffusion enhancement observed in this situation has not
been clarified, as mentioned in the Introduction.

Equation (37) tells that if K̃ > 4 + 2
√

3 ≈ 7.46 then the
function D̃(ω̃+) has a peak at

ω̃max
+ = K̃/2 −1 −

√
K̃2/4 − 2K̃ + 1 (39)

and a local minimum at ω̃min
+ given by Eq. (39) with the sign of

the last term being changed. The dependence of ω̃max
+ and ω̃min

+
on K̃ are shown in Fig. 3(a); and the peak height D̃max and the
value of D̃ at the local minimum D̃min are plotted against K̃ in
Fig. 3(b). It is seen that the peak position ω̃max

+ tends to unity
as

ω̃max
+ ≈ 1 + 3/K̃ (40)

in the large K̃ limit, whereas the peak height D̃max increases
almost linearly in K̃ . In fact, we have

D̃max ≈ 2K̃/27 + 1/9 (41)
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FIG. 3. Dependencies of (a) ω̃max
+ and ω̃min

+ and (b) D̃max and D̃min

on K̃ . Here, ω̃max
+ and ω̃min

+ are the positions of the peak and the local
minimum of function D̃(ω̃+), respectively, and D̃max and D̃min are
the values of D̃ at these locations. The solid lines are the results for
the ratchet model given in Eq. (37) in the limit of ω̃− = 0, and the
dashed lines are those for the extended Poisson walk, Eq. (53).

for large K̃ . A diffusion coefficient of more than twice that
of free diffusion (D̃ > 2) can be achieved for K̃ � 25. The
mechanism of the diffusion enhancement in this limiting case
is discussed in the next section.

V. EXTENDED POISSON WALK

A. Diffusion of a random walker

For qualitative understanding of the diffusion enhancement
we have observed in the preceding section, let us take a
look at the motion of the particle for the case in which
the backward transition can be neglected (Sec. IV B). The
particle moves on the left-side slope of one of the V-shaped
potentials shown in Fig. 1 toward its bottom point right after a
forward transition occurs. After reaching the bottom, it moves
around the potential minimum until another forward transition
occurs. Suppose that we plot the particle positions x against
time t at the occasions a forward transition occurs and the
particle reaches the bottom of a potential for the first time. If
we connect these points with line segments, we will have a
trajectory like the one shown in Fig. 4.

Such a trajectory may be viewed as a trajectory of a random
walker on a one-dimensional lattice of lattice spacing l. The
walker stays on a lattice site until it takes a forward step. The
time tw for the walker to wait at the site (see the upper part of
Fig. 4) is a random variable. It also takes a nonzero time ts for
the walker to move to the next lattice site; the stepping time ts
is also a random variable. Let tc be the period of a cycle from
the start of a waiting to the end of the stepping that follows it
(Fig. 4), i.e., tc = tw + ts . The walker moves forward by the
distance l every time it completes a cycle. Hence, the average
velocity v of the walker can be expressed as

v = l/τc (42)

in terms of the average τc of tc.
The diffusion coefficient of the walker may be obtained

as follows. Consider a collection of trajectories x(t ) of the
walker starting from x = 0 at t = 0. The average of these
trajectories is a straight line x = vt . Let �x(t ) be the standard
deviation of x(t ) at time t ; the shaded area in Fig. 4 represents
the region satisfying |x − vt | < �x(t ). Then, the diffusion

tw

t

x Δt0

Δx0

O

ts

l
tc

t0

vt0

FIG. 4. Trajectory of a random walker on a one-dimensional
lattice of lattice constant l, which mimics the trajectory of the particle
in the ratchet model. It stays on a lattice site waiting to step forward
for a period of time tw, and it takes nonzero time ts to make a forward
step.

coefficient can be estimated as

D = [�x(t0)]2/2t0 = (v�t0)2/2t0, (43)

for a sufficiently large t0, where �t0 is the half-width of the
shaded region in Fig. 4 measured along the horizontal line
x = vt0. Now, �t0 can be calculated from the variance σ 2

c
of the cycle time tc of the walker as follows. The walker
completes N = vt0/l cycles while it travels distance vt0. The
variance of the time needed to complete N cycles is Nσ 2

c , and
this variance is identified as �t0

2. Hence, we have

�t0
2 = Nσ 2

c = vt0σ
2
c /l. (44)

Substitution of this expression and Eq. (42) into Eq. (43)
results in

D = σ 2
c l2/2τ 3

c . (45)

It should be noted that this expression for D obtained by
the qualitative arguments agrees exactly with the one de-
rived by mathematically rigorous calculations [16,17]; see
also Refs. [3,4].

