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Higher-order lattice Boltzmann model for thermohydrodynamics
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We present an energy conserving lattice Boltzmann model on a body-centered-cubic arrangement for
thermohydrodynamics. It exhibits accurate thermohydrodynamic behavior with a high degree of accuracy and
is therefore capable of simulating compressible and thermal hydrodynamics. The theoretical requirements and
the methodology to construct this model have been described in detail and can be employed to construct even
more accurate models. Simulations of canonical test cases related to compressible flows like shock tube and
thermoacoustic convection and thermal flows like viscous heat dissipation and the Rayleigh-Bénard convection
are performed to demonstrate the effectiveness of the model.
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I. INTRODUCTION

The lattice Boltzmann model (LBM) aims to construct
simplified kinetic picture on a lattice designed to capture the
physics of macroscopic flow through simple local microscale
operations [1–3]. This highly efficient and easily paralleliz-
able method is routinely used as an alternative numerical
method for applications as wide ranging as fluid turbulence,
gaseous microflow, soft matter, polymer dynamics, relativistic
flows, etc. [1–20]. However, lower-order LBMs have been
so far a successful methodology only for incompressible
isothermal hydrodynamics and gaseous microflow in slip flow
regime. An extension of LBM for thermohydrodynamics and
compressible flows is relatively less successful so far. While
the higher-order extension of the LBM for weakly compress-
ible but isothermal situations shows promising results for
turbulence [21] and the thermal models in incompressible
regime are well established, a uniform framework for ther-
mohydrodynamics valid for compressible flows is not fully
developed yet.

In general, the thermal LBMs fall into three categories: the
passive-scalar approach [22,23], the two distribution approach
[24], and the multispeed approach [25,26]. In the passive-
scalar approach one relies on the fact that the temperature
equation is like a a passive scalar provided viscous heat
dissipation and compression work done by the pressure are
negligible. In the initial days of development, the multispeed
approach, a generalization of the isothermal LBM, was tried
[25]. In this approach, one adds additional velocities to the
basic LBM to acquire higher-order isotropy and obtain the
correct temperature dynamics. This requires a higher-order
model with equilibrium distribution which includes higher-
order velocity terms. Even though this is a theoretically fea-
sible approach, previous models suffered severe numerical in-
stability and the working range for temperature variation was
narrow [26]. A popular methodology for simulating realistic
thermal flows in the LBM are the double population models
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where one models hydrodynamic on one set of population and
solves the energy dynamics on the other lattice [24]. However,
these models have been largely restricted to incompressible
flows. As extension for compressible hydrodynamics requires
multispeed models (models with nonzero components of dis-
crete velocities having multiple magnitudes) where one of
the established models for compressible flows has 41 ve-
locities [27], a double distribution function approach would
require at least 56 velocities (41 for compressible dynamics,
15 for energy dynamics, so that the derivative computations
are done in an isotropic manner [28]). Indeed, there is a
trend for using D3Q15, D3Q19, and D3Q27 models for
energy dynamics [29–32]. Furthermore, these models contain
complicated gradient operator terms in the evolution equation
for the temperature and imposing boundary conditions are
nontrivial, and thus the simplicity of the isothermal LBM has
been compromised [33].

In recent years, multispeed models have seen revival even
for isothermal hydrodynamics. The motivation behind these
models is their better accuracy in the velocity space (relevant
for microflow) and enhanced numerical stability in turbulent
flows due to better Galilean invariance (cubically correct hy-
drodynamics) [27,34]. Most of these higher-order models start
from the fact that the LBM is low Mach number discretization
(using Guass-Hermite quadrature) of the Boltzmann equation
with Bhatnagar-Gross-Krook (BGK) approximation for the
collision [18,35–39]. Recently, an interesting approach has
been formulated in Ref. [40], where it is shown that one
can formulate the LBM around local reference velocity and
local reference temperature. An additional step is the intro-
duction of an interpolation scheme and an implicit iteration for
advection.

