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Spatial structure of quasilocalized vibrations in nearly jammed amorphous solids
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The low-temperature properties of amorphous solids are widely believed to be controlled by the low-frequency
quasilocalized modes. However, what governs their spatial structure and density is unclear. We study these
questions numerically in very large systems as the jamming transition is approached and the pressure p vanishes.
We find that these modes consist of an unstable core and a stable far-field component. The length scale of
the core diverges as p−1/4 and its characteristic volume diverges as p−1/2. These spatial features are precisely
those of the anomalous modes that are known to cause the boson peak in the vibrational spectra of weakly
coordinated materials. From this correspondence, we deduce that the density of quasilocalized modes must
follow gloc(ω) ∼ ω4/p2, which is in agreement with previous observations. Thus, our analysis demonstrates the
nature of quasilocalized modes in a class of amorphous materials.
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Introduction. The low-temperature T � 1 K properties of
amorphous solids are universal and markedly different from
those of crystals [1,2]. Their specific heat increases lin-
early with T and their thermal conductivity increases as T 2

[1,2]. To explain these observations, Anderson et al. [3] and
Phillips [4] proposed the famous two-level systems model,
which was later extended to the soft potential model [5–7].
This theory postulates that amorphous solids have the low-
frequency, quasilocalized vibrational modes in addition to
phonons, which can cause double-well structures in the energy
landscape. The universal properties of amorphous solids can
be explained in terms of the quantum tunneling of these two-
level systems and their interactions with phonons.

However, the current theory is phenomenological and does
not specify the nature of these localized modes, which remains
a matter of debate [8,9]. This led to a substantial effort to char-
acterize quasilocalized modes numerically. Schober and Laird
detected them in molecular dynamics simulations in a model
amorphous solid that was composed of soft spheres [10]
and later extended to Lennard-Jones glasses [11–13], vitreous
silica [14], amorphous silicon [15], and weakly jammed solids
[16]. It was demonstrated that these modes (i) have strong
anharmonicity [14,16], in accordance with the assumption
of the soft potential model [5–7]; (ii) display a vibrational
density of states (vDOS) gloc(ω) that follows a power law,
gloc(ω) ∝ ω4 [17–21], where ω is the frequency, which is in
agreement with previous arguments for disordered bosonic
systems [9,22]; (iii) consist of core and far-field components
that decay algebraically in space if they are not strongly
hybridized with phonons [18,23]. This decay is sufficiently
rapid for their participation ratio to scale as 1/N , as for truly
localized modes, where N is the number of particles; (iv)
are suppressed if the prestress is removed [20,24]; (v) and
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play an important role in mechanical failure under a load
[25–27] and in the structural relaxation near the glass tran-
sition [28,29]. Interestingly, their characteristic frequency ap-
pears to increase rapidly as that transition is approached, in
concert with a local measure of elastic stiffness [30]. Despite
these recent advances, understanding what determines the
nature and density of these modes remains a challenge.

In this Rapid Communication, we seek to answer these
questions by studying the spatial architecture of these modes
and how it is affected by the proximity of the jamming
transition. This transition is reached in finite-range repul-
sive interacting particles as the pressure, which is denoted
as p, vanishes [31,32]. Excess modes with respect to the
Debye density of states, which is called the boson peak [2]
and is a well-known property of the vibrational spectra of
amorphous solids, is singular at that point. The associated
modes, which are called “anomalous” in this context, have
been characterized in detail; they lead to a flat vibrational
spectrum above a characteristic frequency, which is denoted
as ω∗ ∼ p1/2 [32–43]. By considering very large systems, we
can study localized soft modes, even close to the jamming
transition. We find that these modes consist of an unstable
core and a stable far-field component and that the length scale
of the core diverges as p−1/4 and its characteristic volume
diverges as p−1/2. These features are precisely those of the
anomalous modes at the boson peak frequency if the prestress
is removed (which corresponds to removing all forces be-
tween interacting particles). Thus, our analysis supports that
localized soft modes are anomalous modes that are shifted to
lower frequencies via the destabilizing effect of the prestress.
From this result, we deduce that the density of quasilocalized
modes must satisfy gloc(ω) ∼ ω4/p2, which is in agreement
with previous observations [20]. Finally, we discuss how our
result on the nature of localized modes generalizes to other
glasses.