The waiting time of the walker corresponds to the time
the Brownian particle in the ratchet model spends around
the minimum of the potential before the transition, and the
transition in the latter can be approximated as a Poisson
process if the thermal equilibrium is achieved before the
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transition. For simplicity, we assume that the waiting of the
walker is a Poisson process, and hence the waiting time tw is
distributed exponentially as

f (tw) = k exp(−ktw), (46)

with a rate constant k, which is supposed to be related with
the forward transition rate of the ratchet model. Then the
average τ and the variance σ 2 of tw are given by τ = 1/k

and σ 2 = 1/k2 = τ 2, respectively. If the stepping time ts is
zero, the walker undergoes a Poisson random walk [18]. A
walk with nonzero ts may be called an extended Poisson
walk. The average and the variance of the stepping time ts
will be denoted by τs and σ 2

s , respectively. Since the waiting
and stepping are statistically independent, the average of tc =
tw + ts are given as the sum of the averages of tw and ts :
τc = τ + τs . Similarly, we have σ 2

c = τ 2 + σ 2
s . Hence, the

expressions in Eqs. (42) and (45) are rewritten as

v = l

τ + τs

, D = l2(τ 2 + σ 2
s )

2(τ + τs )3
. (47)

Now, we examine the dependence of D given in Eq. (47) on
the average waiting time τ . If the waiting time is vanishingly
small, the diffusion coefficient is determined by the stepping
process, which yields

Ds = σ 2
s l2/2τ 3

s . (48)

As τ increases from zero, both the denominator and the
numerator in the expression for D in Eq. (47) increase. It is
easy to see that the increase in the denominator exceeds that in
the numerator if τ is small enough or large enough, implying
that D decreases with increasing τ in these regions. However,
if σs is much smaller than τs , then there is a region of τ where
inequalities σs � τ � τs hold. In this situation, we have
significantly enhanced diffusion coefficient D ∼ Ds (τ/σs )2

compared with Ds .
Precise calculations show that there is a region of τ where

D given in Eq. (47) increases with τ if σs/τs < 1/
√

3 ≈
0.577, which indicates that function D(τ ) has a peak, since
D decreases for large τ as explained above. The height of
this peak exceeds Ds (indicating diffusion enhancement) if

σs/τs < (2/
√

3 − 1)
1/2 ≈ 0.393. These results are demon-

strated in Fig. 5, where the dimensionless diffusion coefficient
D/Ds is plotted against the dimensionless waiting time τ/τs

for several choices of σs/τs . As expected from the qualita-
tive argument given in the preceding paragraph, we see that
the diffusion coefficient is significantly enhanced for small
enough σs/τs (see the graph of σs/τs = 0.2). In the limit of
small σs/τs , the location τmax and the height Dmax of the peak
in D(τ ) due to the diffusion enhancement can be estimated to
be

τmax ≈ 2τs, Dmax ≈ 2l2/27τs = (2τs/3σs )2Ds/3, (49)

respectively, from Eq. (47) by setting σs ≈ 0. To summarize,
the diffusion is enhanced when the waiting time is comparable
to the stepping time for the extended Poisson walk if the
fluctuations of the stepping time are small enough.

FIG. 5. Dependence of the diffusion coefficient D given in
Eq. (47) on the average waiting time τ for the extended Poisson
walk. The result is presented in dimensionless form for σs/τs = 1/5,
(2/

√
3 − 1)1/2, 1/

√
3, and 1.

