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Symbiotic contact process: Phase transitions, hysteresis cycles, and bistability
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We performed Monte Carlo simulations of the symbiotic contact process on different spatial dimensions (d).
On the complete and random graphs (infinite dimension), we observe hysteresis cycles and bistable regions, what
is consistent with the discontinuous absorbing-state phase transition predicted by mean-field theory. By contrast,
on a regular square lattice, we find no signs of bistability or hysteretic behavior. This result suggests that the
transition in two dimensions is rather continuous. Based on our numerical observations, we conjecture that the
nature of the transition changes at the upper critical dimension (dc), from continuous (d < dc) to discontinuous
(d > dc).
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I. INTRODUCTION

Improving our understanding of absorbing-state phase
transitions in nonequilibrium systems is of great importance,
not only because they occur in a variety of problems, but also
display critical behavior and universality [1–3]. Absorbing
states are those at which the dynamics is suppressed and no
further changes occur. Examples of these states were found in
models of epidemic spreading, opinion formation [4], popula-
tion dynamics [5], diffusion-limited aggregation [6,7], traffic
[8], and other nonequilibrium systems [9,10]. Most of these
models are characterized by a continuous phase transition
that falls into the directed percolation (DP) universality class
[1,11,12]. However, absorbing phase transitions might also be
discontinuous. Examples include the single-species restrictive
contact process models, such as the quadratic contact process
(QCP) [13–20], the Ziff-Gulari-Barshad (ZGB) model for
catalysis [21–23], and ballistic deposition with anisotropic
interactions [24,25].

The two-species contact process 2SCP was introduced
by Oliveira et al. [26] to study the effects of symbiotic
interactions in the contact process (CP) [27]. As in CP, in
2SCP the dynamics of each species evolves through sequences
of creation and annihilation, but the rate of annihilation is
reduced in the presence of a second species. Oliveira et al.
have shown that, in the mean-field limit, the absorbing-state
phase transition in 2SCP becomes discontinuous for a wide
range of the symbiotic interaction strengths [26]. However,
no evidence of a discontinuous transition in two dimensions
has been observed from numerical simulations on a square
lattice [26,28]. Here, we combine Monte Carlo simulations
and a mean-field calculation to study the nature of the referred
transition. We focus on the stability of the steady state and
hysteretic behavior. In the mean-field limit, we confirm that
the absorbing-state phase transition might be discontinuous,
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while in two dimensions it is always continuous and belongs
to the Directed percolation universality class [3,29].

The paper is organized as follows. In Sec. II we describe
the 2SCP model and derive the phase diagram and bistable
regions in the mean-field regime. The simulation results for
different underlying networks are presented in Sec. III. In
Sec. IV we draw some final conclusions.

II. THE TWO-SPECIES CONTACT PROCESS

In the 2SCP two species (A and B) are considered. Each
site of a network is either empty or occupied by only one
A particle, only one B particle, or two different particles.
At a given instant t , the state of the site i is character-
ized by a pair of variables [σi (t ), ηi (t )], where σi (t ) = 1
(ηi (t ) = 1) if the site is occupied by one A particle (B
particle) or σi (t ) = 0 (ηi (t ) = 0) otherwise. The generation of
offsprings of a given type of particle occurs through catalytic
creation processes. Precisely, the transition (0, ηi ) → (1, ηi )
represents the creation of a particle A at site i and occurs at
rate λrA, where rA is the fraction of nearest neighbors (NN)
occupied by A particles, independently of ηi . In the same
way, the transition (σi, 0) → (σi, 1) represents the creation
of a particle B and occurs at rate λrB , with rB being the
fraction of NN occupied by B particles. Also, the offspring
of a given particle can disappear at a site i through two
annihilation processes, depending on the state of the site. For
sites occupied just by one particle, the annihilation (1, 0) →
(0, 0) or (0, 1) → (0, 0) occurs at unitary rate. However, the
rate of annihilation is reduced on sites occupied by particles of
both species (symbiosis), i.e., the annihilation (1, 1) → (1, 0)
or (1, 1) → (0, 1) occurs at rate μ � 1. Moreover, the density
of particles is given by

ρ = 1

N

N∑
j=1

(σj + ηj ), (1)

where N is the number of sites in the system.
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In the 2SCP the symbiotic interaction favors the persis-
tence of the doubled occupied sites, and the critical repro-
duction rate λc decreases as the parameter μ is reduced.
Moreover, a continuous phase transition in the Directed perco-
lation universality class, is observed for μ > 1/2. The upper
critical dimension du of this model is the same of the ordinary
CP, namely, du = 4. From the mean-field equations, it was
previously found in Ref. [26] that the phase transition is
discontinuous for μ < 1/2, with μ = 1/2 identified as the
tricritical point. In what follows, we study the stability of the
steady state when the transition is discontinuous.