Methods. We used monodisperse, three-dimensional pack-
ings of particles with mass m that interact through a
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finite-range, harmonic potential (see Ref. [20] for details):

φ(r ) = ε

2

(
1 − r

σ

)2
H (σ − r ), (1)

where σ is the particle diameter, ε is the characteristic energy,
and H (r ) is the Heaviside step function. Length, mass, and
time are measured in units of σ , m, and

√
mσ 2/ε, respec-

tively. The packings were generated by quenching random
configurations to mechanically stable inherent structures via
the FIRE algorithm [44] and removing the rattlers that have
less than three contacting neighbors (almost all rattlers have
no contacting neighbors). We prepared 16 packings for pres-
sure p = 0.05, 0.02, 0.01, 0.005, 15 packings for p = 0.002,
and 8 packings for p = 0.001. The system size (number of
particles) is fixed at N = 1 024 000; we also analyzed systems
with N = 256 000 and confirmed that there is no system size
dependence in the analyzed quantities.

Next, we analyze the vibrational modes of these packings.
We denote the kth eigenvector as ek = [ek

1, ek
2, · · · , ek

N ] and
its eigenvalue as λk = (ωk )2, where ωk is its eigenfrequency.
The eigenvectors are orthonormalized. After removing three
translational zero modes, eigenmodes are sorted in ascending
order of their eigenvalues: ω1 < ω2 < · · · < ω3N−3. Then,
for a specified mode k, the indices of particles are sorted
in descending order of their norms: |ek

1| > |ek
2| > · · · > |ek

N |.
Particles are labeled differently for each mode.

To focus only on the quasilocalized modes and exclude
any effects that are due to hybridization with phonons, we se-
lected the vibrational modes that are located below the lowest
frequency of phonons in our analysis, as follows [18]. First,
we estimated the width of the band of the lowest-frequency
phonon via the same method as Ref. [23]. Then, we fitted
the peak of the vDOS of the lowest-frequency phonon to the
Gaussian function and obtained the mean frequency, which is
denoted as ω1, and the standard deviation, which is denoted
as �ω1, of the band. Finally, we estimated the width of the
band to be 3�ω1 and selected only the vibrational modes that
satisfy ωk ∈ [0, ω1 − 3�ω1] in our analysis. In the main text,
we denote the average over all the analyzed modes as 〈•〉k .

Results. Figure 1 shows the lowest-frequency modes of
the systems at the highest (p = 0.05) and lowest (p = 0.001)
pressures (three samples for each pressure). Each arrow in-
dicates an eigenvector component ek

i ; only those that are
larger than 1% of the largest component are shown. These
modes present a core in which the displacement is large and
heterogeneous, whose size appears to increase as the pressure
decreases.

To characterize the vibrational motions of particles in these
modes, we calculate the contribution δEk

i of particle i to the
energy of the mode k, which must satisfy λk/2 = ∑

i δE
k
i

[45]:

δEk
i = 1

4

∑
j∈∂i

[(
u

‖
ij

)2
− fij

rij

(
u⊥

ij

)2
]
, (2)

where ∂i labels the set of particles that interact with particle
i, u

‖
ij = (ek

i − ek
j ) · r̂ ij is the relative displacement between

i and j parallel to the bond ij of direction r̂ ij , u⊥
ij =√

|u‖
ij |2 − [(ek

i − ek
j ) · r̂ ij ]2 is the perpendicular component

of that relative displacement, and fij = −dφ(rij )/dr is the
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FIG. 1. Vibrational displacement field in the quasilocalized vi-
brations at (a)–(c) high (p = 0.05) and (d)–(f) low (p = 0.001)
pressures (three samples for each pressure). We show the particles’
vibrational displacements (denoted by arrows) that are larger than
1% of the largest vibrational displacement, and the particle with
the largest displacement is positioned at the center of the box.
These modes are chosen from the lowest-frequency modes in each
configuration.

contact force. Force fij is always positive in this system, and
packings are called unstressed when fij = 0 [35]. Next, we
calculate the average energy 〈δEk

i 〉k of the ith particle with
the ith largest displacement over all the quasilocalized modes
that we obtain at a specified pressure.