B. Ratchet as a random walker

Now, we discuss the correspondence between the extended
Poisson walker and the ratchet model studied in Sec. IV. Let
t be the time needed for a particle moving in potential V0(x)
given by Eq. (28) to arrive at x = 0 for the first time provided
that it has started at x = −l. The probability density function
p(t ) of t (the first-passage time) is given [19] by

p(t ) = l√
4πD0t3

exp

[
− (l − κD0t )2

4D0t

]
. (50)

The average τr and variance σ 2
r of t are calculated from this

distribution as

τr = l/κD0, σ 2
r = 2l/κ3D2

0 . (51)

Note that the same results can be obtained from the closed-
form formulas for the moments of the first-passage time; see
Ref. [4] and Sec. 7 in Ref. [20]. It seems reasonable to identify
the first-passage time with the stepping time ts of the walker.
Therefore, τs and σs of the walker should correspond to τr and
σr of the ratchet. The rate k associated with the waiting time
of the walker should correspond to the rate of the transition in
the ratchet. If the thermal equilibrium of x is achieved before
the transition, then this rate is estimated as

w =
∫ ∞

−∞
w+

0 (x)Peq(x) dx = κω+/2, (52)

where Peq(x) ≡ (κ/2) exp(−κ|x|) is the equilibrium distribu-
tion for the position of a particle in potential V0(x). Identify-
ing τr , σr , and w of the ratchet with τs , σs , and k = 1/τ of the
walker, respectively, we obtain the same expression for v as
Eq. (38) and

D = v3

κ3D2
0

[
1 + 2κl

(
D0

lω+

)2
]

(53)

from the results for v and D in Eq. (47) for the walker.
Equation (53) agrees with Eq. (37) except the second term
in the brackets in the latter, which is absent in the former.
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FIG. 6. Dependence of the diffusion coefficient D̃ on the rate
parameter ω̃+. The result for the ratchet model in the absence of the
backward transition, Eq. (37), is shown by the solid line, and that for
the extended Poisson walk, Eq. (53), by the dashed line. The cases
of K̃ = 20 and 40 are presented. The solid lines here are identical to
those in Fig. 2(b).

The diffusion coefficient in Eq. (53) obtained for the ex-
tended Poisson walk is plotted, in the dimensionless form,
against ω̃+ = lω+/D0 in Fig. 6, together with the result of
Eq. (37) for the ratchet model. We see that the position and
the height of the peak of function D̃(ω̃+) for the ratchet
model agree reasonably well with those of the extended
Poisson walk. The peak for the latter model is located at
ω̃+ = ω̃max

+ ≡ [K̃ − (K̃2 − 6K̃ )1/2]/3 for K̃ > 6; the peak
position approaches unity as ω̃max

+ ≈ 1 + 3/2K̃ in the limit
of large K̃ , whereas the peak height increases linearly in K̃ as
D̃max ≈ 2K̃/27 + 1/27 in the same limit. These expressions
are to be compared with Eqs. (40) and (41), respectively. The
dependencies of ω̃max

+ and D̃max, as well as ω̃min
+ and D̃min

[which are the values of ω̃+ and D̃ at the local minimum of
D̃(ω̃+)], on K̃ are shown in Figs. 3(a) and 3(b), respectively.

In Fig. 6, we observe small discrepancies between the
results for the ratchet model and its approximation as an
extended Poisson walker for large values of ω̃+. This can be
explained as follows. As noted above, the transition in the
ratchet model can be approximated as a Poisson process if
the thermal equilibrium is achieved before the transition. This
condition is satisfied if the transition rate, which is propor-
tional to ω̃+, is sufficiently small. Since the relaxation time
for the thermal equilibrium in the potential given by Eq. (28)
is on the same order as τr in Eq. (51), the approximation
by the Poisson process is not adequate for the transition rate
w in Eq. (52) as large as or larger than 1/τr (i.e., ω̃+ �
1). Hence, the difference between the ratchet model and its
approximation as a random walker is appreciable for ω̃+ � 1.

