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Percolation-based model for tunneling conductivity in systems of partially aligned cylinders
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A model is developed for anisotropies in the conductivity in monodisperse systems of uniaxially aligned
cylindrical fibers. Concepts from percolation theory (specifically, a lattice approach toward describing percola-
tion by rods with large aspect ratios) are unified with a simple picture based upon resistors combined in series
and parallel to calculate the conductivities in fiber-based nanocomposites in directions that are longitudinal
and transverse with respect to the axis of particle alignment. Results obtained for three different orientational
distribution functions (ODFs) reveal a peak in the dependence of the longitudinal conductivity upon mean
orientational order parameter (〈S〉), qualitatively similar to findings that have been reported from computer
simulations. In contrast, the transverse conductivity decreases monotonically with increasing values of 〈S〉 for
each of the ODFs investigated.
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I. INTRODUCTION

Percolation phenomena play a central role in the struc-
ture and organization of complex networks in both physical
(tangible) [1–4] and social contexts [5–7]. For composite
materials, mechanical as well as transport properties are
strongly influenced by the formation of networks (defined by
physical proximity) of particles that provide rigidity and/or
pathways for thermal or electrical conductivity [8–12]. In
systems that contain elongated particles that have varying
degrees of alignment (that can be achieved through con-
ditions of applied external fields or rheological flow), the
distribution function over orientations provides a variable in
addition to the volume fraction (or composition) and particle
aspect ratio that characterizes the state of dispersion [13,14].
Experiments as well as computer simulations reveal that, for
systems containing rodlike particles with varying degrees of
uniaxial orientational alignment embedded within an insu-
lating matrix, strong anisotropies can develop between con-
ductivities measured along directions longitudinal and trans-
verse with respect to the alignment direction [15–20]. Such
studies have reported an interesting nonmonotonicity in the
dependence of the longitudinal conductivity upon the mean
orientational order parameter 〈S〉, such that there appears an
optimum degree of alignment at which the conductivity is
maximized [15,16,19,20]. The present work develops a the-
oretical model for the conductivity in such partially oriented
fiber-based nanocomposites, in which the longitudinal and
transverse (or, parallel and perpendicular) conductivities are
calculated as functions of the particle aspect ratio and volume
fraction, the length scale characterizing electron tunneling
between rods, the resistance between rods at contact and
the lineal fiber resistivity, and the orientational distribution
function (ODF).

*apchatte@esf.edu

Our starting point is a lattice model for percolation in
systems of rodlike particles that has been generalized to treat
systems with varying degrees of uniaxial alignment [21,22].
This formalism neglects contributions from closed loops and
assumes treelike interparticle connectivity, and we further
assume that the spatial distribution of particles is random
and homogeneous. The matrix is assumed to be perfectly
insulating. For given specifications of the volume fraction,
aspect ratio (for simplicity we consider the particles to be
of uniform size and shape, that is, monodisperse), and ODF,
this formalism enables us to identify the soft-shell thickness
or connectedness range that permits the particles to achieve
percolation. This estimate is combined with a simple model
of resistors in series and parallel to calculate the direction-
dependent conductivity. Electron transport through the mate-
rial is assumed to follow a sequence of (i) travel along the
direction of a fiber between points of contact with neighboring
rods, and (ii) tunneling jumps at such points of proximity
from one rod to the next. Reminiscent of the critical path
approximation (CPA) [23], the conductance associated with
each tunneling step is estimated by assigning to each such step
a distance equal to the critical surface-to-surface separation
that enforces the percolation threshold condition for given val-
ues of the remaining variables in the problem. This modeling
framework unifies ideas drawn from percolation theory with
existing approaches that have utilized combinations of series
and parallel resistors to characterize anisotropic conductivities
[24–26]. It should be noted that for isotropic systems of elon-
gated particles, percolation thresholds can also be calculated
within an integral equation–based formalism [27–29].

