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Spatiotemporal description of long-delayed systems: Ruling the dynamics

Francesco Marino1 and Giovanni Giacomelli2
1CNR–Istituto Nazionale di Ottica, largo E. Fermi 6, I-50125 Firenze, Italy

2CNR–Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy

(Received 22 October 2018; published 10 December 2018)

The data generated by long-delayed dynamical systems can be organized in patterns by means of the so-called
spatiotemporal representation, uncovering the role of multiple timescales as independent degrees of freedom.
However, their identification as equivalent space and time variables does not lead to a correct dynamical rule.
We introduce a framework for a proper description of the dynamics in the thermodynamic limit, providing a
general avenue for the treatment of long-delayed systems in terms of partial differential equations. Such scheme
is generic and does not rely on either the vicinity to bifurcations or on multiple-scale approaches. We discuss
the validity of this method and consider the exemplary cases of long-delayed excitable, bistable, and Landau
systems.
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Introduction. In spite of their long history, time-delayed
systems are still an active research topic at the interface of
physics, biology, mathematics, and engineering [1]. Indeed,
time lags appear naturally in realistic models of disparate
phenomena, e.g., whenever the finite propagation times and
response speeds or memory effects become relevant. In this
context, a quite remarkable case is represented by long-
delayed systems, where the delay in a feedback loop is much
larger than any other characteristic timescale involved (for a
recent review, see [2]). The main tool for such an investi-
gation was first introduced in [3], as a reorganization of the
data making evident strong similarities to a one-dimensional,
spatially extended system. This method, called spatiotemporal
representation (STR) is based on the idea that the dynamics on
a single delay cell evolves along a pseudotime represented by
the index of the subsequent cells. As such, the time variable t

is written as

t = σ + θT , (1)

where {σ, θ} are named pseudospace and -time, respectively,
and T is the delay time. While this mapping is always feasible,
it is only in the long-delay limit that σ and θ are well-
separated timescales thus behaving, to a certain extent, as
mutually independent variables [2]. In this case, a variety
of equivalent spatiotemporal phenomena, hidden in the long-
delayed dynamics were indeed demonstrated. These include
domain coarsening and nucleation [4–6], front pinning and
localized structures [7–10], chimera states [11], and more
recently, critical phase transitions [12]. In all the above situa-
tions, the identification of σ and θ with a spatial and temporal
variable, respectively, appeared as the most natural. Indeed,
the patterns are seen to evolve over the unbounded θ direction,
spreading through the σ axis in a finite cell subject to (almost)
periodic boundary conditions. However, such an identification
cannot be easily inferred by a microscopical observation of the
system (i.e., far from boundaries).

In this work, we critically discuss the STR and provide
evidence that in fact it is not the appropriate framework for

a spatiotemporal interpretation of the long-delay dynamics. In
particular, even if the data reorganization provided by Eq. (1)
discloses the existence of two-dimensional correlations and
pattern structures, we show that an alternative setup represents
the proper spatiotemporal rule in the thermodynamic limit
T → ∞.

Representations. As a starting point, we recall that Eq. (1)
must be accompanied by a suitable definition of the boundary
conditions (BCs). Without loss of generality, we consider the
following model:

ẏ(t ) = G(y(t ), y(t − T )); (2)

more complicated situations involving multiple variables
and/or hierarchically long delays [13,14] can be treated in the
same way. To solve Eq. (2), the function y must be assigned
in the interval [−T , 0]. Using (1) and defining Y (σ, θ ) = y(t ),
the problem (2) rewrites as

∂σY (σ, θ ) = G(Y (σ, θ ), Y (σ, θ − 1)), (3)

and the initial value problem translates into

Y (σ,−1) = φ(σ ), σ ∈ (0, 1] , (4)

with the BC

Y (σ + T , θ − 1) = Y (σ, θ ), (5)

where φ is Y as assigned in the first delay interval.
In the presence of temporal correlations of y between

consecutive delay units, the pattern in the space (σ, θ ) is
correlated along the θ direction. In this case, the condition (5)
can be written in the thermodynamic limit as

