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Universality class of a displacive structural phase transition in two dimensions
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The displacive structural phase transition in a two-dimensional model solid due to Benassi et al. [A. Benassi
et al., Phys. Rev. Lett. 106, 256102 (2011)] is analyzed using Monte Carlo simulations and finite-size scaling. The
model is shown to be a member of the two-dimensional six-state clock model universality class. Consequently,
the model features two phase transitions, implying the existence of three thermodynamically distinct phases,
namely, a low-temperature phase with long-range order, an intermediate critical phase with power-law decay of
correlations, and a high-temperature phase with short-range order.
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I. INTRODUCTION

Complex oxide solids are known to exhibit structural phase
transitions [1]. These transitions are relevant for applications,
as material properties below and above the transition typically
differ, but are also interesting in their own right, regarding
the fundamentals of solid phase behavior. Consequently, these
transitions have received considerable attention, including
increasingly by means of computer simulation. An example
is the study of Ref. [2], where a simple particle model is
proposed featuring a displacive structural phase transition.
We will, in what follows, refer to this model as the Benassi-
Vanossi-Santoro-Tosatti (BVST) model and focus exclusively
on its equilibrium phase behavior.

Despite the apparent simplicity of the BVST model, its
equilibrium phase behavior is far from trivial. Indeed, the
authors already announce the possibility of a Kosterlitz-
Thouless (KT) transition, citing Ref. [3]. Further inspection
of Ref. [3] suggests that the BVST model could be in the
universality class of the two-dimensional q = 6 clock model.
If this is the case, the model should in fact undergo two
separate phase transitions and consequently support three
thermodynamically distinct phases [3]. The purpose of the
present paper is to verify, via Monte Carlo (MC) simulations
and finite-size scaling, whether this scenario applies.

As it turns out, our simulations strikingly show that the
BVST model is a member of the q = 6 clock model univer-
sality class. The existence of two phase transitions, implying
three phases, is clearly visible. In addition, critical exponents
obtained using finite-size scaling are consistent with those of
the q = 6 clock model. In what follows we will present the
analysis leading to these results. The outline is as follows. We
describe the BVST model [2] in Sec. II A, followed by a brief
summary of the q = 6 state clock model in Sec. II B. We then
present our MC data in Sec. III, followed, in Sec. IV, by a
discussion and summary. The details of the MC methods used
in this work are provided in the Appendix.

II. MODELS

A. The BVST model

The BVST model [2] provides a simple description of a
material exhibiting a structural phase transition. It qualita-
tively resembles a system whereby, during the transition, one
of the particle species remains fixed (as do, e.g., Ba atoms
in the case of BaTiO3 [1]). The fixed species is assumed to
provide an underlying lattice structure as well as to give rise
to a (static) external field acting on the mobile species. It is
assumed there is only one type of mobile particle species, and
the total number of these particles is denoted by N . In addi-
tion, there is a pair interaction between the mobile species,
described in the form of permanent anharmonic bonds. The
total energy of the system is thus given by E = ∑

[ij ] uij +∑N
i=1 hi , where [ij ] is a sum over bonded pairs of particles

i and j , uij is the corresponding bond energy, and hi is the
external field acting on particle i.

The underlying crystal structure is assumed to be a
hexagonal lattice, i.e., the model is purely two dimensional.
The nearest-neighbor distance between lattice points is de-
noted by a. To each lattice position �Ri , a single particle
is assigned (i = 1, . . . , N ). The displacement of particle
i from its lattice position �Ri is defined as �ri = (xi, yi ).
During the simulations, the particle displacements �ri are
allowed to fluctuate, but the lattice positions �Ri remain
fixed.

Each particle is bonded to its six nearest neighbors by
means of an anharmonic spring. The spring energy is given
by uij = b2(dij − a)2 + b4(dij − a)4, with dij = | �Rj + �rj −
�Ri − �ri | the distance between the two particles. The bonds

(3N in total) are assigned once at the start of the simulation.
During the simulations, there is no breaking of bonds or the
formation of new bonds.