These results demonstrate that the pronounced enhance-
ment of diffusion observed in the ratchet model for large K̃

is well described by the extended Poisson walk. Hence, we
suggest that the mechanism for the diffusion enhancement
observed in the ratchet model is essentially the same as that
for the extended Poisson walk; the diffusion is enhanced when
the time needed for the particle to reach around the potential

minimum after a transition is comparable to the time it spends
around this minimum before the next transition. Remember
that the condition for the diffusion enhancement to occur in
the extended Poisson walk is that the fluctuation (the standard
deviation) of the stepping time ts should be somewhat smaller
than its average. This condition is satisfied for large K̃ in the
ratchet model, since we have (σr/τr )2 = 2/κl = 2/K̃ , as can
be seen from Eq. (51). This explains why the larger K̃ is, the
more salient the diffusion enhancement is.

C. A previous model of molecular motors

Let us see if the analogy between a ratchet model and
the extended Poisson walk will work for the diffusion en-
hancement in our previous model of molecular motors [9],
which has some relevance to the F1-ATPase [12], which is
a biological rotary motor. This model will be referred to as
the F1 model. The F1 model is also a potential-switching
ratchet described by the Fokker-Planck Eq. (2) but with dif-
ferent functions for the potential and the transition rates: the
potential for and the forward transition rate from state 0 are
given by

V0(x) = Kx2/2, w+
0 (x) = k exp(ax), (54)

respectively, and a constant external force F is applied, where
K , k, and a are positive constants (k is proportional to the
ATP concentration). The backward transition rate w−

1 (x) from
state 1 is obtained from Eq. (6) with the left-hand side ω+/ω−
replaced by w+

0 (x)/w−
1 (x). The particle position x represents

the rotation angle of the rotor in the F1-ATPase.
It turns out [9] that the dimensionless diffusion coefficient

D̃ = D/D0 for the F1 model depends on model parameters
only though the four dimensionless quantities

K̃ ≡ Kl2/kBT , ã ≡ al, (55)

k̃ ≡ kl2

D0
exp

(
−a�μ

Kl

)
, F̃ ≡ F l + �μ

kBT
. (56)

Note that the meanings of K and K̃ here are different from
those used for the ratchet model. The solid lines in Fig. 7(a)
show the dependence of D̃ on F̃ for several values of k̃

with K̃ = 40 and ã = 5; the function D̃(F̃ ) has a peak at a
certain value of F̃ . We observe that, as k̃ decreases (the ATP
concentration decreases), the peak position F̃max moves to the
right, and the peak height increases and converges to a value
of about 1.9. The dependence of F̃max on k̃ is presented by
the solid line in Fig. 7(b), which indicates that F̃max varies
logarithmically with k̃ for small k̃.

We have found that the backward transition has little
contribution to the diffusion enhancement shown in Fig. 7 for
k̃ < 0.1; results for D̃ obtained by setting w−

n (x) = 0 (data
not shown) are almost the same as those shown in this figure
in the range F̃ > 20 for k̃ < 0.1. For small k̃, the transition
rarely occurs, and we expect that the particle in state n stays
for a while around the minimum of Vn(x) − Fx, and the
thermal equilibrium is established before the transition to state
n + 1 takes place. Therefore, the diffusion enhancement of the
F1 model for small k̃ may be understood on the basis of an
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FIG. 7. Diffusion enhancement for the F1 model for K̃ = 40 and
ã = 5. (a) The dependence of the diffusion coefficient D̃ on the
external force F̃ for k̃ = 1, 0.1, and 0.01. The dashed line indicates
D̃ for the Poisson walker given in Eq. (59) for k̃ = 0.01. (b) The
dependence of the peak position F̃max of the function D̃(F̃ ) on k̃. The
solid and dashed lines are for the F1 model and the Poisson walker,
respectively; the latter is given by Eq. (60). The results for k̃ = 1 and
0.1 in (a) and the solid line in (b) are the same as those in Figs. 2
and 3(a) of Ref. [9], respectively.

extended Poisson walk, for which the average waiting time τ

and stepping time τs are estimated as explained below.
The probability density function for x in state 0

in thermal equilibrium is given by Peq(x) ∝
exp [−K (x − F/K )2/2kBT ]. Then, the average transition
rate w is calculated from the integral in Eq. (52) by
substituting the second equation in Eq. (54) and the above
expression for Peq(x). The average waiting time is obtained
as the inverse of w, and we have