Y (σ + T , θ ) ≈ Y (σ, θ ), (6)

in analogy with the periodic BCs used in spatially extended
(SE) systems. We notice that a specific treatment would be
required for antiperiodic solutions, found in long-delayed,
negative-gain feedback systems [5] as they show peculiar
symmetries.
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FIG. 1. (a) Excitable pulse propagation in the space-time {σ, θ}
obtained by numerical integration of Eq. (7) with zero noise. Pa-
rameters: g = 0.1, τ = 2 × 103, J = −0.51, α = 1.5, ε = 0.01. The
insets represent two transverse cuts along the σ and θ directions. (b)
Pictorial view of the manifolds associated to the STR (left) and DR
(right). The dashed circular lines mark the initial condition domains.
The curved and straight arrows indicate, respectively, the periodic
BCs and the direction of evolution.

The STR framework is thus defined by Eqs. (3), (4) and
(6), leading to the commonly adopted identification of σ and θ

as pseudospace and -time, respectively. This idea is supported
by the behavior of the maximal comoving Lyapunov exponent
[15,16], which also yields a clear determination of the intrinsic
drift present in long-delayed systems due to causality [2].

On the other hand, Eq. (3) does not provide an explicit
evolution rule in θ . The only method to derive it has been
a multiple-scale approach [13,15–19], mainly separating fast
and slow scales into different perturbation orders close to a
supercritical Hopf or a saddle node on circle [8] bifurcation.
Nevertheless, the generalization of the above scheme to other
cases, e.g., involving finite-amplitude solutions [20,21], is not
straightforward. One of these situations is represented by the
long-delayed FitzHugh–Nagumo (FHN) system, introduced
in [10] to model an excitable semiconductor laser with feed-
back,

u̇ = F (u) + w + gu(t − T ) + ζ,
(7)

ẇ = −ε (w − J + αu),

that describes the evolution of two variables {u,w} evolv-
ing with characteristic timescales whose ratio is the small
parameter ε. Here the function F (u) = u − u3 describes the
polarization dynamics, g is the feedback gain, J the pump
current, α a coupling coefficient, and ζ is a δ-correlated, white
Gaussian noise. In Eqs. (7), an inhomogeneous initial condi-
tion or sufficiently strong perturbation triggers the emission
of excitable pulses that propagate in the pseudospace-time
{σ, θ}. The evolution of one of these pulses is shown in
Fig. 1(a). After some transient evolution, the pulse propagates

with a constant velocity and a fixed shape that is independent
of the initial conditions: these features are immediately remi-
niscent of what is observed in one-dimensional (1D) spatially
extended excitable systems (see, e.g., [22]). However, the
pattern here observed displays a peculiar aspect which is
inherently related to the STR of the delayed dynamics. The
refractory tail, i.e., the slow, negative recovery of the quiescent
state in response to a perturbation anticipates the excited state
along the θ direction. Such a paradoxical behavior where an
effect actually precedes the cause is not consistent with the
idea that θ is the genuine time variable. In fact, this role
appears to be more properly embodied by σ , since along its
direction the refractory tail follows the pulse as expected [see
the insets of Fig. 1(a)].

On the basis of the above observations, we postulate
that the correct rule for generating the equivalent spa-
tiotemporal evolution of a long-delayed system in the limit
T → ∞ should consider {θ, σ } as space and time variable,
respectively.

We name such description dynamical representation (DR),
and we denote the corresponding space and time variables as
{ξ, τ } in place of {θ, σ }. Defining Z(ξ, τ ) = Y (σ, θ ), Eq. (3)
rewrites as the explicit evolution rule

∂τZ(ξ, τ ) = G(Z(ξ, τ ), Z(ξ − 1, τ )); (8)

the delayed term now becomes a nonlocal asymmetric, spatial
coupling which breaks the ξ -spatial symmetry. In the follow-
ing, we will consider spatially periodic BCs

Z(ξ + S, τ ) = Z(ξ, τ ), (9)

with a size S = [ttot/T ], where [·] denotes the integer part and
ttot is the total time span.

The domains associated to the STR and DR are de-
picted in Fig. 1(b), evidencing different global manifolds: the
dashed circular lines mark the initial conditions, the cylinder
axis defines the direction of evolution (time axis), and the
cross-sectional circumference corresponds to the size of the
spatial cell.