The external field acting on particle i is defined in terms of
its displacement �ri as

hi

ε
= 1 +

(
ri

a0

)4

− 2

[
(3 cos θi − 4 cos3 θi )

ri

a0

]2

,
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with ri =
√

x2
i + y2

i and cos θi = xi/ri . Due to the external
field hi , each lattice position �Ri is surrounded by six local
energy minima, at coordinates �Ri + a0(cos πλ/3, sin πλ/3),
with λ = 1, 2, 3, 4, 5, 6. A single particle can thus minimize
its field energy by selecting one of the surrounding minima.
In order to simultaneously minimize the bond energy addi-
tionally requires that all particles choose the same λ, which
leads to the ground state of the model, where the total energy
E = 0. Hence, upon lowering the temperature, one expects
ordering to occur, whereby the particles collectively choose
the same value of λ, reminiscent of a displacive structural
phase transition. As will be shown later, the transition to
the ordered (low-temperature) state proceeds via two phase
transitions.

In what follows b2 = 28.32U/a2, b4 = 784.35U/a4, ε =
0.2U , and a0/a = 0.05, which are the values of Ref. [2]. The
lattice constant a will be our unit of length, and temperature
will be expressed in units of U/kB , with kB the Boltzmann
constant. We use rectangular Lx × Ly simulation cells with
periodic boundary conditions in both dimensions. To prepare
the initial hexagonal lattice, we take as the unit cell an lx × ly

rectangle, with lx = a and ly = √
3a. The unit cell contains

two lattice sites, at coordinates (0,0) and (lx/2, ly/2). This unit
cell is then replicated 2n times in the x direction and n times in
the y direction, with integer n. Consequently, N = 4n2, Lx =
2an, and Ly = √

3an and it is ensured that, irrespective of n,
all our simulation cells have the same aspect ratio Lx/Ly .

B. The q = 6 clock model

The (two-dimensional) q-state clock model considers a
two-dimensional space lattice (e.g., square or hexagonal) of
sites i = 1, . . . , N . To each lattice site i, a discretized direc-
tion is attached, expressed via the angle θi = 2πni/q, with in-
teger ni = 1, . . . , q. The energy E = −J

∑
[ij ] cos(θi − θj ),

the coupling parameter J > 0, and the sum is over pairs of
nearest neighbors. The case q = 2 is the Ising model; q → ∞
is the XY model. For q = 6, the clock model features two
phase transitions [3], at temperatures T1 and T2, respectively
(we set T1 < T2 in what follows). The model thus supports
three, thermodynamically distinct, phases. The phases are
characterized by the decay of the angular correlation function
G(r ) = 〈∑rij =r cos(θi − θj )〉/Nr , where the sum is over all
pairs of sites i − j separated by a distance rij = r , Nr is the
number of such pairs, and 〈·〉 is a thermal average.

In the high-temperature phase T > T2, the correlations
decay exponentially to zero, G(r ) ∝ e−r/ξ , ξ being the corre-
lation length. The phase is disordered: There is no alignment
of the angular directions over distances beyond ∼ξ , implying
that the order parameter � = 0. Provided the simulation box
dimensions Lx,Ly > ξ , one expects only negligible finite-
size effects in simulation data.

In the low-temperature phase T < T1, there is long-range
order, with a macroscopic fraction of the site orientations
pointing in the same direction (which can be any one of the q

possibilities). Consequently, the order parameter � > 0. The
correlation function still decays exponentially, but to a finite
value G(r ) − G∞ ∝ e−r/ξ , with G∞ > 0. Provided Lx,Ly >

ξ , finite-size effects in simulation data are again negligible.

The intermediate phase T1 < T < T2 is a critical phase,
where the correlations decay as a power law G(r ) ∝ r−η, im-
plying that ξ is infinite. Power-law decay of correlations also
implies that, in the thermodynamic limit, the susceptibility χ

is infinite and the order parameter � = 0. Since Lx,Ly 

ξ is now unavoidable, finite-size effects in simulation data
are strong.

We emphasize that the correlation length ξ , the plateau
value G∞, and the exponent η are functions of temperature.
According to theoretical predictions, η(T2) ≡ η2 = 1/4 and
η(T1) ≡ η1 = 4/q2 = 1/9 [3]. Simulation estimates [4,5] are
close to these values, though not in perfect agreement.

The consensus is (but do note discussions in Refs. [6–8])
that both transitions are of the KT type [9,10], implying
exponential growth of ξ upon approach of the critical phase:

ξ (T ) ∝

⎧⎪⎪⎨
⎪⎪⎩

ea1t
−1/2
1 , t1 ≡ T1−T

T1
, 0 < t1 
 1

∞, T1 � T � T2

ea2t
−1/2
2 , t2 ≡ T −T2

T2
, 0 < t2 
 1.