τ = (1/k) exp(−Fa/K − a2kBT/2K )

= (l2/D0k̃) exp(−F̃ ã/K̃ − ã2/2K̃ ). (57)

After a transition, the particle moves downward on the po-
tential V1(x) − F/K from the vicinity of x = F/K to the
region around x = F/K + l, and the equilibrium distribution
for x in this potential is realized in time of about γ /K =
kBT/D0K [21], which can be identified as the stepping time
τs of the extended Poisson walk:

τs = kBT/D0K = l2/D0K̃. (58)

We have no idea of how to estimate the variance σs of the
stepping time, and tentatively assume that it is small compared
with ts . Then the diffusion coefficient D of the walker is given
by Eq. (47) with σs = 0, i.e.,

D = (lτ )2/2(τ + τs )3, (59)

and D as a function of τ has a peak at τ = τmax, where τmax

and the peak height Dmax are given in Eq. (49). According to
Eq. (57), the value of τ can be varied by changing F̃ with other
parameters unaltered; The dimensionless diffusion coefficient
D̃ = D/D0 calculated from Eq. (59) as a function of F̃ for
K̃ = 40, ã = 5, and k̃ = 0.01 is shown by the dashed line in
Fig. 7(a). Comparing this result for the walker with that for
the F1 model, we find that the peak position for the walker
agrees relatively well with that for the F1 model, whereas the

FIG. 8. Dependencies of (a) the position F̃max and (b) height
D̃max of the function D̃(F̃ ) on K̃ for ã = 5 and k̃ = 0.01. The solid
and dashed lines are for the F1 model and walker, respectively.

peak height for the former is somewhat larger than that for the
latter.

The position F̃max and height D̃max of the peak in D̃(F̃ ) for
the walker are obtained from Eq. (49) as

F̃max = K̃

ã
ln

K̃

2k̃
− ã

2
, D̃max = 2K̃

27
. (60)

The dependence of F̃max on k̃ for K̃ = 40 and ã = 5 is shown
in Fig. 7(b) by the dashed line, which qualitatively agrees with
that for the F1 model shown by the solid line. In particular, the
slope −K̃/ã of the line of the former perfectly agrees with
that of the latter for small k̃. Another result of Eq. (60) that
D̃max for the walker depends only on K̃ is consistent with the
fact that D̃max of the F1 model is independent of k̃ for small k̃

mentioned above; see the solid lines for k̃ = 0.1 and 0.01 in
Fig. 7(a).

Finally, let us see if the dependencies of F̃max and D̃max on
K̃ in Eq. (60) for the walker agree with those for the F1 model.
Figure 8 presents such a comparison for ã = 5 and k̃ = 0.01.
We see that the results for the walker qualitatively reproduce
the results for the F1 model. Note that the linear dependence of
D̃max on K̃ for large K̃ observed for the F1 model is correctly
described by the walker, although the proportionality constant
of the walker is a few time larger than that of the F1 model.

From all the results presented above, we think that the
mechanism of the diffusion enhancement in the F1 model for
large K and small k (low ATP concentration) reported in our
previous work [9] is essentially the same as that in the ex-
tended Poisson walk. One possible reason why the agreement
between the results for the walker and for the F1 model is not
so good compared with that between those for the walker and
for the ratchet model considered in the present work is likely
that a forward transition can take place at any value of x for the
F1 model [Eq. (54)] while that for the ratchet model is allowed
only at a particular value of x [Eq. (5)]. The chance that the
transition occurs before the particle reaches the bottom of
the potential in the former model increases with F̃ since the
waiting time estimated by Eq. (57) becomes short; hence, both
Eqs. (57) and (58) become less reliable. Therefore, the picture
of extended Poisson walk fails quantitative description of the
dynamics of the F1 model for large F̃ , although it qualitatively
explains the occurrence of the diffusion enhancement for this
model.
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VI. CONCLUDING REMARKS