The state where (σi, ηi ) = (0, 0) for all i is absorbing. At
λc(μ) the system undergoes an absorbing phase transition
[26,28]. The mean-field theory for the 2SCP was first derived
in Ref. [26], assuming spatial homogeneity. Defining p0, pA,
pB , and pAB as probabilities for a given site to be empty,
occupied by only one A particle, only one B particle, or by
both species, respectively, they studied the effect of symbiotic
interactions by seeking a symmetric solution pA = pB = p,
which obeys

dp

dt
= λ(1 − pAB − 3p)(p + pAB ) + μpAB − p, (2)

and

dpAB

dt
= 2λp(p + pAB ) − 2μpAB, (3)

using the constrain p0 = 1 − 2p − pAB . The absorbing state
corresponds to p = 0 and pAB = 0. The active stationary
solutions (dp/dt = 0 and dpAB/dt = 0) are given by

p± = μ

2λ(1 − μ)
[2(1 − μ) − λ ±

√
λ2 − 4μ(1 − μ)], (4)

and

p±
AB = λ(p±)2

μ − λp± . (5)

We define the order parameter as the density of particles ρ,
which depends on both parameters (p0,±, p

0,±
AB ). Therefore,

taking into account the steady-state solutions, we calculate ρ

in the mean-field limit, for all values of the parameters λ and
μ. We focus on the limit μ < 1/2, where the 2SCP undergoes
a discontinuous phase transition [26]. Since only ρ � 0 has
physical meaning, there are three solutions, namely,

ρabsorbing = 2p0 + 2p0
AB, (6)

ρactive = 2p+ + 2p+
AB, (7)

and

ρunstable = 2p− + 2p−
AB, (8)

where the indexes “absorbing,” “active,” and “unstable” refer
to the type of solution, as discussed below.

One signature of a discontinuous transition is the presence
of hysteretic behavior. Figure 1 shows the hysteresis cycle
obtained from the mean-field calculation for the case μ =
1/4. The solution ρ = 0 (continuous red line) corresponds
to the absorbing phase. The solutions ρ = 2p+ + 2p+

AB (dot-
ted blue line) and ρ = 2p− + 2p−

AB (dashed green line) are
physical if λ � λc(μ) and λc(μ) < λ < 1, respectively, with
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FIG. 1. Hysteretic cycle for μ = 1/4, obtained from the mean-
field calculation. Symbols represent simulations performed in com-
plete graphs (circles) and random graphs (rectangles). The high-
lighted arrows indicate the direction of the cycle. The solution ρ = 0
(the red continuous line) corresponds to the stable absorbing state.
The solution ρ = 2p− + 2p−

AB (the dashed green line) is unstable for
any value of λ. Finally, ρ = 2p+ + 2p+

AB represents the stable active
solution (the dotted blue line).

λc = 2
√

μ(1 − μ). Otherwise, ρ would admit complex val-
ues. For the case μ = 1/4, we have λc = √

3/4. However,
as discussed next, the solution given by Eq. (8) is always
unstable, while the stability of other solutions depends on the
values of λ and μ.

To analyze the stability of each solution, we consider the
Jacobian matrix. The system described by Eqs. (2) and (3)
can be written as dp

dt
= f (p, pAB ) and dpAB

dt
= g(p, pAB ). The

Jacobian matrix is then

A(p, pAB ) =
(

∂f

∂p

∂f

∂pAB

∂g

∂p

∂g

∂pAB

)
. (9)

The trace τ (λ,μ) and the determinant �(λ,μ) of the matrix
A for each steady-state solution are

τ
(
p0, p0

AB

) = λ − 1 − 2μ, (10)

�
(
p0, p0

AB

) = 2μ(1 − λ), (11)

τ (p±, p±
AB ) = 2μ − λ − 1 ± 2

√
4μ2 − 4μ + λ2, (12)

and

�(p±, p±
AB ) = 4μ2 − 4μ + λ2

± (2μ − λ)
√

4μ2 − 4μ + λ2. (13)

This analysis can be summarized in Fig. 2, which shows the
(τ,�) stability diagram of the Jacobian matrix for μ = 1/4
(the same parameters as in Fig. 1). The diagram is divided
into five regions. Regions I and II correspond to the stable
and unstable nodes, respectively. Regions III and IV cor-
respond to the stable and unstable spirals. Finally, region V

corresponds to the saddle points, namely, an unstable region.
The solution ρ = 0 (dashed red line) is conditionally stable,
since for 0 � λ � 1, this solution belongs to region I of
stable nodes. However, for λ > 1, the absorbing solution is
a saddle node (region V ) and becomes unstable. The solution
ρ = 2p+ + 2p+

AB , corresponding to an active phase, is stable
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FIG. 2. The (τ, �) stability diagram of the mean-field solutions
for μ = 1/4. The regions I, II, III, IV , and V correspond to,
respectively, the stable nodes, unstable nodes, stable spirals, unstable
spirals, and saddle points. The solution ρ = 0 (continuous red line) is
stable if 0 � λ � 1, since, from this condition, the absorbing solution
lies in region I . For λ > 1 the absorbing solution lies in region
V , being therefore unstable. The active solution (dotted blue line)
ρ = 2p+ + 2p+

AB , lies in the region I if λ � λc(μ = 1/4) = √
3/4.