(1)

For the XY model at finite temperature, only the transition at
T2 remains, for which aXY ∼ 1.5 [10]. Computer simulations
[4] show that this value is compatible with the q = 6 clock
model as well, for both transitions: a1 = a2 ∼ 1.54.

The specific heat cV of the q = 6 clock model always
remains finite. However, the variation of cV with temperature
does reveal two maxima, one occurring close to T1, the other
closer to T2. This property is convenient in simulations to
provide early evidence of two phase transitions [4].

III. RESULTS

In what follows, moderate system sizes L ≡ Lx = 30–80
are used to study the BVST model (see the Appendix for
details about the MC methods). This approach is in line with
Ref. [11], where it was noted that moderate system sizes,
in combination with finite-size scaling methods, can yield
a very adequate description of the phase behavior in the
thermodynamic limit.

A. Specific heat

In Fig. 1 we plot the specific heat per particle of the BVST
model, cV = (〈E2〉 − 〈E〉2)/NT 2, versus the temperature T ,
for various system sizes L. Consistent with the q = 6 clock
model, the data strikingly reveal two maxima, corresponding
to two phase transitions. In addition, finite-size effects in
cV are small. The absence of a strong increase of the peak
heights with L indicates that cV does not diverge at any of the
transitions, consistent with the q = 6 clock model. The reader
is encouraged to compare our Fig. 1 to specific-heat MC data
of the q = 6 clock model [4,12], which look very similar.

B. Susceptibility

For a given set of particle displacements, in line with
Ref. [2], we use the vector sum M = |∑N

i=1 �ri |/a0 to quantify
the degree of order. In the perfectly ordered ground state
M/N = 1, since here all the particles have selected the same
minimum, while M/N < 1 when the ordering is not perfect.

062109-2



UNIVERSALITY CLASS OF A DISPLACIVE STRUCTURAL … PHYSICAL REVIEW E 98, 062109 (2018)

3.0

3.2

3.4

3.6

3.8

0.045 0.050 0.055 0.060 0.065 0.070

c V

T

L=30
L=40
L=50
L=60
L=70
L=80

FIG. 1. Specific heat cV of the BVST model versus the temper-
ature T for various system sizes L. The data reveal two maxima,
consistent with the two-transition scenario of the q = 6 clock model.
Note that finite-size effects in the peak heights are weak, indicating
that cV does not diverge at any of the transitions.

In the language of vector spin models, M is analogous to the
absolute value of the total magnetization, commonly used in
studies of the q = 6 clock model [4,12]. Note, however, that
this is not the only possible choice; for example, an angular
order parameter could be used also [13]. We now define
the susceptibility χ = (〈M2〉 − 〈M〉2)/NT , which we plot in
Fig. 2 as a function of temperature, for various system sizes.
The key observations are that finite-size effects are negligible
in the low- and high-temperature regimes, while they are very
strong in the intermediate regime, roughly corresponding to
the temperature range spanned by the specific-heat maxima.
The pronounced increase of χ with L at intermediate tem-
peratures is consistent with a critical phase, where χ → ∞
in the thermodynamic limit L → ∞. Hence, Fig. 2 supports
the two-transition scenario of the q = 6 clock model, with
noncritical phases at low and high temperature, separated by
a critical phase (although we still need to check the nature of
the order in each of the phases).

C. Phase transition temperatures

To determine the transition temperatures, we perform a
finite-size scaling analysis. In a system of size L, approaching
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FIG. 2. Susceptibility χ of the BVST model versus the temper-
ature T for various system sizes L. The data reveal negligible size
effects at low and high temperature, while χ increases strongly with
L at intermediate temperatures (note the vertical logarithmic scale).
This supports the two-transition scenario of the q = 6 clock model.
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FIG. 3. Finite-size scaling analysis of the temperatures (a) T2(L)
and (b) T1(L), assuming the transitions are of the KT type. The
intercept of the lines yields the transition temperature of the ther-
modynamic limit when all three parameters are fitted. The squares
indicate the transition temperature obtained for two-parameter fits,
where a1 = a2 = aXY was imposed, using all system sizes (closed
squares) and system sizes L = 70, 80 (open squares).

the lower transition at T1 from below, Fig. 2 shows that
the slope dχ/dT initially increases and then levels off, i.e.,
dχ/dT reaches a local maximum. Let T1(L) be the tempera-
ture at the maximum. Similarly, approaching the upper transi-
tion at T2 from above, dχ/dT reaches a local minimum, defin-
ing T2(L). In the limit L → ∞, these finite-size estimators
converge to the transition temperature of the thermodynamic
limit: limL→∞ Ti (L) = Ti (i = 1, 2).

