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Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks
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The percolation transition in growing networks can be of infinite order, following the Berezinskii-Kosterlitz-
Thouless (BKT) transition. Examples can be found in diverse systems, including coauthorship networks and
protein interaction networks. Here, we investigate how such an infinite-order percolation transition is changed by
the global suppression (GS) effect. We find that the BKT infinite-order transition breaks down, but the features
of infinite-order, second-order, and first-order transitions all emerge in a single framework. Owing to the GS
effect, the transition point pc is delayed, below which the critical region is extended. The power-law behavior of
the cluster size distribution reaches the state with the exponent τ = 2 at pc, suggesting that the system has the
maximum diversity of cluster sizes and a first-order percolation transition occurs at pc.
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Since the discovery a half century ago [1] that 1/r2-type
long-range interactions in the one-dimensional Ising model
change the phase transition type, a subject associated with
long-range interactions in diverse equilibrium and nonequi-
librium systems has received considerable attention. In perco-
lation, 1/r2-type long-range connections in Euclidean space
change the transition type to an infinite-order transition [2].
However, the idea of long-range connections cannot be im-
plemented on complex networks. Hence, modeling a first-
order percolation transition (PT) in random graphs has been
a challenging task. Against this background, an explosive
percolation model was introduced [3], in which clusters grow
according to the so-called power-of-choice rule. Two merging
clusters are optimally selected from multiple candidates to
form a giant cluster that emerges abruptly. However, it was
revealed that a global suppression (GS) rule is necessary to
guarantee a first-order PT [4]. In fact, several cluster merging
models that exhibit first-order PTs contain the key factor
of GS. Those models include the spanning-cluster-avoiding
model [5], the largest-cluster-control model [6], and the half-
restricted random graph model [7,8]. For further models, see
Ref. [9]. Owing to the research on first-order PTs, several
types of underlying mechanisms for first-order PTs were
uncovered: PTs induced by cascading failures such as k-core
percolation [10] and on multiplex networks [11]; PTs on
hyperbolic lattices [12]; and PTs induced by a rare event [13].
These examples all involve static networks in which the
system size is fixed throughout the evolution of the networks.

Many networks in the real world are growing. Examples
include coauthorship networks [14,15], the World Wide Web
(WWW) [16], and protein interaction networks [17–19]. In
growing networks, the number of nodes increases with time.

*sonswoo@hanyang.ac.kr
†bkahng@snu.ac.kr

For instance, in the coauthorship network, as a new researcher
joins a research group, the network grows. Callaway et al. [20]
introduced a simple model for such growing networks, called
the growing random network (GRN) model. A node is present
initially. At each time, once a new node is added to the
system, a link is added with probability q between a pair of
unconnected nodes chosen randomly. As q is increased, a PT
occurs at the transition point qc, beyond which a giant cluster
is generated. It was revealed that the PT of the GRN model fol-
lows the infinite-order Berezinskii-Kosterlitz-Thouless (BKT)
transition [17,18,20,21]. The order parameter, which is the
relative giant cluster size G(q ), is zero for q < qc, whereas
it increases continuously for q > qc in the essentially singular
form, G(q ) ∼ exp(−a/

√
q − qc ), where a is a positive con-

stant. The cluster size distribution exhibits critical behavior,
i.e., ns (q ) ∼ s−τ (q ) for q < qc, where τ (q ) decreases down
to 3 with increasing q, and ns (qc ) ∼ 1/s3(ln s)2 [18,21].
Accordingly, the susceptibility, i.e., the mean cluster size
〈s〉 ≡ ∑

s s2ns , is finite on both sides of qc. The behaviors of
G(q ) and 〈s〉 are depicted schematically in Figs. 1(a) and 1(b).

In this Rapid Communication, we investigate how the
infinite-order PT in growing networks is changed by a GS
rule. Suppression dynamics may arise naturally in growing
networks in the real world. For instance, in a coauthorship
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FIG. 1. Schematic plots of (a) the order parameter G and (b) the
susceptibility 〈s〉 vs q for the GRN.
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network [15], as a research group becomes larger, it can
become functionally inefficient; thus, new students are less
likely to join such a huge group, and its growth is suppressed.
To achieve our goal, we modify the GRN model by including
a GS rule, as follows. Initially, a system contain a single node.
At each time, a new node is added to the system. Thus, the
total number of nodes at time t becomes N (t ) = t + 1. To
add a link, we select two nodes: a node from a set of the
smallest clusters, denoted as R, and another node from among
all the nodes of size N . They are connected with probability
p. Because nodes belonging to the smallest clusters have two
opportunities to be linked, whereas nodes in the remaining
large clusters have a single opportunity, the growth of large
clusters is suppressed. The dynamic rule becomes global in
the process of sorting out the portion of the smallest clusters

among all the cluster sizes at each time. The set R contains
gN nodes, whereas the complementary set Rc contains the
remaining (1 − g)N nodes. Further, g ∈ [0, 1] is a parameter
that controls the size of R. This model is called the restricted
growing random network (r-GRN) model hereafter. The de-
tailed rule is presented schematically in Fig. 2 and described
in the caption.