It is intriguing that conventional multispeed thermal mod-
els are known to be unstable while multispeed isothermal
models developed in recent years have shown better stability
for turbulent flows [21]. In contrast, recent multispeed en-
tropic models are quite stable for both thermal and turbulent
flows [41,42]. In these models, an expansion of local equilib-
rium distribution around the rest state is performed. For the
thermal multispeed models, an additional expansion around
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reference temperature is also involved. These models explic-
itly impose sixth and/or eighth-order isotropy of the zero
velocity and reference temperature equilibrium [18,27]. The
enhanced stability of these entropic thermal models suggests
that the instability is related to the way the discrete equilib-
rium is constructed. Indeed, starting from the formal entropic
equilibrium, it was shown in Ref. [43] that one should first
construct equilibrium at zero velocity but nonzero variation in
temperature followed by expansion in Mach number around
this state. One would expect such expansion to be more stable
than a direct two variable (Mach and deviation from reference
temperature) expansion. Finally, it is conjectured that the
working temperature range does not change substantially for
entropic models unless eighth-order isotropy is imposed and
the narrow temperature range is related to the way the discrete
velocity models are constructed.

In this paper, we construct a multispeed thermal LBM with
67 velocities in three dimensions and show that this class
of models works for temperature variation as large as 50%.
In order to do so, we incorporate a number of ideas in the
multispeed thermal models. First, we systematically list the
restrictions on the equilibrium of the discrete velocity models
required to obtain the Navier-Stokes-Fourier equations as the
hydrodynamic limit. These conditions are used to show that
while sixth-order isotropy of the reference equilibrium (at
zero velocity and reference temperature) is a must, one only
required the trace of the higher-order moments to match with
their corresponding Maxwell-Boltzmann expressions. Addi-
tionally, we employ the recently developed body-centered-
cubic (bcc) lattice based LBM framework [17]. In contrast
to the simple cubic (sc) lattice, the links of the bcc lattice
provide better spatial accuracy as well as more accuracy in the
velocity space. Next, the discrete equilibrium is constructed
using entropic formulation and the series expression is derived
as a two step procedure where one starts at the reference state
with zero velocity and zero temperature variation. Then, one
derives the equilibrium at reference state with zero velocity
but nonzero variation in temperature, and finally the nonzero
velocity equilibrium is written as series expansion around
the previous reference state. This expansion turns out to be
more stable than a direct two variable (Mach number and
deviation from reference temperature) expansion. Finally, we
show accuracy and versatility of the new model by presenting
a number of benchmark simulations.

This paper is organized as follows: In Sec. II, we briefly
review the kinetic theory (in both the continuous form and
its discrete velocity models) and the restrictions on the equi-
librium of the discrete velocity models required to obtain the
Navier-Stokes-Fourier equations as the hydrodynamic limit.
In Sec. III, the isothermal LBM in its traditional form is
reviewed, followed by the derivation of the constraints on
any energy conserving discrete equilibrium in Sec. IV and the
series expansion of the discrete entropic equilibrium in Sec. V.
In Sec. VI, we briefly discuss the idea behind the lattice
based on a body-centered-cubic arrangement of grid points.
In Sec. VII, we propose an energy conserving model based on
67 discrete velocities (hereafter RD3Q67). In Sec. VIII, we
formulate the kinetic boundary conditions for the proposed
model. In order to benchmark the proposed model for com-
pressible and thermal flows, we simulate a number of setups,

beginning with simple transient hydrodynamics in Sec. IX and
steady-state heat conduction in Sec. X. Finally, in Sec. XI
we simulate a few nontrivial test cases like Sod shock tube,
thermoacoustic convection, and the classical Rayleigh-Bénard
convection.

II. BOLTZMANN BGK MODEL AND DISCRETE
KINETIC THEORY

The kinetic theory of gases provides the simplest statisti-
cal description of the fluid dynamics at the molecular level
[44,45]. In the hydrodynamic limit, the continuum Navier-
Stokes-Fourier (NSF) description emerges not only from the
detailed kinetic description, but also from its simplified mod-
els (BGK, Fokker-Planck, etc.) [46,47]. In this section we
briefly review the Boltzmann BGK equation [46], its moment
chain, and the hydrodynamic limit associated with it. The
description is kept generic so that it is valid for the Boltzmann
BGK equation and its discrete velocity analogs.