Assuming the q = 6 clock model scenario, the transitions
at T1 and T2 are both of the KT type, with ξ given by Eq. (1).
This implies scaling relations T1(L) = T1 − a2

1/ ln2(f1L) and
T2(L) = T2 + a2

2/ ln2(f2L), with fi constants of order unity
and ai the coefficients of Eq. (1) [14]. In Fig. 3(a) we fit
our T2(L) estimates to the expected scaling form. The fit
captures the data well, using T2 ≈ 0.060, a2 ≈ 1.3, and f2 ≈
1.0. Figure 3(b) shows the corresponding fit to our T1(L)
data, where T1 ≈ 0.056, a1 ≈ 1.3, and f1 ≈ 2.3 yielded the
best fit. It is gratifying that both fits yield the same value
for ai , although the expected KT value is somewhat higher.
If we repeat the procedure setting a1 = a2 = aXY ∼ 1.5 and
only fit fi and Ti , we obtain good fits also. The closed
squares in Fig. 3 indicate the transition temperatures obtained
in this way, with f1 ≈ 3.7 and f2 ≈ 1.3. Finally, again set-
ting a1 = a2 = aXY ∼ 1.5, but this time only using data for
L = 70, 80, i.e., our largest systems, the open squares are
obtained. From this analysis, we conclude that T1 = 0.0560 ±
0.0006, and T2 = 0.0600 ± 0.0006; the vertical height of
the shaded bands in Fig. 3 indicates the corresponding
ranges.
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FIG. 4. Application of the method of Loison [15] to obtain the
critical exponent η2 of the high-temperature transition. For this
analysis, only data in the high-temperature phase, 0 < t2 < 0.1, were
used, with t2 defined in Eq. (1). Substituting the accepted value
η2 = 1/4, an excellent collapse of the data is observed.

D. Critical exponents

Next we turn to measuring the critical exponent η2, i.e., the
value of η at the high-temperature transition. The latter is most
conveniently obtained using the method of Loison [15]; see
also Ref. [13], where this method is applied to the q = 8 clock
model. Here one varies T and plots the scaled susceptibility
χL−(d−η2 ), with d = 2 the spatial dimension, as a function
of the Binder cumulant U4 = 1 − 〈M4〉/3〈M2〉2. Provided the
correct value of η2 is used, the data for different system sizes
L should collapse onto a single curve. The result is shown
in Fig. 4, where the accepted value η2 = 1/4 was substituted,
using our largest set of system sizes L = 70, 80. The quality
of the collapse is quite remarkable. If we repeat the analy-
sis using all our available system sizes, a somewhat larger
exponent η2 ∼ 0.3 is obtained. In Ref. [13], it is mentioned
that deviations are likely due to logarithmic size corrections,
which still are strong in small system sizes. Hence, we believe
that η2 = 1/4 obtained for our largest systems is the most
reliable estimate, fully consistent with the q = 6 clock model.

For the low-temperature transition, Loison’s method is not
directly applicable and so to obtain η1, we follow a different
route, based on the order parameter � = 〈M〉/N . In the
critical intermediate phase, i.e., for temperatures T1 � T �
T2, the order parameter vanishes, following finite-size scaling,
as � ∝ L−η(T )/2, where the exponent η(T ) is an increasing
function of T . For T < T1, i.e., in the ordered phase, � is
finite, since here there is long-range order. Consider now the
quantity �Lη1/2, with η1 = 1/9 being the expected theoretical
value of η(T ) at the lower transition temperature T1. This
quantity should diverge with L for T < T1 (since here �

is finite), remain constant at T1, and decay to zero above
T1 [since η(T ) increases with T ]. Hence, plotting �Lη1/2

versus T , for different system sizes L, the data for different
L are expected to intersect at T = T1. The result is shown
in Fig. 5(a), which clearly reveals intersections. For a pair of
system sizes (Li, Lj ), we now define TX as the temperature
where the corresponding curves intersect. Figure 5(b) shows
TX versus 1/ ln2(L	), L	 ≡ (Li + Lj )/2, for all available
pairs (L = 30, 40, 50, 60, 70, 80, i.e., a total of 15 pairs). As
L	 increases, there is a clear trend for TX to increase as well,
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FIG. 5. Finite-size scaling analysis of the order parameter � in
the vicinity of the low-temperature transition. (a) Plot of �Lη1/2

versus T for three different system sizes L, where η1 = 1/9 was
used. Note that curves for different L intersect. (b) Intersection
temperatures TX for pairs of system sizes plotted versus 1/ ln2 L	.
The shaded region marks the lower portion of the T1 estimate range
of Fig. 3(b). As L	 increases, TX approaches this range.