The remainder of this paper is organized in the following
way. Sections II A–II C present our model for percolation and
the connectedness distance; calculation of the longitudinal
and transverse conductivities; and, the orientational averages
of a number of circular functions that are required to com-
plete the calculation, for three different choices for the ODF,
respectively. Results from calculations based upon our model
are presented in Sec. III, followed by conclusions in Sec. IV.
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II. LATTICE MODEL FOR PERCOLATION AND
CONDUCTIVITY IN SYSTEMS OF PARTIALLY

ALIGNED MONODISPERSE RODS

A. Model for percolation in partially aligned systems of rods

We begin by presenting our model for percolation in
monodisperse systems of cylindrical rods the long axes of
which are partially aligned along a prescribed direction,
which we denote the z axis. The length and radius of the
nonoverlapping cores of the rods are assumed to be uniform,
and are denoted L and R, respectively, and the centers of the
rods are assumed to be distributed in a spatially random man-
ner. The aspect ratio, defined as L/R, is assumed to always
be much larger than unity and the rod number density and
core-occupied volume fraction, denoted ρ and ϕ, respectively,
are related by φ = πρR2L. The impenetrable core of each
individual particle is envisioned as being surrounded by a
larger coaxial cylinder with length and radius equal to L + 2λ

and R + λ, respectively, that represents a combined core-
plus-shell object, and a contact is defined to exist between a
pair of cylinders if an overlap occurs between their penetrable
shells (of lengths L + 2λ and radii R + λ). This length scale
λ thus defines the connectedness range for particle pairs.
At each such contact between a pair of rods, the tunneling
conductance is approximated by σ (r ) ≈ (e− 2 r/ξ )/ρ0,
where (i) ρ0 represents the contact resistance between a pair
of rods that touch each other directly, (ii) the shortest distance
between the surfaces of the impenetrable cores of the pair of
particles is denoted r , and (iii) the tunneling length scale ξ is
typically in the range 0.1 nm � ξ � 10 nm [30]. The present
work neglects the dependence of the tunneling resistance
upon the relative angle between the pair of rods [31], and
assumes that σ (r ) depends solely upon the separation
between particle surfaces at the point of adjacency.

For the case of a random spatial distribution of the parti-
cles, the expected average number of contacts experienced by

one rod, denoted 〈n〉, equals [32]

〈n〉 = ρ δ Vexc, (1)

where δVexc is the appropriate orientationally averaged dif-
ference in excluded volumes between the core-plus-shell, and
core-only, regions for a pair of particles. (The “excluded
volume” refers to the volume that is denied to the center of
a second particle by virtue of the constraint that the impene-
trable cores of a pair of particles are not permitted to overlap).
The orientational distribution function (ODF) for the rods,
denoted f (θ ), is normalized such that

∫ π

0 dθ sin(θ )f (θ ) = 1,
where θ denotes the angle between the axis of a rod and
the orientation direction (z axis). Our model assumes that the
ODF that depends only upon θ is independent of the azimuthal
angle ϕ.

The problem of percolation in this continuum represen-
tation can be mapped onto a lattice analog by considering
a treelike Bethe lattice in which particles are represented
by occupied sites, and where vacant lattice sites represent
locations where particles are added as the volume fraction
rises [21]. Closed loops are entirely neglected and the lattice is
assumed to be treelike. The number of links (or, equivalently,
bonds or edges) that emerge from each site, referred to as the
vertex degree, is denoted Z. (We use the uppercase symbol Z to
denote the vertex degree; the lowercase symbol z is reserved
for the appropriate direction in a Cartesian coordinate system).
If we assume that (i) the occupation probability for a randomly
selected lattice site equals the core-occupied volume fraction
ϕ, and that (ii) the average number of contacts per particle
〈n〉 (continuum picture) equals that for an occupied site (lat-
tice picture), we find that Zc = ρδVexc/φ = δVexc/πR2L.
These relations, when combined together with the appropriate
expression for the excluded volume [33] averaged over the
appropriate ODF, lead to

Z = 4 λ

π L
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⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where γ denotes the relative angle between the axes of a pair
of rods and the symbol 〈· · · 〉 indicates an average taken over
the ODF. In order to obtain the closed-form expression in
Eq. (2), we have used an accurate interpolation [34] in terms
of sin(γ ) and cos(γ ) for the complete elliptic integral of the
second kind that appears in the result for the excluded volume
between a pair of rods [33].