In this kinetic approach, one considers a collection of
N particles and provides the statistical description of their
motion. While the molecular velocity c is continuous in
the kinetic theory of gases, in the discrete velocity models
(DVMs) it is restricted to a set c = {c1, . . . , cNd

} consisting
of Nd vectors [48,49]. The central quantity in the kinetic
theory is the single particle probability distribution function
f (x, c, t ) with f dc being probability of finding a particle
moving with velocity in the range c to c + dc at time t

and location x, whereas the central quantity in any DVM is
the discrete population set f = {f1(x, t ), . . . , fNd

(x, t )}. It is
convenient to define inner product between two functions φ(c)
and ψ (c) as 〈φ,ψ〉 = ∫

dc φ(c) ψ (c) in the continuous case
and 〈φ,ψ〉 = ∑Nd

i=1 φi ψi in the discrete case.
In D dimensions, the hydrodynamic fields such as mass

density ρ, the velocity u, and the energy density e are related
to the moments of the distribution function (populations in
discrete case)

〈
f,

{
1, c,

c2

2

}〉
= {ρ, ρu, e}, (1)

with e = (ρu2 + Dp)/2, where the ideal gas equation of
state p = ρ θ relates the thermodynamic pressure with the
scaled temperature θ = kBT /m where kB is the Boltzmann
constant and m is the mass of the particle. In what fol-
lows, the fluctuating velocity is defined as ξξξ = c − u and we
restrict our discussion to three dimensions (D = 3) unless
otherwise stated. A few other relevant quantities in thermal
hydrodynamics are the stress tensor σαβ = 〈f, ξαξβ〉 and the
heat flux qα = 〈f, ξαξ 2/2〉, where the symmetrized trace-
less part Aαβ for any second-order tensor Aαβ is Aαβ =
(Aαβ + Aβα − 2/3Aγγ δαβ )/2. It is often convenient to rewrite
the stress tensor as σαβ = 〈f, cαcβ〉 − ρuαuβ − pδαβ and
the heat flux as qα = 〈f, cαc2/2〉 − uα (e + p) − uβσαβ . For
subsequent uses, we also define third moment Qαβγ =
〈f, ξαξβξγ 〉 with its traceless part Qαβγ as

Qαβγ = Qαβγ − 2
5 (qαδβγ + qβδαγ + qγ δβα ). (2)
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FIG. 1. Finding the discrete equilibrium by evaluating the
Maxwell-Boltzmann distribution at discrete points does not conserve
the moments. In the figure, the area beneath the curve represents the
density, which is different for the Maxwell-Boltzmann distribution
and discrete equilibrium as Maxwell-Boltzmann distribution at dis-
crete points.

Similarly, we define the contracted fourth moment Rαβ =
〈f, ξ 2ξαξβ〉, its traceless part Rαβ = 〈f, ξ 2ξαξβ〉, and its trace
R = 〈f, ξ 4〉.

At the equilibrium, the distribution function attains the
Maxwell-Boltzmann form [50]

f MB = ρ

(
1

2πθ

) 3
2

exp

(
− (c − u)2

2 θ

)
. (3)

For the Maxwell-Boltzmann distribution, the value of higher-
order moments can be evaluated as

σ MB
αβ = 0, qMB

α = 0, QMB
αβγ = 0,

RMB
αβ = 0, RMB = 15ρ θ2. (4)

Here, we remind that in the discrete kinetic theory the equi-
librium distribution is necessarily different from evaluating
the Maxwell-Boltzmann distribution at discrete points (see
Fig. 1), and that the moments of the equilibrium distribution
show departure from the moments of the Maxwell-Boltzmann
distribution [38,39]. Different choice of the discrete velocity
set and its equilibrium property leads to different equilibrium
moments. The conditions on the equilibrium moments are
dictated by the moment chain of the kinetic equation. Sub-
sequent arguments will restrict the choice of the equilibrium
moments.