We have proposed a solvable model of ratchet type for
the Brownian motor to elucidate the mechanism underlying
the diffusion enhancement reported for a model of molecular
motors in our previous work [9]. We have suggested that
the diffusion enhancement of the present model observed in
a certain range of the transition rate (Sec. IV) and of the
previous model [9] for a certain range of external force at
low ATP concentrations is essentially the same as the one
for a simpler system which we call the extended Poisson
walk (Sec. V). In this random walk on a one-dimensional
lattice, each step of the walk consists of two processes. One is
the Poisson process for the walker to wait on a lattice site,
and the other is the stepping to the next site that takes a
nonzero time. The enhancement of diffusion occurs when the
average waiting time is comparable to the stepping time. In the
ratchet-type models, the waiting time corresponds to the time
the Brownian particle spends in (quasi) thermal equilibrium
around the minimum of the potential, and the stepping time
corresponds to the duration between a transition and when it
reaches this thermal equilibrium, approximated by the first-
passage time.

The analogy between the extended Poisson walk and the
ratchet model studied in Sec. IV works only in the limit of
small ω− (the rate of backward transition). Therefore, this
analogy cannot explain the result presented in Fig. 2(b) that
the peak position of the diffusion coefficient as a function of
the forward transition rate moves to the right as ω− increases.
Whether this behavior can be understood on the basis of a
simple physical picture will be investigated in a future work.
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APPENDIX A: DERIVATION OF EQS. (17) AND (18)

To calculate the velocity from Eq. (9), we need to obtain
the steady-state solutions Pn(x) to the Fokker-Planck Eqs. (2).
Let J (x) be the function defined by

J (x) ≡
[
f (x) − D0

d

dx

]
P (x), (A1)

where P (x) is the rescaled P0(x) introduced in Sec. II.
Making use of the relation Pn(x) = P0(x − nl) and Eq. (5),
we obtain

dJ

dx
= J [δ(x − a−) − δ(x − a+)], (A2)

with

J ≡ ω+P (a+) − ω−P (a−) (A3)

from Eq. (2). Equation (A2) implies that J (x) is piecewise
constant, and the boundary condition P (x) → 0 as x → ±∞
and Eq. (A1) suggest that J (x) → 0 as x → ±∞. Therefore,

Eq. (A2) is integrated to yield

J (x) = J θ (x − a−)θ (a+ − x), (A4)

where θ (x) is the step function: θ (x) = 0 for x < 0 and
θ (x) = 1 for x � 0. By making use of Eqs. (A1) and (A4),
we can rewrite Eq. (9) as

v =
∫ ∞

−∞
J (x) dx = J l. (A5)

Substituting Eq. (A4) into Eq. (A1) and integrating the
resulting equation with the boundary condition P → 0 as
|x| → ∞, we obtain

P (x) =
⎧⎨
⎩

C− exp[−U (x)] (x < a−),
ϕ(x) exp[−U (x)] (a− � x � a+),
C+ exp[−U (x)] (x > a+),

(A6)

where U (x) is defined in Eq. (16), function ϕ(x) is defined by

ϕ(x) = C− − J
D0

∫ x

a−
eU (y) dy, (A7)

and constants C∓ are defined by

C∓ = 1 + φ0u±/D0

u+ − u−
J , (A8)

with φ0 and u± defined in Eqs. (13) and (15). We have also
used Eq. (A3) to get Eq. (A8). From Eqs. (A5)–(A8) we obtain
Eqs. (21)–(23).

Equation (A6) for P (x) together with Eqs. (A7) and (A8)
contain the unknown constant J . This constant can be deter-
mined from the normalization condition Eq. (8), which yields

J = (u+ − u−)D0

ζ (D0 + φ0u−) + φ1(u+ − u−)
, (A9)

where φ1 is defined in Eq. (14). From Eqs. (A9) and (A5) we
obtain Eq. (17).