We use the rate equation approach for analytic solutions
and perform numerical simulations. Let us define the cluster
number density ns (p, t ) for a given p at time step t as the
number of clusters of size s divided by the total number of
nodes N (t ) at t . One can write the rate equations according
to the cluster size s comparing to the largest cluster size in
R, denoted as SR , for the cluster size distribution N (t )ns as
follows:

d[N (t )ns]

dt
= p

⎡
⎣ ∞∑

i,j=1

inijnj

g
δi+j,s −

(
1 + 1

g

)
sns

⎤
⎦ + δ1s for s < SR, (1)

d[N (t )ns]

dt
= p

⎡
⎣ ∞∑

i,j=1

inijnj

g
δi+j,s − sns −

(
1 −

SR−1∑
k=1

knk

g

)⎤
⎦ + δ1s for s = SR, (2)

d[N (t )ns]

dt
= p

⎡
⎣ ∞∑

j=1

SR−1∑
i=1

δi+j,sjnj

ini

g
+

∞∑
j=1

δSR+j,sjnj

(
1 −

SR−1∑
i=1

ini

g

)
− sns

⎤
⎦ for s > SR. (3)

The first gain term on the right-hand side of Eq. (1) comes from the merging process of two clusters of size i and j . One node
is randomly selected from the set R, and the other is selected from all the nodes. The second loss term comes from the merging
process of one cluster of size s and another cluster of any size. The last term, with the Kronecker delta, is contributed by an
incoming isolated node at each time step. Note that when s = SR , the loss term needs to take into account the fact that some
clusters of size SR can belong to the set R and others with the same size can belong to the complementary set Rc. Thus, the
second loss term appears in the form p(1 − ∑SR−1

k=1
knk

g
). When s > SR , the loss term becomes simple because cluster loss occurs

only when one node is selected from all the nodes. However, one needs to count the gain term carefully when one node is selected
from a cluster of size SR from the set R. We remark that to obtain the above derivation, we ignored the case in which two nodes
are chosen from the same cluster. The reason is that this case contributes to the rate equations at a high order, O(1/N2). We
confirm the validity of this approximation by comparing the solution of the rate equation with the result of numerical simulation
later.

In the steady state, one may regard SR (p, t ) and ns (p, t ) as being time independent. Then the left-hand side of Eqs. (1)–(3)
becomes ns (p) because N (t ) = t + 1, and the rate equations are rewritten as follows:

ns = p

⎡
⎣ ∞∑

i,j=1

inijnj

g
δi+j,s −

(
1 + 1

g

)
sns

⎤
⎦ + δ1s for s < SR, (4)

ns = p

⎡
⎣ ∞∑

i,j=1

inijnj

g
δi+j,s − sns −

(
1 −

SR−1∑
k=1

knk

g

)⎤
⎦ + δ1s for s = SR, (5)

ns = p

⎡
⎣ ∞∑

j=1

SR−1∑
i=1

δi+j,sjnj

ini

g
+

∞∑
j=1

δSR+j,sjnj

(
1 −

SR−1∑
i=1

ini

g

)
− sns

⎤
⎦ for s > SR. (6)

The behaviors of the order parameter and mean cluster size
obtained from analytic solutions and numerical simulations
are shown in Fig. 3. The cluster size distributions in the
three regimes are shown in Fig. 4. We find the following
phase transition properties. There exist two transition points
pb and pc (pb < pc). The giant cluster size per node is
zero asymptotically for p < pc, jumps at pc, and is finite

for p > pc. The size distribution of finite clusters ns decays
in a power-law manner without any cutoff as ns ∼ s−τ (p)

for p < pc. However, it decays exponentially for p > pc.
Interestingly, the exponent τ (p) decreases as p is increased.
τ (p) > 3 for p < pb, and 2 < τ (p) < 3 in pb < p < pc.
The susceptibility, i.e., the mean cluster size