For the assumed treelike arrangement of particles on a
Bethe lattice where closed loops are neglected, the percolation
threshold condition is [1,35]

φc[Zc(λc, L, R)] = 1. (3)

Taken together, Eqs. (2) and (3) may be interpreted either
(i) to determine the critical volume fraction φc at which
percolation ensues (that is, there first appears a connected
cluster of infinite extent) for a fixed value of λ, or (ii) to
ascertain the critical connectedness length scale λc at which
percolation ensues for given values of L, R, and the volume
fraction φ. The latter interpretation and usage are adopted in
our present work. When the threshold condition is precisely
satisfied (that is, right at the percolation threshold) the average
number of contacts that a randomly selected rod experiences
with all of the other rods in the system, denoted 〈nc〉, satisfies
〈n〉c = Zc/(Zc − 1) = 1 + φ.
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An auxiliary quantity that will be useful for our subsequent
development is the average of 1/(n + 1), where n denotes
the number of contacts per rod, evaluated at the percolation
threshold and only for those rods that experience two or more
contacts with other particles. Under the assumption that the
number of contacts per rod follows a Poisson distribution
with an average value denoted 〈n〉, it can be shown that this
required average (which we denote ε) is given by

ε =
〈

1

n + 1

〉
n �2

=
[
1 − {

1 + 〈n〉 + 〈n〉2

2

}
e− n

]
〈n〉 [1 − {1 + 〈n〉} e− n]

. (4)

If the connectedness length scale λ is chosen to enforce
the percolation threshold requirement (that is, λ = λc) for
vanishingly small volume fractions (that is, as φ → 0), we
find that 〈n〉c → 1 and ε ≈ 0.303 89.

B. Calculation of the longitudinal and transverse conductivities

This section presents our method for estimating the con-
ductivities along longitudinal (z) and transverse (x) directions
for uniaxially aligned systems of rods. Our calculation com-
bines ideas from percolation theory as well as an admittedly
heuristic and simple model of series and parallel combinations
of resistors [24–26].

We start by considering a cube of the composite material
with each side of length denoted A, oriented such that the
direction of particle alignment (z) is parallel to one of the sets
of edges of the cube. For generality, we examine the case of
an electric field applied along the α direction (where α = x, y,
or z), and the resultant current or charge transport across faces
of the cube each perpendicular to the α direction, parallel to
each other, and of surface area A2. Our model breaks up the
calculation of the net resistance across the faces of the cube
into two parts:

(i) We envision the path of an electron as a sequence of
steps in the direction of the applied field, with each individual
step being comprised of two parts: (a) travel along the fiber
axis between a pair of rod-rod contacts, followed by (b) a
tunneling jump by way of a rod-rod contact location to another
rod. We first combine the resistances from a chain of such
events that span the sample cube additively, as resistors in
series.

(ii) We next estimate the number of such chains or path-
ways that span the sample cube, and combine the cumulative
resistance of each such chain [obtained from step (i)] as if
these are now resistors arranged in parallel.

Our calculation proceeding along the above sequence of
steps is discussed next.

For simplicity, and in keeping with the spirit of the critical
path approximation, we assume that each tunneling event
between a pair of rods crosses a distance equal to 2λc between
the surface of one rod and the next, where λc is the soft-shell
thickness that satisfies the percolation threshold condition for
the given values of L, R, and φ. With the additional assump-
tion that such tunneling jumps are distributed with forward-
hemispherical symmetry in the direction of the applied field
(that is, are oriented randomly in the hemispherical region that
corresponds to the field direction), we find that the typical
distance traveled per tunneling event in the field direction is