As the aim of the work is to construct an energy conserving
thermal model, we intend to highlight the conditions on
the equilibrium distribution required to recover the Navier-
Stokes-Fourier equations as the hydrodynamic limit of the
kinetic equation. Here, we remind that Maxwell’s original
derivation was based on the arguments of spatial isotropy and
independence of the equilibrium distribution from preference
to specific direction [50]. Therefore, in order to avoid prefer-
ence to any specific direction, one imposes a few restrictions
on the discrete velocity set c. For example, discrete velocity
set is chosen such that for each vector ci ∈ c, the vector
−ci is also present in the set. Similarly, for any vector with
components (ci1, ci2, ci3), all permutations P (ci1, ci2, ci3) are

also a member of the velocity set [18,51]. These conditions
ensure that in the discrete case with any vector φ(c2) we
have 〈

φ, c2n
x

〉 = 〈
φ, c2n

y

〉 = 〈
φ, c2n

z

〉
,〈

φ, c2n
x c2m

y

〉 = 〈
φ, c2n

y c2m
z

〉 = 〈
φ, c2n

z c2m
x

〉
,〈

φ, c2n+1
x

〉 = 〈
φ, c2n+1

y

〉 = 〈
φ, c2n+1

z

〉 = 0,

(5)

where n and m are the natural numbers. In this paper, we only
consider this class of models.

The time evolution equation for the distribution function
in the dilute gas limit is given by the Boltzmann equation
[44,50]. However, a simplified and widely used model is the
Boltzmann Bhatnagar-Gross-Krook (BGK) equation, which
is sufficient to describe Navier-Stokes-Fourier hydrodynamics
[46]. The Boltzmann BGK equation representing time evolu-
tion of f (x, c, t ) is

∂tf (x, c, t ) + (c · ∇)f (x, c, t )

= − 1

τ
[f (x, c, t ) − f eq(ρ(x, t ), u(x, t ), θ (x, t ))], (6)

with τ as the collisional relaxation time and the equilibrium
distribution f eq. In the continuous case f eq is taken as f MB,
however, in the discrete case f eq should be the minimizer of
the discrete H function [39,52,53]. In this section, we dis-
tinguish between f eq and f MB to highlight properties of f eq

of an arbitrary DVM needed to derive Navier-Stokes-Fourier
equations. The conservation laws obtained upon integrating
the Boltzmann BGK equation are

∂tρ + ∂α (ρuα ) = 0,

∂t (ρuα ) + ∂β (ρuαuβ + pδαβ + σαβ ) = 0,

∂t e + ∂β[(e + p)uβ + σβγ uγ + qβ] = 0.

(7)

These equations contain higher-order moments such as the
stress tensor and the heat flux. The evolution of the stress
tensor obtained by taking the second moment of Eq. (6) is
(see Appendix A 3 for derivation)

∂tσαβ + uγ ∂γ σαβ + ∂γ Qαβγ + σαβ∂γ uγ + 2σγβ∂γ uα

+ 2p∂βuα + 4

5
∂βqα = 1

τ

(
σ

eq
αβ − σαβ

)
. (8)

Similarly, the evolution of heat flux obtained by taking the
third moment of Eq. (6) is (see Appendix A 4 for derivation)

∂tqα + 1

2
∂β

(
Rαβ + 1

3
R δαβ

)
+ Qαβγ ∂γ uβ + ∂β (qαuβ )

+ 7

5
qβ∂βuα + 2

5
qα∂βuβ + 2

5
qβ∂αuβ

− 5

2

p

ρ
∂αp − σαβ

ρ
∂βp − 5

2

p

ρ
∂θσαθ − σαβ

ρ
∂θσβθ

= 1

τ

(
qeq

α − qα

)
. (9)

These evolution equations form the moment chain and can be
seen to contain one higher moment than the moment whose
evolution they represent, i.e., the evolution of density contains
momentum, the evolution of momentum contains the viscous
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stress, and so on. In the continuous case this chain goes on to
infinity, while in the discrete case the moment chain closes at
a finite level and forms a set of Nd coupled partial differential
equations [10,44,49]. In order to obtain the hydrodynamic
limit from the equations in the moment chain, following
Chapman-Enskog procedure, we expand the time derivative as

∂t = ∂
(0)
t + τ∂

(1)
t + O(τ 2), (10)

and the nonconserved moments M fast about their respective
equilibriums in order of τ as