The importance of the introduction of the DR and its phys-
ical meaning can be enlightened considering the following
example. For the linear, long-delayed system

ẏ(t ) = μy(t ) + gy(t − T ), (10)

rewritten in the STR as

∂σY (σ, θ ) = μY (σ, θ ) + gY (σ, θ − 1), (11)

the solution can be obtained in the Laplace domain as

χ (σ̄ , θ̄ ) = 1

σ̄ − μ − ge−θ̄
, (12)

where {σ̄ , θ̄} ⊂ C is the set of Laplace-conjugate variables of
{σ, θ}. χ can be interpreted as the response to a stimulus and
must satisfy the Kramers-Krönig relations to obey causality
[23]: one can readily verify that this is actually the case when
considering the variable σ̄ , but it is not with θ̄ .

The above example shows that already in this simple
setup, the STR cannot be used straightforwardly to generate a
genuine spatiotemporal dynamics, i.e., satisfying the causality
even if it provides a suitable method to build a meaningful
reorganization of the data in a pattern.
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Formal expansion. The DR provides an explicit spatiotem-
poral rule, but a more useful description can be obtained from
a suitable partial-differential-equation (PDE) model. This can
be pursued by formally expanding the nonlocal term as

Z(ξ − 1, τ ) ≈ Z(ξ, τ ) − Zξ (ξ, τ ) + 1
2Zξξ (ξ, τ ) − . . . ,

(13)

where Zξ = ∂ξZ, Zξξ = ∂2
ξξZ, . . ., obtaining the PDE

Zτ = G(Z,Zξ , Zξξ , . . .). (14)

The validity of the expansion (13) relies on the a posteriori
examination of the dynamics generated by Eq. (2), since the
scale of the evolution along ξ cannot be generally determined
in advance. However, in the absence of an anomalous Lya-
punov exponent [24] (or in the weak-chaos limit [25]) the
correlation along ξ decays over a length Lξ � 1. Upon rescal-
ing ξ → ξ/Lξ , the convergence of (13) can be made explicit
with a smallness parameter 1/Lξ � 1. In these conditions,
the applicability of Eq. (13) relies on the smoothness of the
pattern solution and thus should not depend on its amplitude
or the vicinity to a bifurcation. We will show that this is indeed
the case in the examples described below.

Depending on the system and the order of the expansion,
the ξ -spatial symmetry breaking induced by the nonlocal cou-
pling may be included or not in the resulting model. Here we
consider the case of a linear delayed term only, leaving for a
future work a more general discussion. In this class of models,
each order of the expansion adds a specific feature: the zeroth
is a renormalization of the local force, the first provides the
linear drift (that can be removed with a suitable choice of a co-
moving reference frame), the second the linear diffusion, the
third the first nontrivial spatial symmetry-breaking term, etc.
Equivalently, an operator-composition approach would allow
for a simple interpretation of the various orders in the Fourier
space [15,26]. While not all the orders of the expansion lead to
a numerically stable model, in general the dynamics of Eq. (8)
is better approximated by including increasingly higher-order
terms. We finally point out that the coefficients of different
orders share the gain factor in the original expression and thus
are not independent.

Delayed FHN. In the regime where localized structures are
solutions of (7), the expansion (13) can be performed for the
corresponding DR, obtaining at the second order

Uτ = F (U ) + W + gU − gUξ + g

2
Uξξ + ζ,

(15)
Wτ = −ε (W − J + αU ),

where {U,W } = {U (ξ, τ ),W (ξ, τ )} = {u(t ), w(t )}.
The above equations represent the well-known FHN model