≈λc. The projected distance along the α direction between the
extremities of a cylindrical rod is easily verified to be equal
to L|cos(θα )|+2R| sin(θα )|, where θα is the angle between
the rod axis and the α direction; this quantity, multiplied by
ε [from Eq. (4)] and averaged over the ODF, provides an
estimate for the typical distance traveled along the fiber axis,
projected onto the field direction, between tunneling jumps
from rod to rod. [Our calculation of ε in Eq. (4) attempts to
crudely account for the fact that for a rod to not be a dead end
for charge transport, it should have at least two contacts with
other particles.] Each individual transit along the axis of a rod,
followed by tunneling to another rod, thus leads to an average
displacement 〈lα〉 in the field direction:

〈lα〉 ≈ ε [L 〈| cos (θα )|〉 + 2 R 〈| sin (θα )|〉] + λc. (5)

The number of such events that are required to traverse
the distance between opposite faces of the cube may be
estimated as ≈A/〈lα〉. Treating these steps as resistors that
may be combined in series yields the following estimate for
the resistance rα of one such pathway between sides of the
cube:

rα ≈ A

〈lα〉 [ρf L ε + ρ0e
4 λc/ξ ], (6)

where ρf denotes the resistance per unit length or lineal
resistance (in units of � m−1) along the axis of a fiber.

In order to estimate the number of such pathways linking
opposite faces of the cube, we equate this to the expected
number of intersections 〈Nα〉 between a plane surface of area
A2 that is normal to the α direction and rods in the system.
(This hypothetical surface is assumed to freely penetrate
the cores of the particles if necessary.) For this step of the
calculation we augment each rod with a shell of thickness
equal to half the tunneling range; that is, we perform the
replacements R → R + ξ/2, L → L + ξ , to account for
the fact that the tunneling probability does not diminish to
zero immediately upon crossing the boundary of the particle.
An otherwise insulating matrix containing point particles for
which both L and R vanish, but that have a nonvanishing, finite
value for ξ , would still exhibit conductive paths and nonzero
conductivity due to tunneling effects. The number of such
fiber-surface crossings is [36]

〈Nα 〉 ≈
(

φ

π

) (
A

R

)2 [(
1 + ξ

L

)
〈| cos (θα )|〉

+
(

2 R

L
+ ξ

L

)
〈| sin (θα )|〉

]
. (7)

The combination in parallel of 〈Nα〉 conductive pathways
each with resistance rα , followed by accounting for the edge
length of the cube (set equal to A initially), leads to the
following result for the conductance σα measured along the
α direction:

σα ≈ 〈Nα〉
A rα

. (8)
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Equations (5)–(8) lead to the following expressions that have been written in dimensionless form:

R ρ0 σα ≈
(

φ

π

) [[
ε

{(
L
R

)〈 | cos (θα )|〉 + 2〈 | sin (θα )〉} + λc

R

]
[( ρf R

ρ0

) (
L
R

)
ε + e4 λc/ξ

]
]

×
[(

1 + ξ

L

)
〈| cos (θα )|〉 +

(
2 R

L
+ ξ

L

)
〈| sin (θα )|〉

]
. (9)

The choices α = z and α = x in Eq. (9) yield results for the longitudinal (parallel, σ‖) and transverse (perpendicular, σ⊥)
conductivities, respectively, and the anisotropy ratio (σ‖/σ⊥ = σz/σx ) can be expressed as

σz

σx

≈
[ {

ε
[(

L
R

) 〈| cos (θz)|〉 + 2 〈| sin (θz)|〉] + λc

R

}
{
ε
[(

L
R

) 〈| cos (θx )|〉 + 2 〈| sin (θx )|〉] + λc

R

}
][ (

1 + ξ

L

) 〈| cos (θz)|〉 + (
2R
L

+ ξ

L

)〈| sin (θz)|〉(
1 + ξ

L

) 〈| cos (θx )|〉 + (
2R
L

+ ξ

L

)〈| sin (θx )|〉

]
. (10)

It bears noting that the combination of variables ρf R/ρ0 that appears in Eq. (9) is a dimensionless quantity.

C. Orientational distribution functions (ODFs) and angular averages

This section describes three different choices for the ODF and the associated averages over circular functions that are required
to calculate the longitudinal and transverse conductivities from Eq. (10). The average of the traditional orientational order
parameter, denoted 〈S〉, is given by

〈S〉 =
〈

3cos2θz − 1

2

〉
=

∫ π

0
dθz sin (θz) f (θz)

[
3cos2(θz) − 1

2

]
. (11)

The standard deviation in the orientational order parameter, denoted σS , is defined by way of the relation σS
2 = 〈S〉2 − 〈S〉2.