∑
s2ns , is finite

and diverges in the former and latter regions, respectively.
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FIG. 2. Schematic illustration of the r-GRN model. Nodes (rep-
resented by balls) in set R are dark green, whereas those in Rc are
blue. Each column represents a cluster. We start with the system
at time t = 9, which contains five clusters of sizes (1, 1, 2, 2, 4)
displayed from the second column on the left to the right in (a). Thus,
N (9) = 10. Here, the control parameter g is taken as g = 0.4; thus,
	gN
 = 4. The sets R and Rc contain four (dark green) and six (blue)
nodes, respectively. (a) At time t = 10, the leftmost red open node is
newly added. N (t ) = 11, and 	gN
 = 5. Next, two nodes, say, those
belonging to the first and second dark green clusters of sizes (1,1), are
selected, and they are merged with probability p, making a cluster
of size two. The largest cluster size in R, denoted as SR , remains
two. (b) At time t = 11, again a new node is added (the leftmost
open red ball). The new node is selected and merges into the second
cluster in R, generating a cluster of size three. Because N (11) = 12,
	gN
 = 5. The merged cluster of size three moves to Rc, whereas the
cluster of size two in Rc moves to R. (c) At time t = 12, a new node
is added. N (12) = 13, and 	gN
 = 6. Two nodes are selected, but
they are not connected with probability 1 − p. (d) At time t = 13,
a new node is added. N (13) = 14, and 	gN
 = 6. The fifth cluster
from the left in R and the first cluster in Rc merge and generate a
cluster of size five that belongs to Rc. The cluster of size four then
lies on the border between the two sets. In this case, one node belongs
to R, and the other three belong to Rc. SR is reset to four.

Therefore, the properties of an infinite-order transition, a
second-order transition, and a first-order transition appear in
the regions p < pb, pb < p < pc, and pc < p, respectively.

We note that τ = 3 at pb in the r-GRN model implies that
pb corresponds to qc in the GRN model. Thus, the mean clus-
ter size is finite up to pb. Under the GS effect, the transition
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FIG. 3. Plot of (a) G and (b) 1/〈s〉 as a function of p for
the r-GRN model with g = 0.2. Symbols represent the numerical
simulation results for system sizes N = 104 (©), 105 (�), 106 (�),
and 107 (♦). Each data point was averaged over 103 configurations.
The solid (red) lines are analytic results. The two vertical dotted lines
represent pb and pc.

point is delayed, and τ (p) decreases further to two at pc,
which is the extreme case. On the other hand, if the cluster
size distribution follows a power law without any exponential
cutoff, the largest cluster size scales with the current total
number of nodes N (t ) in the steady state as smax ∼ N1/(τ−1).
When τ decreases to two, the largest cluster grows to the
extent of the system size in the steady state. Even though the
largest cluster size increases continuously as p is increased to
pc in finite systems, the giant cluster size is still subextensive
to N (t ) for p < pc, and it becomes extensive to N (t ) at
p = pc. Thus, a discontinuous transition occurs at pc in the
thermodynamic limit. Therefore, there exist three regimes, in
which the infinite-order, second-order, and first-order transi-
tion behaviors occur successively as p is increased.

The exponent τ also depends on the model parameter g,
which is related to the suppression strength. gN nodes in the
small-cluster group have twice the opportunity to be linked,
whereas the remaining (1 − g)N nodes have one opportunity.
When g = 1, the r-GRN model reduces to the GRN model
without any suppression effect; however, in the limit g → 0,
only isolated nodes have twice the opportunity, whereas the
other nodes have only one opportunity. Thus, the suppression
strength becomes large as g decreases. Figure 5 shows the
phase diagram of the three phases as a function of the param-
eters g and p. Indeed, the phase boundaries determined by the
criteria τ = 3 and τ = 2 depend on g.

To explore the rough dependence of τ on p, we consider
a simple case in the limit g → 1/N . In this case, cluster
merging dynamics occur only between isolated nodes and
another cluster of any size. Then, the recurrence relation for
ns in the steady state is written as

d[N (t )n1]

dt
= −p(n1 + 1) + 1, (7)

d[N (t )ns]

dt
= p[(s − 1)ns−1 − sns] for s > 1. (8)

In the steady state, one may regard ns (p, t ) as being time
independent. Then the left-hand side of Eqs. (7) and (8)
becomes ns (p) because N (t ) = t + 1, and the rate equations
are rewritten as follows:

n1 = −p(n1 + 1) + 1, (9)

ns = p[(s − 1)ns−1 − sns] for s > 1. (10)
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FIG. 4. Cluster size distribution ns (p) as a function of s in different p regions. Three cases of ns (p) are distinguished for g = 0.4. (a) For
p < pb, ns (p) asymptotically follows the power law ∼s−τ (p) with τ > 3. The slope of the dotted guide line is −3. Solid lines are obtained
for p = 0.472 576 ≈ pb, 0.45, 0.4, 0.3, 0.2, and 0.1 from right to left. (b) For pb � p < pc, in the small-cluster-size region, ns (p) decays
exponentially and then exhibits power-law behavior with 2 < τ � 3. Solid (black), dashed (red), and dashed-dotted (blue) lines represent
ns (p) for p = 0.472 576, 0.657, and 0.659 45, respectively. Two dotted lines are guide lines with slopes of −2 and −3. (c) For p � pc, ns (p)
for finite clusters shows exponentially decaying distributions. Solid curves represent p = 0.6596, 0.7, 0.8, 0.9, and 1.0 from right to left. The
dotted curve is an exponentially decaying guide curve.