In Fig. 2, we plot 〈δEk
i 〉k vs the average norms 〈|ek

i |〉k . We
find that the larger the norm, the lower the energy. In particu-
lar, particles in the core (particles with large norm) have neg-
ative energies [46]. This result implies that the perpendicular
motion, namely, u⊥

ij , is highly dominant there, since it is the
only negative contribution to the energy according to Eq. (2)
and fij /rij � 1 near the jamming transition. It is generally
known that vibrational motions in the anomalous modes that
are responsible for the boson peak [35,42], nonaffine displace-
ments under global deformations near the jamming transition
[47], and the transition between double-well potentials [48]
are also largely perpendicular to bonds.

To study the spatial distribution of δEk
i , we define the radial

energy distribution function:

δE(r ) =
〈∑

i δE
k
i δ(r − ri )∑

i δ(r − ri )

〉
k

, (3)

where ri is the distance of particle i from the particle with
the lowest energy. This function measures the average energy
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FIG. 2. The average energy versus the average norm of each
particle. Both axes are normalized by the values of the particle with
the largest displacement. Error bars are shown only for pressure
p = 0.05; the other errors are comparable. The symbols are con-
nected by lines to guide the eye.

of the particles at distance r from the center of the localized
mode. Figure 3(a) shows δE(r ) for various values of p. For
the moment, we focus on data that are far from jamming,
which correspond to p = 0.05 (black line). We observe that
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FIG. 3. (a) Radial energy distribution functions δE(r ), which
are normalized by their values at the origin, for various values of
pressure p. We define the length ξ1 where the functions initially
become positive and plot it for p = 0.05. (b) Integrated radial energy
distribution functions �(r ), which are normalized by their minimum
values. We also defined the length ξ2 at which the functions attain
their minimum value and ξ3 at which the functions first become
positive. For visibility in (a) and (b), we show error bars only for
p = 0.001; the other error bars are comparable.

δE(r ) is negative up to a length scale, which we denote as
ξ1; here, ξ1 ≈ 1.5. For r � ξ1, δE(r ) is a positive quantity
and decays rapidly with distance, as expected from the decay
of the displacements. Thus, ξ1 characterizes the size of the
unstable core of the localized modes, which is stabilized by
its far-field components that correspond to r > ξ1. Note that in
previous work [18], the size of the core was measured from the
decay profile of the far-field components in several structural
glasses.

Then, we calculate the integrated radial energy distribution
function, which is defined as

�(r ) =
〈∑

ri�r

δEk
i

〉
k

. (4)

�(r ) corresponds to the average energy that the localized
modes would have if the system were cut at a distance
r from the center of the localized mode. It follows that
limr→∞ �(r ) = 〈λk〉k/2. There is a direct link between �(r )
and δE(r ):

�(r ) ≈
∫

d r ′ρG(r ′)δE(r ′), (5)

where ρ is the number density and G(r ) is the radial dis-
tribution function. [Note that this is an approximate relation
because the normalization by the number of particles is per-
formed before the averaging for δE(r ), but not for �(r ).]

�(r ) are shown for various pressures in Fig. 3(b). Again,
we focus on p = 0.05 for the moment (black line). According
to Eq. (5), the negativity of δE(r ) at small distances results in
the negativity of �(r ) at small r , which must attain its mini-
mum value at distance ξ1, which is defined above. For r > ξ1,
�(r ) gradually increases and becomes positive at a distance
that we denote as ξ3. Here, ξ3 ≈ 15, which is tenfold larger
than the core size of ξ1. In practice, this result demonstrates
that even far from the jamming transition, cutting the system
around a localized mode at a large distance r < 15 (and
imposing external forces at the particles at the boundary to
maintain the force balance) would not lead to a stable system;
the localized mode would still be unstable and rearrangements
would necessarily occur. The emerging physical picture for
quasilocalized modes is that of a core that has an elastic
instability that is caused by prestress (a phenomenon that is
similar to the well-known buckling instability) [35,45], but is
stabilized by the surrounding elastic medium. This situation
is similar to confined thin sheets, where buckling can be
prevented by adhering the system to a surrounding stabilizing
elastic medium [49].