The ODFs described below are subsequently referred to as simply ODFs numbered (i), (ii), and (iii), respectively.

1. ODF with σS equal to zero (i)

We first consider an ODF for which σS is equal to zero for the prescribed value of 〈S〉. In this case, the ODF reduces to a
Dirac delta function located at θ0 = θz, where

cos (θ0) =
√

(1 + 2 〈S〉)/3. (12)

For this ODF, the required orientational averages are given by

〈|cos (θz)|〉 = cos (θ0), 〈| sin (θz)|〉 =
√

2 (1 − 〈S〉)/3, (13)

〈| cos (θx )|〉 = 2 sin (θ0)/π, (14)

and

〈| sin(θx )| 〉= [π (4 − π ) + (π2 − 2 π − 4) sin(θ0) + 2 π (π − 3) cos(θ0)]

π (π − 2)
, (15)

where the interpolation introduced in Eq. (3) of Ref. [22] for the complete elliptic integral of the second kind has been used in
expressing the average 〈| sin(θx )|〉. The averages 〈| sin(γ )| 〉 and 〈| cos(γ )|〉 required for use in conjunction with Eq. (2) are in
this case given by

〈| sin (γ )|〉 = 2

π

(
sin (θ0) + cos2(θ0)

{
ln

[
tan (θ0) + 1

cos (θ0)

]})
, (16)

〈| cos (γ )|〉 = cos2(θ0) if 〈S〉 � 1/4 , (17)

and

〈| cos (γ )|〉 =
(

4 x0

π
− 1

)
cos2(θ0) + 2

√
2sin2(θ0) − 1

π
, if 〈 S〉 > 1/4, (18)

where x0 = sin−1[1/
√

2 sin θ0].
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2. ODF with σS maximized for each given value of 〈S〉 (ii)

We consider next an ODF that comprises a linear combi-
nation of a pair of Dirac delta functions located at θ0 = 0 and
at θ0 = π/2, with weight factors that reproduce a prescribed
value of 〈S〉. This ODF ought to represent the maximum
possible value for σS for each given value of 〈S〉. The required
averages in this case are given by

〈|cos (θz)|〉 = (1 + 2 〈S〉)/3, 〈| sin (θz)|〉 = 2 (1 − 〈S〉)/3,

(19)

〈| cos (θx )|〉 = 4 (1 − 〈S〉)/3 π, (20)

and

〈| sin (θx )|〉 = [π (1 + 2 〈S〉) + 4 (1 − 〈S〉)]

3 π
. (21)

The averages 〈| sin(γ )|〉 and 〈| cos(γ )|〉 required for use in
conjunction with Eq. (2) are in this case given by

〈| sin (γ )|〉 = 4 (1 − 〈S〉)

9 π
[π + 2 + 2 (π − 1) 〈S〉], (22)

and

| cos (γ )| = 1

9 π
[π + 8 + 4 (π − 4) S + 4 (π + 2) S2] .

(23)

It bears emphasis that for ODFs (i) and (ii), setting
〈S〉 = 0 does not correspond to the case of a fully isotropic
orientational distribution.

3. Step function ODF (iii)

As our third and final example, we consider a step function
ODF that has been employed in a number of existing computer
simulation studies [19,20,37] of systems of partially aligned
rods:

f (θz) = 1

2 [1 − cos (β )]
, for 0 � θz � β,

and π − β � θz � π,

and f (θz) = zero, otherwise. (24)

Setting β equal to π/2 and zero corresponds to fully
isotropic and perfectly aligned orientational distributions, re-
spectively. For this ODF, it can be readily shown that

〈S〉 = cos (β ) [1 + cos (β )]/2 , (25)

and

〈S2〉= 1

5

{
1 − cos(β ) [1 + cos(β )][1 − 9cos2(β )]

4

}
. (26)