with advection [27]. Simulations of (15) are presented in
Fig. 2(a), with a narrow initial condition to trigger the ex-
citable response. As seen in the panels, for low values of the
gain g two excitable pulses are generated with an asymmetry
both in shape and propagation. Increasing the gain, the dif-
ference between the pulses increases up to the disappearance
of the second one. Notably, the second-order expansion does
not break the spatial symmetry since the first-order spatial
derivative can be removed with the choice of a comoving
reference frame. However, there exists a balance between the
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FIG. 2. (a) Propagation of excitable pulses from the numerical
integration of Eq. (15). From top to bottom: g = 0.01, g = 0.1, g =
0.56, g = 0.6. Other parameters: J = −0.51, α = 1.5, ε = 0.01,
noise amplitude 3 × 10−2. The size of the (ξ , τ ) space-time cell is
1600 × 400. The inset is a cut along the τ direction. (b) Propagation
velocities of excitable pulses obtained by numerical integration of
Eq. (7) (symbols) and Eq. (15) (solid line). (c),(d) Spatiotemporal
plots of noise-induced excitable pulses from Eq. (7) (c) and Eq. (15)
(d). In both cases the size of the space-time cells is 4000 × 8000. As
in Fig. 1(b), the red dashed lines on the vertical (c) and horizontal (d)
axis depict the initial conditions domain.

advection term and the diffusion such that for high g the
second pulse is suppressed (bottom panel) [28,29]. In the
original system (7), only a single pulse is always observed,
confirming that the additional symmetry breaking induced
by the full nonlocal terms suppresses the second pulse; in
this sense, (7) is more similar to the 1D spatially extended
FHN model with strong advection. The situation depicted
in the bottom panel of Fig. 2(a) is indeed very close to
the findings in (7) [see Fig. 1(a)]. This observation can be
quantified by measuring the pulse velocity as a function of the
gain; the results are plotted in Fig. 2(b). It is seen that, even
in the regimes where two pulses are present in the system (15),
the velocity of the first pulse is in good agreement with that of
the solitary pulse found in (7), confirming the validity of the
expansion approach.

In Figs. 2(c) and 2(d), we compare the patterns obtained
from the STR of Eq. (7) and those obtained from (15). In
the presence of noise, both systems display the sporadic
emission of excitable pulses. With the exception of the initial
transients, in the bulk the two patterns are remarkably similar
(see the yellow dashed boxes). In particular, the interaction
events [green circles in the middle of Figs. 2(c) and 2(d)]
display the very same features, where one of the lowest of
two neighboring pulses is deviated and starts following a
downward-curved trajectory. This is due to the fact that in the
DR the refractory tail of each pulse, which is responsible for
such repulsive interaction [8,10], always appears below the
excited region.
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FIG. 3. Front velocities in the bistable model for g = 1 as a
function of the asymmetry, for an increasing order of the expansion.
Straight curves: result for model (17). Inset: comparison between
(17) (lines) and (16) (dots and squares).

Delayed bistable. As seen in the former example, the
DR expansion allows us to describe long-delayed systems
in terms of PDEs, even in regimes where finite-amplitude
solutions occur. In this context, another important case is
represented by the long-delayed, bistable system introduced
as a phenomenological model for a bistable semiconductor
laser with feedback [4]

ẏ(t ) = F (y(t )) + gy(t − T ), (16)

where now F (y) = −y(y − 1)(y + 1 + a) is a force derived
from a quartic potential characterized by an asymmetry a and
g is the feedback gain. The above model has been successfully
applied to describe several phenomena such as the generation,
propagation, and annihilation of quasiheteroclinic fronts, nu-
cleation, and coarsening [4,6].

In the DR, Eq. (16) writes

∂τZ(ξ, τ ) = F (Z(ξ, τ )) + gZ(ξ − 1, τ ), (17)

and, expanding up to the second order we obtain

∂τZ = F (Z) + gZ − gZξ + g

2
Zξξ , (18)

i.e., a reaction-diffusion process with advection, characterized
by a drift velocity vd = g, a diffusion D = 1

2g, and an ef-
fective force F̄ (Z) = F (Z) + gZ. In this model the velocity
of the fronts can be computed analytically [22] obtaining
c± = g ± a

2 g1/2 that coincides with the estimation reported in
[4] for Eq. (16).

We point out that (18) is trasversally symmetric in the
comoving reference frame of the advection term. As a con-
sequence, specific symmetry-breaking phenomena such as
the asymmetric annihilation of fronts observed in the long-
delayed system [6] cannot occur. These could be recovered
by adding suitable (odd) higher-order terms in the expanded
model (18).