Now, we study how the architectures of the quasilocalized
modes depend on the proximity to the jamming transition.
We consider three lengths from the observables that are intro-
duced above: We recall that ξ1 is defined as the length at which
δE(r ) becomes positive. We define ξ2 as the length at which
�(r ) attains its minimum value, which must satisfy ξ1 ≈ ξ2

according to Eq. (5). Lastly, ξ3 is smallest r for which �(r )
becomes positive. ξ1, ξ2, and ξ3 are indicated in Figs. 3(a)
and 3(b) by arrows for p = 0.05. The pressure dependences
of ξ1, ξ2, and ξ3 are shown in Fig. 4(a), which are consistent

060901-3



SHIMADA, MIZUNO, WYART, AND IKEDA PHYSICAL REVIEW E 98, 060901(R) (2018)

FIG. 4. (a) The pressure dependences of three lengths, namely,
ξ1, ξ2, and ξ3, which are defined in the main text and Fig. 3. Since ξ3

is much larger than the other two lengths, we present ξ3 divided by
8. The dashed line indicates the power-law dependence of ∝p−1/4.
(b) The pressure dependence of the volume. The dotted line indicates
the dependence of ∝p−1/2.

with the following power-law dependence:

ξ1, ξ2, ξ3 ∝ p−1/4. (6)

Therefore, the quasilocalized modes become further extended
as p → 0 and their characteristic length scale diverges at the
jamming transition. Note that the errors of ξ1 and ξ3 in Fig. 4
were estimated from the errors of δE(r ) and �(r ). ξ2 was
decided by fitting a quadratic function around the minimum
of �(r ), and errors with this fitting are shown in the figure.

Another characterization of these modes is their participa-
tion ratio, which is expressed as P k = N−1[

∑
i (e

k
i · ek

i )2]−1.
The quantity NP k is an estimate of the number of parti-
cles that are involved in the mode k [11,12,14]. We define
the average volume of the localized modes as V ≡ 〈NP k〉k ,
whose dependence on p is shown in Fig. 4(b). Once again,
we observe a singular behavior near the jamming transition,
which is consistent with

V ∝ p−1/2. (7)

Discussion. The scaling results, which are expressed as
Eqs. (6), and (7), support that the quasilocalized modes are
the anomalous modes that are responsible for the boson
peak in these systems, whose properties we now recall. Near
the jamming transition, the density of the vibrational modes

exhibits a flat spectrum g(ω) ∼ ω0 at frequencies ω > ω∗
[32,33], where ω∗ ∝ p1/2. Anomalous modes at ω∗ [whose
characteristic number must vary as N (p) ∼ g(ω∗)ω∗ ∼ p1/2]
are spatially extended but can be characterized by a finite
correlation length that diverges at the jamming transition
as �c ∝ p−1/4 [33,36,39], which is a length scale that also
characterizes the response to a local perturbation [50–52].
These results can be derived via effective medium calculations
[38,40]. Recently, a variational argument was introduced to
show that these modes can be localized on a length scale
lc and a characteristic volume V ∝ p−1/2 [43] without sig-
nificantly affecting their frequency scale. We remark that
V ∝ p−1/2 differs from ldc , where d is the spatial dimen-
sion, due to the algebraic decay of the mode magnitude in
space. Thus, the architecture that we discovered for quasilo-
calized modes is fully consistent with that of anomalous
modes.

This correspondence can be used to explain how the den-
sity of quasilocalized modes depends on the distance to the
jamming transition. The characteristic number of anomalous
modes obeys N (p) ∼ p1/2; according to this scaling law,
there is one anomalous mode in this frequency scale for every
volume V . Let us assume that a finite fraction of these modes
become quasilocalized. According to general arguments [22],
their density must follow gloc(ω) ∼ c(p)ω4. This requires
that

∫ ω∗

0
gloc(ω)dω ∼ ω∗ ∼ 1

V
. (8)

It follows that c(p) ∼ V −1ω−5
∗ ∝ p−2, as demonstrated nu-

merically [20]. Our approach provides a rationale as to why
the density of quasilocalized modes explodes near the jam-
ming transition.

Overall, our work suggests that quasilocalized modes cor-
respond to the anomalous modes that are known to control the
boson peak in finite-range interacting systems. Although this
correspondence is most stringently tested near the jamming
transition, where both objects display singular properties, we
expect it to hold away from the jamming transition as well.
If so, our conclusion should hold for Lennard-Jones glasses,
where the boson peak can also be interpreted in terms of the
distance to a jamming transition (however, it cannot vanish
due to long-range interactions) [53], and in chalcogenide
glasses and silica, where jamming corresponds to the point
at which the covalent network becomes rigid [40,54]. Since
experimental glasses are obtained from supercooled liquids
that are annealed for a long time [55], it would be important
to study the effects of the annealing in the future.
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