The required averages in this case are given by

〈|cos(θz)|〉 = cos2(β/2),

〈| sin(θz)|〉 = [β − sin(β ) cos(β )]

2[1 − cos(β )]
, (27)

〈| cos (θx )|〉 = [β − sin (β ) cos (β )]/π [1 − cos (β )], (28)

and

〈| sin (θx )| 〉= 2

π (π − 2)

{
π (4 − π )

2
+

(
π2 − 2 π − 4

)
8sin2(β/2)

× [β−sin (β ) cos (β )]+ π (π−3)cos2(β/2)

}
,

(29)

where the interpolation introduced in Ref. [22] for the com-
plete elliptic integral of the second kind has been used in
expressing the average 〈| sin(θx )|〉.

The averages 〈| sin(γ )| 〉 and 〈| cos(γ )|〉 for this ODF
are estimated by interpolating between the results from the
first and second ODFs, (i) and (ii), considered above using
σS/σ

max
S as the interpolation variable, where σS is calculated

from Eqs. (25) and (26) and σ max
S is calculated from the case

of ODF (ii) (above) for the given value of 〈S〉. [It can be shown
that σ max

S = √
(1 − 〈S〉) (1 + 2 〈S〉)/2]. Our interpolation

takes the form

〈| sin(γ )|〉 = 〈| sin(γ )|〉1

+
(

σS

σ max
S

)[
σS

σ max
S

+ a1

(
1 − σS

σ max
S

)]
× [〈| sin(γ )|〉2 − 〈| sin(γ )|〉1], (30)

and

| cos(γ )| = | cos(γ )|1 +
(

σS

σ max
S

)[
σS

σ max
S

+ a2

(
1− σS

σ max
S

)]
× [| cos(γ )|2 − | cos(γ )|1], (31)

where the subscripts 1 and 2 refer to the results reported pre-
viously for ODFs (i) and (ii). The forms selected for Eqs. (30)
and (31) reduce (by construction) to the results for ODFs
(i) and (ii) when σS equals either zero or σ max

S , respectively,
for any value of 〈S〉. The coefficients a1 and a2 are chosen
in order to enforce agreement with the results for the fully
isotropic situation with 〈S〉 = 0, for which it is known that
σ iso

S = 1/
√

5, 〈| sin(γ )|〉iso = π/4, and 〈| cos(γ )|〉iso = 1/2.
In the interests of completeness it should be noted that for an
isotropic system 〈| sin(θ )|〉iso = π/4 and 〈| cos(θ )|〉iso = 1/2,
regardless of direction.

It bears reiteration that setting 〈S〉 = 0 leads to the fully
isotropic orientational distribution only for ODF (iii). This is
reflected in the fact that when 〈S〉 = 0, for ODFs (i), (ii), and
(iii), the standard deviation σS equals zero, 1/

√
2, and 1/

√
5,

respectively.

062102-5



AVIK P. CHATTERJEE PHYSICAL REVIEW E 98, 062102 (2018)

FIG. 1. The nondimensionalized longitudinal and transverse
conductivities az and ax (defined as aα ≡ Rρ0σα) are shown as
functions of 〈S〉 for rods with L = 200R and for which ξ = 0.2R.
The volume fraction φ equals 0.02 and ρf R/ρ0 equals 1 (unity),
in all cases. The solid and broken curves display the longitudinal
and transverse conductivities, respectively. For each set of curves
(solid and broken), from top to bottom (viewed at the right-hand side
of the figure where 〈S〉 approaches unity), the ODFs used are the
step function ODF (iii) (topmost); ODF (i) for which σS equals zero
(middle); and ODF (ii) for which σS = σ max

S (lowermost).

III. RESULTS

We next present results for the longitudinal and transverse
conductivities as functions of the orientational order parame-
ter, obtained from calculations that use the model described in
the foregoing sections. In all cases, we assume that L = 200R

and ξ = 0.2R for the rods, which correspond to a length
of ≈1 μm, diameter of ≈10 nm, and tunneling length of
≈1 nm. The remaining variables in the problem are the
volume fraction φ, the mean value of the orientational order
parameter 〈S〉, the choice of ODF, and the dimensionless
quantity ρf R/ρ0. For each combination of these quantities,
we first use the results from Sec. II C. to calculate the required
orientational averages over trigonometric functions. These
results are then used with Eqs. (2) and (3) to determine the
threshold value for λc/R, and the conductivities are then
calculated from Eq. (9).