approaching values that are consistent with Fig. 3(b). Hence,
while Fig. 5 does not constitute a direct measurement of η1,
it does show that the BVST model is consistent with the
theoretically expected q = 6 clock model value η1 = 1/9.

E. Correlation functions

Finally, we still present the correlation function G(r )
(Fig. 6). For T < T1, one indeed finds that G(r ) decays to
a finite plateau value, consistent with long-range order, and a
finite correlation length ξ . For T > T2, G(r ) quickly decays
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0 5 10 15 20 25 30

G
(r

)

r

FIG. 6. Correlation functions G(r ) of the BVST model obtained
at T = 0.04, 0.045 (top two curves), T = 0.056, 0.06 (middle two
curves), and T = 0.075; 0.1 (bottom two curves). The three sets of
curves represent, from top to bottom, the low-temperature phase
with long-range order, the critical intermediate phase with power-law
decay of correlations, and the high-temperature phase with short-
range order.
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FIG. 7. Shape of the nearest-neighbor pair interaction for the
BVST model, the clock model, and the generalized clock model
using p = 2.8. In this plot, the potential minimum of each interaction
was shifted to zero, followed by a scaling of the potential to have the
maximum at unity.

to zero, consistent with short-range order, and finite ξ . In the
intermediate phase, G(r ) decays slowly, but there is no sign
of G(r ) saturating to a finite value, consistent with a critical
phase where ξ is infinite. Hence, also the dependence of G(r )
on temperature is consistent with the q = 6 clock model.

IV. CONCLUSION

We have presented MC data of the BVST model, showing
that it belongs to the universality class of the two-dimensional
q = 6 clock model. The hallmark features are the presence of
two KT transitions with, consequently, three thermodynam-
ically distinct phases. Our data are consistent with the the-
oretical q = 6 clock model critical exponents η1 = 1/9 and
η2 = 1/4, of the lower and the higher transition, respectively.
Our estimates of the transition temperatures T1 and T2 are
somewhat below the Tc ≈ 0.075 reported in Ref. [2]. How-
ever, since the focus of Ref. [2] was on frictional behavior,
no finite-size scaling study was performed, which we believe
explains the deviation.

The reason the BVST model is in the q = 6 clock model
universality class is due to the external field hi and the bond
potential uij . For each particle, the field gives rise to six local
energy minima for this particle, corresponding to the clock
states. It is important to note that, already at temperatures
T ∼ T2, the external field is confining each particle to its set
of minima. Hence, even though each particle in the BVST
model has two degrees of freedom �ri = (xi, yi ), the field
effectively reduces this to a set of six possible angles θi =
πλ/3, |�ri | = a0, λ = 1, . . . , 6, just as in the clock model. If
we now plot the BVST bond energy uij as a function of
the angular difference θij between two nearest-neighboring
particles, the bell-shaped BVST curve of Fig. 7 is obtained,
which qualitatively resembles the cosine shape of the pair
potential of the clock model. Hence, in the BVST model,
both the number of states and the shape of the pair potential
correspond to the q = 6 clock model, which explains why the
universality classes are the same.

We still comment on the possibility of a single transition.
Our data indicate that the difference in transition temperatures

T2 − T1 is rather small. Hence, a critical reader might argue
that, in the limit L → ∞, the two transitions could well
merge into one. However, based on what is known about
clock models and their generalizations, this scenario is un-
likely. The above-mentioned merging of transitions is known
to happen in generalized clock models, where the nearest-
neighbor interaction uij ∼ 1 − cos2p2

(θij /2), which reduces
to the standard clock model when p = 1. The two transitions
merge into a single transition when the nearest-neighbor
interaction becomes sufficiently sharp and narrow, implying
a large enough value of p. For the q = 8 clock model, the
corresponding value p > 2.8 [13]. However, as one can see
in Fig. 7, the BVST pair potential is far removed from the
sharp and narrow shape required to bring about such merging
(on the contrary, the BVST model rather resembles p < 1).
As a side remark, if the transitions were to merge, we should
expect two-dimensional q = 6 state Potts behavior [13]. The
latter has a first-order transition [16], for which neither our
data nor that of Ref. [2] show any evidence.