To calculate the diffusion coefficient from Eq. (11), we
need to solve Eq. (10) to obtain Q(x). Let L(x) be the function
defined by

L(x) ≡
[
f (x) − D0

d

dx

]
Q(x). (A10)

Then, Eq. (10) is rewritten as

dL

dx
= λ[δ(x − a−) − δ(x − a+)]

+
[
f (x) − v − 2D0

d

dx

]
P (x), (A11)

with

λ ≡ ω+Q(a+) − ω−Q(a−). (A12)

Taking account of the boundary condition L(x) → 0 as |x| →
∞, which comes from the similar condition for Q(x) and
Eq. (A10), we integrate Eq. (A11) to get

L(x) = R(x) + λθ (x − a−)θ (a+ − x), (A13)

where R(x) is defined by

R(x) ≡
∫ x

−∞
[f (y) − v]P (y) dy − 2D0P (x). (A14)
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It is convenient to rewrite this expression as follows. From the
definition of f (x) in Eq. (9) and the expression for P (x) in
Eq. (21), we have∫ x

−∞
f (y)P (y) dy = D0P (x) − D0

∫ x

−∞

dg(y)

dy
e−U (y) dy

(A15)

by making use of integration by parts. Now, Eq. (22) for g(x)
is used to rewrite the last term in Eq. (A15) as

D0

∫ x

−∞

dg(y)

dy
e−U (y) dy = −vh(x), (A16)

where h(x) is defined in Eq. (20). Substitution of Eq. (A15)
with Eq. (A16) into Eq. (A14) leads to Eq. (27), i.e.,

R(x) = vW (x) − D0P (x), (A17)

with W (x) defined in Eq. (19).
Having the function L(x) thus obtained, we substitute

Eq. (A13) with Eq. (A17) into Eq. (A10) and integrate the
resulting equation to get

Q(x) = e−U (x)

[
C − 1

D0

∫ x

a−
L(y)eU (y) dy

]
, (A18)

where constant C is given by

C = (D0 + φ0u+)λ + ψ0u+
(u+ − u−)D0

, (A19)

with φ0, u±, and ψ0 defined by Eqs. (13), (15), and (25),
respectively. We have also used Eq. (A12) to get Eq. (A19).

Equation (A18) contains the unknown constant λ through
C given in Eq. (A19). This constant cannot be determined
uniquely, because Q(x) defined as the solution of Eq. (10)
has ambiguity: if Q(x) is a solution of this equation, then
Q(x) + cP (x), with c an arbitrary constant, is also a solution.
However, this ambiguity does not affect the right-hand side of
Eq. (11), since we have∫ ∞

−∞
[f (x) − v]P (x) dx = 0

because of the first equation in Eq. (9). Therefore, we can
assign any value to λ. We find it convenient to determine λ

from the condition ∫ ∞

−∞
Q(x) dx = 0, (A20)

from which we obtain Eq. (24).
Now, we have everything we need to calculate the diffusion

coefficient by using Eq. (11), which reads

D = D0 +
∫ ∞

−∞
f (x)Q(x) dx (A21)

due to Eq. (A20). We will rewrite the second term of
Eq. (A21), because the expression for Q(x) given in Eq. (A18)
is quite complicated and hence Eq. (A21) is not convenient for
practical use. First, we use Eqs. (A10) and (A13) to proceed
as∫ ∞

−∞
f (x)Q(x) dx =

∫ ∞

−∞
L(x) dx = λl +

∫ ∞

−∞
R(x) dx.

Next, we use Eq. (A17) to obtain Eq. (18).

APPENDIX B: EXPRESSIONS FOR P (x) AND W (x)

Here, we present the explicit expressions for P (x) and
W (x) obtained for the model considered in Sec. IV. The
steady-state probability density P (x) in state 0 is found to be

P (x) = g(x)e−κ|x|, (B1)

where g(x) = C− for x < −l,

g(x) = C− − v

κlD0
(eκl − e−κx ) (B2)

for −l � x � 0, and g(x) = C+ for x > 0 with C± obtained
by substituting Eqs. (29) and (30) into Eq. (23).

The function W (x) defined by Eq. (19) is given by

W (x) =
{−(C−/κ )eκx (x < −l)

(C+/κ )e−κx (x > 0) (B3)

and

W (x) = C+ζ
(

1 + x

l

)
− C−

κ
eκx + v

κ2lD0
(eκ (x+l) − 1)

(B4)

for −l � x � 0.
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