Figures 1 and 2 present results for the longitudinal and
transverse conductivities, and for the anisotropy ratio σz/σx ,
as functions of 〈S〉 for each of the three ODFs with ρf R/ρ0

held fixed at the value of 1 (unity). The anisotropy ratio
(Fig. 2), and the transverse conductivity (dashed lines in
Fig. 1), are found to monotonically increase, and decrease,
respectively, as functions of 〈S〉 for each of the ODFs in-
vestigated. As a function of increasing 〈S〉, the longitudi-
nal conductivity (solid lines in Fig. 1) first rises gradually
toward a peak and then shows a steep decline as perfect
alignment is approached. The solid and dashed curves in
Fig. 1 corresponding to ODFs (i) and (ii) do not merge with
each other as 〈S〉 approaches zero, because these ODFs do
not recover the isotropic distribution in this limit. For the
same reason, the anisotropy ratio (Fig. 2) approaches unity
when 〈S〉 approaches zero only for the step function ODF

FIG. 2. The anisotropy ratios between longitudinal and trans-
verse conductivities az and ax (az/ax ≡ σz/σx) are shown as
functions of 〈S〉 for rods with L = 200R and for which ξ = 0.2R.
The volume fraction φ equals 0.02 and ρf R/ρ0 equals 1 (unity), in
all cases. From top to bottom (viewed at the left-hand side of the
figure where 〈S〉 approaches zero), the ODFs used are ODF (i) for
which σS equals zero (topmost); the step function ODF (iii) (middle);
and ODF (ii) for which σS = σ max

S (lowermost).

[ODF (iii)]. The associated connectedness ranges or soft-shell
thicknesses λc/R that ensure that the percolation threshold
condition [Eq. (3)] is fulfilled are shown in Fig. 3. For the
ODFs for which σS = σ max

S and σS = zero [ODFs (i) and (ii)],
λc/R is a monotonically increasing function of the degree
of particle alignment; for the step function ODF [ODF (iii)],
λc/R shows a very shallow minimum at 〈S〉 ≈ 0.09, followed
by a subsequent monotonic increase. The peaks in the lon-
gitudinal conductivity (Fig. 1) thus arise in spite of (rather
than as a consequence of) the trend of variation in the net
displacement in the field direction per tunneling event, which

FIG. 3. The critical values of the connectedness range λc/R at
the percolation threshold are shown as functions of 〈S〉 for rods with
L = 200R and for which ξ = 0.2R. The volume fraction φ equals
0.02 and ρf R/ρ0 equals 1 (unity), in all cases. From top to bottom,
the ODFs used are ODF (ii) for which σS = σ max

S (topmost); ODF
(i) for which σS equals zero (middle); and the step function ODF (iii)
(lowermost).

062102-6



PERCOLATION-BASED MODEL FOR TUNNELING … PHYSICAL REVIEW E 98, 062102 (2018)

FIG. 4. The nondimensionalized longitudinal and transverse
conductivities az and ax (defined as aα ≡ Rρ0σα) are shown as
functions of 〈S〉 for rods with L = 200R and for which ξ = 0.2R.
In all cases, we have used the step function ODF [ODF (iii)] and
ρf R/ρ0 equals 1 (unity). The solid and broken curves display the
longitudinal and transverse conductivities, respectively. For each set
of curves (solid and broken), from top to bottom, the volume fraction
φ equals 0.04, 0.02, and 0.01.

our model assumes to be equal to λc. (For the solid curve
in Fig. 1 that corresponds to the step function ODF [ODF
(iii)], the peak in σz occurs at approximately 〈S〉 ≈ 0.49,
which is in a region where λc/R is an increasing function
of 〈S〉). Similar peaks and nonmonotonic behavior in σz as a
function of 〈S〉 have been reported in experiments [15], and
by simulations that have employed the step function ODF
[19,20]. Our results suggest that this observation may not be
limited to the step function ODF alone, and could be a more
general phenomenon that is not especially sensitive to the
details of the applicable ODF. It should be noted in addition
(although perhaps obvious from inspection of Fig. 1) that the
conductivities depend upon the choice of ODF, or in other
words, specification of 〈S〉 alone is insufficient to uniquely
determine the values of the σα .