Therefore,

ns (p) =
�(s)�

(
1
p

+ 2
)

�
(
s + 1

p
+ 1

) n1(p) ∼ s
−

(
1
p
+1

)
. (11)

The exponent τ (p) = 1 + 1/p is independent of g. τ becomes
two when p = 1 as g → 0. These features can be seen in
Fig. 5.

The BKT transition was found originally in the two-
dimensional XY model in thermal systems [22–27]. The
underlying mechanism of the thermal BKT transition differs
from that of the PT in growing networks, but they share some
common properties. The singular part of the free energy of the
XY model behaves as f (t ) ∼ exp(−bt−1/2) with a positive
constant b for the reduced temperature t = (T − Tc )/Tc > 0.
The PT order parameter G(p) of the GRN model behaves
similarly for p > pc.
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FIG. 5. Phase diagram of the r-GRN model. Two transition
points, pb (�) and pc (©), are determined for various g. ns (p, g)
decays following a power law with τ (p) > 3 in the infinite-order
critical region and 2 < τ (p) < 3 in the second-order critical region.
Thus, the mean cluster size is finite and diverges in those regions,
respectively. As g approaches one, the two transition points are
closer and converge to the critical point of an infinite-order transition,
represented by �.

The correlation function decays in a power-law manner
as �(r ) ∼ r−η(T ) for t < 0 in a thermal system, where the
exponent η(T ) ∼ T varies continuously depending on the
temperature T . This continuously varying exponent η(T )
corresponds to the continuously varying exponent τ (p) − 1 in
percolation, because the susceptibility is obtained from χ ∼∫

d2r�(r ) in the thermal system and
∑

s2ns in percolation.
The susceptibility diverges for η < 2 in thermal systems,
which corresponds to the behavior for τ < 3 in the percolation
system. The correlation length ξ (t ) = ∞ for t < 0 in thermal
systems. The characteristic cluster size s∗ = ∞ for p < pc in
percolation. On the other hand, for the GRN model proposed
by Callaway et al. [20], τ > 3 for p � p∗

c , with a logarithmic
correction at p∗

c [18,21], and thus the susceptibility is finite at
p = p∗

c , where p∗
c is the percolation threshold of the GRN

model. However, for the r-GRN model, it diverges in the
region pb � p � pc, because 2 � τ � 3 in that region. Thus,
χ diverges at pc. This result implies that the r-GRN model
behaves more as the BKT transition in the thermal system than
the GRN model does.

The BKT transition can occur even in static networks, for
instance, the hierarchical networks with short-range and long-
range connections [12,28]. It would be interesting to check
whether the diverse phases and phase transitions we obtained
occur in that static network when the GS rule is applied.
Pattern formation by topological defects in liquid crystals
has recently drawn considerable attention [29,30]. Various
patterns generated in that system are essentially governed by
the BKT transition. It would be nontrivial and interesting to
note how those patterns can be changed when the system is
subjected to a certain GS dynamics.

The reduction of the exponent τ = 2 at pc from τ = 3
by the GS effect implies that the system exhibits the maxi-
mum diversity of cluster sizes. In complex systems, diversity
is a crucial factor for sustaining systems in diverse fields,
for example, financial-economic systems [31] and evolving
biosystems [32]. Thus, the idea of the GS may be helpful for
establishing affirmative action policies in financial systems or
other evolving systems. Moreover, this idea could be applied
to diverse nonequilibrium-phenomenon-based models such as
epidemic models [33], voter models [34], and so on.
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In summary, we investigated how the BKT infinite-order
PT in growing networks responds to a globally suppressive
environment against the growth of large clusters. The tran-
sition point is delayed, and the critical region of the BKT
transition is extended. In the extended region, the fluctuations
of finite clusters diverge, as we often observe in second-
order transitions, but the giant cluster does not form. At the
transition point, the order parameter jumps from zero to a
finite value, so a first-order transition occurs. Accordingly,

those anomalous transition behaviors occur beyond the BKT
transition in growing networks.
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