The solution ρ = 2p− + 2p−
AB (dashed green line) is unconditionally

unstable, since for any value of λ this solution lies in region V .

if λ � λc = √
3/4. Notice that in the range

√
3/4 < λ <

1 either absorbing or active phases are stable. This range,
therefore, bounds the bistable region. Finally, the solution
ρ = 2p− + 2p−

AB is unconditionally unstable, since for any
value of λ this solution lies in region V of saddle nodes.

III. COMPLETE AND RANDOM GRAPHS

In order to check the histeretic behavior predicted by
the mean-field calculation, we performed Monte Carlo sim-
ulations of the symbiotic contact process on complete and
random graphs. A complete graph is defined as a structure
where each node interacts with all others. The random graphs
here considered are defined by the Erdős-Rnyi prescription
[30] and constructed by the configuration model [31], where
we first define the degree of each node and then connect
them at random. In order to evolve the dynamics of 2SCP we
considered the algorithm described in Ref. [26]. Accordingly,
we define δt as the time increment associated with a given
step in the 2SCP simulation and Ns and Nd as the number
of sites occupied by one or two species, respectively. At each
time step, we choose one of the following events:

(1) Creation attempt at a site occupied only by a single
species, with probability λNsδt .

(2) Creation attempt at a site occupied by both species,
with probability 2λNdδt .

(3) Annihilation of a particle at a site occupied only by a
single species, with probability Nsδt .

(4) Annihilation of a particle at a site occupied by both
species, with probability 2μNdδt .

Since the probabilities are normalized, 1/δt = λNp +
Ns + 2μNd , where Np = Ns + 2Nd is the total number of
particles. Moreover, we take δt = 1/Np on the graphs of Np

active nodes, such that a Monte Carlo step corresponds to one
attempt event per node, on average [32]. Using this algorithm,
we follow the time evolution of the 2SCP. However, due
to finite-size effects, the absorbing configuration can always
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FIG. 3. The phase diagram of the symbiotic contact process.
Three phases can be identified: Active, Bistable, and Absorbing. The
continuous, dashed, and dotted lines represent solutions of the mean-
field equations. For μ > 1/2, the system undergoes a continuous
phase transition between the active and absorbing phase. For μ <

1/2, the system describes a discontinuous phase transition, defining a
bistable region where the active and absorbing phases are both stable.
The highlighted arrow indicates the direction of the transition for
the case μ = 0.25, where the bistable region is identified in the hys-
teretic cycle shown in Fig. 2. The open and solid symbols represent
the critical reproduction rate λc obtained from simulations performed
in complete graphs, with N = 5 × 104. For the open symbols, the
initial configuration is in the absorbing state, while for the solid
symbols the fully occupied system defines the initial configuration.

be reached, even for λ > λc(μ), what would immediately
suppress the dynamics [32,33]. To circumvent this problem,
every time that an absorbing configuration is generated, we
perform a spontaneous creation of two particles, one of each
species, in sites chosen at random. Notice that this method
guarantees that there will be at least one particle of each
species at all times.

Figure 1 shows the density of particles for a complete
graph (circles) and random graphs (rectangles) of N = 5 ×
104 nodes. The hysteresis cycle was obtained for a fixed value
of μ = 1/4. For each value of λ, we allowed the dynamics
to evolve for tmax MCS. Next, we increased and decreased λ

by constant intervals �λ, and simulated the dynamics starting
from the previous configuration, for each value of λ [34].
Each data point is an average over 102 independent config-
urations. As can be seen in Fig. 1, the results for the complete
graph are in good agreement with the mean-field solutions.
Moreover, both in the complete and random graphs the nature

(a) (b) (c)

FIG. 4. Snapshots for ordinary and symbiotic contact processes.
(a) Ordinary contact process at the distance 0.01 (absolute) or 0.006
(relative) from the critical point. (b) 2SCP at the same absolute
distance of Fig. 4(a). (c) 2SCP at the same relative distance of
Fig. 4(a).
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FIG. 5. Hysteresis cycles of the order parameter (ρ ) in terms of
the creation rate λ, for μ = 0.25, on a square lattice of linear size
L = 200. Here we consider tmax = 5 × 104 MCS (red triangles) and
tmax = 10 × 104 MCS (blue circles) as time increments. For each
cycle, the control parameter λ is increased and decreased in the range
1.0 � λ � 1.20 at the constant intervals �λ = 0.001.

of the hysteretic behavior is consistent with a discontinuous
transition.