Finally, we discuss what might be expected in d = 3 di-
mensions. In d = 3, the clock model has a single second-order
phase transition, for all values of q [17]. For q = 6, the critical
exponents are consistent with those of the d = 3, XY model
[18]. Hence, the two-transition scenario of d = 2 does not
survive in d = 3. We emphasize that, in the d = 3 clock and
XY models, only the lattice space is three dimensional; the
angular degrees of freedom remain two dimensional. A more
realistic description of a displacive transition in d = 3 should
likely use three-dimensional displacement vectors. For an fcc
material, a possible generalization of the BVST model could
be an fcc lattice, where, to each lattice site, 12 minima are
assigned, each one displaced a small distance in the direction
of one of the nearest neighbors. Such a model could easily be
simulated using Monte Carlo methods, but we are not aware
of such simulations having been carried out.
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APPENDIX: MONTE CARLO METHODS

We simulate the BVST model using various MC tech-
niques. The principal MC move is always the random se-
lection of a single particle, which then gets translated by
a (two-dimensional) vector drawn randomly from a circle
of radius r/a = 0.03. The use of a single-particle move re-
stricts us to moderate system sizes, owing to critical slow-
ing down, but these nevertheless suffice to demonstrate the
connection to the q = 6 clock model, our main conclu-
sion. To overcome critical slowing down, a cluster move
for the BVST model is required, the development of which
is beyond the scope of this work. For the determination
of the correlation functions (Fig. 6), standard Metropo-
lis sampling was used, where each MC move is accepted
with probability P = min[1, exp(−�E/kBT )], with �E the
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good agreement between WL energy sampling and the Metropolis
method. For WL order parameter sampling, the simulation temper-
ature that was used is marked with a square. In the vicinity of this
temperature, there is good agreement with the other methods, but
agreement deteriorates as one moves away from this temperature.

energy difference between the initial and proposed states
and T the temperature. For the determination of thermo-
dynamic quantities of interest (cV , χ,�, U4, . . .) as a func-
tion of T , we used Wang-Landau (WL) energy sampling
[19,20]. In this method, the simulation performs a random
walk on the energy range of interest 0.05 < E/N < 0.17,
chosen such that both transitions are captured (the range
was discretized in steps �E = 0.25). The principal output
of these simulations is the density of states g(E). Ther-
mal averages may then be computed for any temperature

of interest using 〈X〉 = Z−1 ∑
E XEg(E)e−E/KBT , where XE

denotes the microcanonical average of X and normalization
Z = ∑

E g(E)e−E/KBT . For example, to compute energy mo-
ments 〈Ek〉, one sets XE = Ek . To compute order parameter
moments 〈Mk〉, one sets XE = Mk

E , defined as the average
value of Mk in the bin corresponding to energy E. The latter
quantities are readily collected during WL sampling by updat-
ing a small number of array elements after each MC move. In
locating the temperatures Ti (L) of Fig. 3, the slope dχ/dT

needs to be computed. For better accuracy, we expressed
dχ/dT in terms of appropriate moments of E and M , as
opposed to using a finite-difference scheme to differentiate
χ directly (for example, d〈M〉/dT ∝ 〈ME〉 − 〈M〉〈E〉). To
further enhance efficiency, we complemented our WL simula-
tions by the collection of transition matrix elements [21,22],
following the implementation of Ref. [23]. In our simulations,
the energy range of interest is split into ∼15–30 intervals,
with a single processor assigned to each interval (runtime
per processor ∼44–88 h), the data being combined afterward.
The accept rate of MC moves varies ∼10–40 % (highest on
the high-energy side), performance being ∼4 × 106 attempted
moves per second. In Ref. [24], WL sampling was performed
over a specified order parameter range (see also Ref. [25]).
This method is advantageous for systems where reaching the
ordered state is difficult, but has the disadvantage that the
range in temperature over which one can reliably compute
thermal averages is restricted. Since now two transitions need
to be sampled, sampling over a specified energy range turned
out to be the optimal choice. In Fig. 8 we present a comparison
between measurements of the susceptibility obtained using all
three methods.
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