Increasing the degree of alignment of the particles (in-
creasing 〈S〉) leads to a rise in tunneling distance λc for each
step between rods that, in turn, translates into a larger resis-
tance (smaller conductance) for each such event. Additionally,
enhanced alignment leads to a decrease (increase) in the
projected distance traveled along the particle axis in directions
transverse (longitudinal) to the alignment direction, and there-
fore to more (fewer) steps between rods required for current
transfer across the same net displacement in these directions.
The competition and interplay between these phenomena are
what (within the present model) lead to the emergence of
a peak in the longitudinal conductivity, while the transverse
conductivity remains a monotonically decreasing function of
〈S〉 (Fig. 1).

The impact of varying φ and ρf R/ρ0, with other param-
eters kept fixed, is examined in Figs. 4 and 5 for the choice
of the step function ODF [ODF (iii)]. [Qualitatively similar
results are found for ODFs (i) and (ii)]. The dependence
upon φ when ρf R/ρ0 is held fixed at unity is shown in
Fig. 4; increasing volume fractions are found to always lead

FIG. 5. The nondimensionalized longitudinal and transverse
conductivities az and ax (defined as aα ≡ Rρ0σα) are shown as
functions of 〈S〉 for rods with L = 200R and for which ξ = 0.2R.
In all cases, we have used the step function ODF [ODF (iii)] and φ

equals 0.02. The solid and broken curves display the longitudinal and
transverse conductivities, respectively. For each set of curves (solid
and broken), from top to bottom, ρf R/ρ0 equals 0.01, 1, and 100.

to greater conductivities in both longitudinal and transverse
directions. Interestingly, the peak in the longitudinal conduc-
tivity shifts toward larger values of 〈S〉 with rising particle
volume fractions, in a trend that is qualitatively similar to
one that has been noted in computer simulations [19,20].
Figure 5 shows the effects of altering ρf R/ρ0 at a fixed
volume fraction; an increase in ρf R/ρ0 can be interpreted as
an increase in the lineal resistivity of the rods for a constant
value of the tunneling resistance between rods at contact. In-
creasing ρf R/ρ0 is found to lower Rρ0σ in both longitudinal
and transverse directions, and the peak in the longitudinal
conductivity moves toward larger values of 〈S〉.

IV. CONCLUDING REMARKS

A lattice analog for percolation by rods in the continuum
has been integrated with a simple-minded and heuristic model
of resistors in series and parallel to describe conductivity
anisotropies in nanocomposites comprising an insulating ma-
trix and partially aligned, conducting, fibers. Calculations
performed for three different choices of orientational distribu-
tion function each reveal a nonmonotonic dependence of the
longitudinal conductivity σz upon the mean orientational order
parameter 〈S〉. The transverse conductivity σx , by contrast,
declines monotonically with increasing 〈S〉 in each instance.
The location of the peak in σz shifts toward higher degrees of
particle alignment with increasing particle volume fractions,
consistent with a qualitative pattern that has been observed
in more sophisticated computer simulation–based investiga-
tions [19,20]. Our findings additionally reveal the importance
of modeling the entire orientational distribution as opposed
to accounting for 〈S〉 alone, as the absolute values of the
conductivities are shown to be sensitive to the shape and
nature of the ODF (Fig. 1) and thereby to higher moments
of the order parameter. Although the present work exam-
ined the simplest case of monodisperse, randomly located
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particles, the underlying percolation theory has been gener-
alized to treat polydisperse and correlated-particle systems as
well [38]. Considering the impact of these additional variables
that permit a more realistic modeling of the state of dispersion
will be a focus of our future efforts.
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