Figure 3 shows the phase diagram of the 2SCP obtained
for a complete graph and mean-field solutions, where ac-
tive, bistable, and absorbing phases are identified. For μ >

1/2, the 2SCP undergoes a continuous absorbing-state phase
transition. The solid symbols represent the critical parameter
λc obtained by the ratio cumulant [2]. The continuous line
represents the respective mean-field solution. For μ < 1/2,
the system undergoes a discontinuous phase transition with
a bistable phase, where both the active and absorbing phases
are stable. The initial configuration here is an absorbing state
for the open symbols and a fully occupied state for the solid
symbols. Notice the agreement between the simulated data
(symbols) and the mean-field solutions.

IV. REGULAR SQUARE LATTICE

We now consider the 2SCP on regular square lattice.
Figure 4 shows snapshots of the ordinary and symbiotic
contact processes at the steady state for ε = 0.001, 0.01, 0.05,
where ε = λ − λc and λc = 1.6488(1) [32] for the

ordinary contact process (Figs. 4(a)–4(c)] and λc(μ =
0.25) = 1.13730(5) [26] for the 2SCP [Figs. 4(d)–4(f)]. For
both models, the same method described for the complete
and random graphs was used to avoid the absorbing state.
Notice that, for any value of ε, the density for actives sites of
the 2SCP is always greater than that for the ordinary contact
process.

To determine the order of the phase transition on regular
lattices, we analyze the hysteresis cycles. We employ the same
algorithms used in Sec. III to produce the QS states and the
hysteresis cycles. Figure 5 shows, for μ = 0.25, the order
parameter for two cycles in the creation rate λ. For each cycle,
the control parameter λ is varied in the range 1.0 � λ � 1.20
at constant intervals �λ = 0.001. Note that, as we double
the value of tmax, the width of the cycle is decreased. This
indicates an absence of hysteretic behavior for tmax → ∞.
Moreover, since the time necessary to reach the steady state
diverges at the critical region in the thermodynamic limit,
a system that undergoes a continuous phase transition to an
absorbing phase should exhibit a hysteresis cycle when the
control parameter is varied around its critical value [10,34].

The absence of bistability for the 2SCP on regular square
lattices can be studied by evaluating the role of initial condi-
tions on the stationary state, as described in Ref. [34]. Consid-
ering different values of the initial density ρ0 of particles, with
fixed values of λ and μ, we can evaluate the stability of each
state. Figure 6 shows the results obtained on a regular square
lattice, and on complete and random graphs. The values of
λ and μ are in a range where a possible bistable region is
identified. As expected, for the complete and random graphs
[Figs. 6(a) and 6(b)] the stable phase depends on the initial
condition considered, reflecting the presence of a bistable
region between the absorbing and active phases. However, on
a square lattice [Fig. 6(c)] the active phase is always stable, for
all considered initial conditions. This indicates that bistability
is not observed for 2SCP on two-dimensional lattices. More-
over, we conjecture that the 2SCP always have a continuous
phase transition below the upper critical dimension.

V. CONCLUSIONS

We have revisited the symbiotic contact process, where
two species interact via a reduced death rate μ, that describes

FIG. 6. The dependence of the initial density ρ0 of particles on stationary state. Accordingly, we have fixed the values of λ and μ to identify
a possible bistable behavior. (a) Complete graph, μ = 0.25 and λ − λc = 0.035. (b) Random graph, μ = 0.25 and λ − λc = 0.025. (c) Regular
square lattice, μ = 0.25 and λ − λc = 0.0127.
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the dynamics of doubled occupied sites, but individually, the
dynamics of each species is described by an ordinary contact
process. We have shown that, by using a suitable method to
generate the quasistationary state (QS), the simulations per-
formed on complete graphs are in accordance with the mean-
field solutions. Precisely, these solutions reveal a discontinu-
ous phase transition, with hysteretic behavior and a bistable
phase, where the absorbing and the active phases are both
stable. A bistable region also is detected on random graphs.
Considering simulations on regular square lattices, we show
the absence of hysteretic behavior and bistable regions, being
those properties consistent with a continuous phase transition.
Moreover, we conjecture that the 2SCP always undergoes

a continuous phase transition for any spatial dimension be-
low the upper critical dimension, but above one-dimensional
systems.
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