In Fig. 3 we report the numerical estimation of the fronts
velocities for increasing order of the expansion, comparing
with those of (17); the inset reports the direct comparison of

FIG. 4. Simulation of the second-order [model (21), left column]
and third-order expansion (central column) of (20). Right column:
simulation of model (19). All results for β = 3 and g = 1, shown
in the comoving frame. Top row: μ = −0.8 (close to the Hopf
bifurcation μ = −1); bottom row: μ = 1.

the velocities evaluated from model (17) and the original (16)
(we remind one that the BCs are radically different). As shown
in the figure, v+ is better estimated increasing the order as
expected. A more complicated situation appears for v−. For
the model (17), the velocity drops and remains equal to zero
beyond a certain asymmetry value, while the velocities for the
different expansion orders decrease monotonically (with some
crossings between the orders which are still under investiga-
tion). This behavior can be understood by considering that
a front cannot propagate backward in ξ due to the nonlocal
coupling, while such a bound does not hold for the PDE
models. The above fact is in close analogy to what is found
in the delayed and spatial FHN system about the existence of
the second pulse.

Delayed complex Landau. The delayed complex Landau
(DCL) represents one of the few setups where a mapping
between a long-delayed dynamical system and a PDE has
been established. This holds both for a single [15,17] and
two hierarchical [13] long delays, in the case of Eckhaus
instability [18], and in the rate equation model of a class-B
laser with feedback [16,19]. In all the above studies, the
analysis was performed with a multiple-scale method in the
vicinity of a supercritical Hopf bifurcation. To compare our
approach with the above results, we consider the DCL model

ẏ(t ) = μy(t ) − (1 + iβ )|y(t )|2y(t ) + gy(t − T ), (19)

where y is complex, and we write the DR description

Zτ = μZ − (1 + iβ )|Z|2Z + gZ(ξ − 1, τ ). (20)

We begin our comparison by noting that the maximal
comoving Lyapunov exponent can be computed analytically
(with the proper BCs) in the linear case for this model as well,
and it coincides with that reported in [15].

The second-order expansion of (20) writes as

Zτ = (μ + g)Z − gZξ + g

2
Zξξ − (1 + iβ )|Z|2Z, (21)
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e.g., a complex Ginzburg-Landau (CGL) equation with drift g

and diffusion g

2 . This coincides with the findings of [15] and
[18] (for their coefficient β = 0) after a suitable coordinate
exchange.

Model (20) gives a very good description of the dynamics
of (19), while model (21) should instead represent a valid
approximation only close to the Hopf bifurcation at μH =
−g. Indeed, this is the case as shown in Fig. 4. Increasing
μ, we move away from the Hopf bifurcation and strong
spatial asymmetries appear in the simulations of (19). This
feature cannot be reproduced by the spatially symmetric (in
the comoving frame) model (21) as indeed shown in the
figure, where for the higher μ the pattern is still spatially
symmetric. To deal with this, we added the next order (the
third) in the expansion of (20). As an odd order, we expect to
obtain a spatial symmetry breaking which can fit more closely
the simulation of the system (19). This is what we actually
found, with a similar behavior close to the Hopf bifurcation
but with a better approximation of model (19) far from it.
Higher orders would further improve the approximation and
will be discussed elsewhere.

Conclusions. We have introduced and discussed an al-
ternative approach to the spatiotemporal re-organization of
data generated from a long-delayed dynamical system. In this
framework, the bulk dynamics is produced with a different
rule, employing the opposite definition of equivalent space
and time variables with respect to the STR. While the domain
manifolds for the two methods are quite different (the bound
and unbound variables are exchanged), we have shown that
the bulk dynamics (away from the boundaries, or equivalently
in the thermodynamic limit) is more properly obtained in this
representation. We expect that this rule would not change the
statistical properties of the generated patterns as measured
by autocorrelations and the Kolmogorov-Sinai entropy [24],
since they are expressed as bulk properties as well. The
method also allows for a straightforward expansion of the
nonlocal coupling in terms of spatial derivatives, leading
eventually to a normal form description through standard
PDEs.
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