M fast = Meq(ρ, u, θ ) + τM (1) + O(τ 2), (11)

where M fast = {σαβ, qα,Qαβγ , Rαβ, R}. Keeping in mind the
objective of obtaining the Navier-Stokes-Fourier equations
at zeroth and first order of τ , a number of comments can be
made:

(i) The velocity evolution obtained upon performing al-
gebraic manipulations on Eq. (7) is (see Appendix A 2 for
derivation)

∂tuα + uβ∂βuα + 1

ρ
∂αp + 1

ρ
∂γ σαγ = 0, (12)

in which at O(τ 0) we obtain

∂
(0)
t uα + uβ∂βuα + 1

ρ
∂αp + 1

ρ
∂β

(
σ

eq
αβ − σ MB

αβ

) = 0, (13)

from where we see that Euler dynamics up to O(un−1) is ob-
tained provided σ

eq
αβ − σ MB

αβ = O(un). It is typical to demand
that σ

eq
αβ − σ MB

αβ = O(u4).
(ii) The temperature evolution can also be obtained

upon performing algebraic manipulations on Eqs. (7) (see
Appendix A 3 for derivation):

∂tθ + uα∂αθ + 2

3
θ∂βuβ + 2

3ρ
σαβ∂αuβ + 2

3ρ
∂αqα = 0,

(14)

in which at O(τ 0) we obtain

∂
(0)
t θ + uα∂αθ + 2

3
θ∂βuβ + 2

3ρ

(
σ

eq
αβ − σ MB

αβ

)
∂αuβ

+ 2

3ρ
∂α

(
qeq

α − qMB
α

) = 0, (15)

from where we see that the Euler dynamics up to O(un−1)
is obtained provided σ

eq
αβ − σ MB

αβ = O(un) and q
eq
α − qMB

α =
O(un).

(iii) From the evolution of stress given by Eq. (8), after
ignoring σ

eq
αβ − σ MB

αβ terms, we have at O(1)

∂γ

(
Q

eq
αβγ − QMB

αβγ

) + 2p∂βuα + 4
5∂β

(
q

eq
α − qMB

α

) = −σ
(1)
αβ ,

(16)

which in continuous case yields the Stokes relation σ
(1)
αβ =

−2p∂βuα , and from where it can be seen that the accurate
form of the viscous stress is recovered up to O(un−1) if
q

eq
α − qMB

α = O(un) and Q
eq
αβγ − QMB

αβγ = O(un).

(iv) Similarly, after substituting RMB = 15ρ θ2 in the evo-
lution of heat flux given by Eq. (9), we have at O(τ 0)

∂
(0)
t

(
qeq

α − qMB
α

) + 1
2∂β

(
R

eq
αβ − RMB

αβ

) + 1
6∂α (Req − RMB)

+ (
Q

eq
αβγ − QMB

αβγ

)
∂γ uβ

+ ∂β

[(
qeq

α − qMB
α

)
uβ

] + 7
5

(
q

eq
β − qMB

β

)
∂βuα

+ 2
5

(
qeq

α − qMB
α

)
∂βuβ

+ 2
5

(
q

eq
β − qMB

β

)
∂αuβ + 5

2p ∂αθ = −q (1)
α , (17)

from where it can be seen that the Fourier’s law is recov-
ered until O(ηn−1) if Req − RMB = O(ηn), Q

eq
αβγ − QMB

αβγ =
O(ηn), and q

eq
α − qMB

α = O(ηn) where η = θ/θ0 − 1. Also,
the above equation at uα = 0 becomes

1
6∂α (Req − RMB) + 5

2p ∂αθ = −q (1)
α , (18)

from where it can be seen that the biggest source of error in
the Fourier’s law is the term Req − RMB.

Therefore, in order to recover the Navier-Stokes-Fourier
equations accurately, we require the equilibrium moments of
any DVM to mimic as closely as possible the moments of the
Maxwell-Boltzmann distribution. The model proposed later in
this work will have

σ
eq
αβ = −σ MB

αβ + O(u2η3), qeq
α = qMB

α + O(u3η3),

Req = RMB + O(η4).

III. LATTICE BOLTZMANN METHOD
FOR ISOTHERMAL FLOWS

The lattice Boltzmann method (LBM), a well-defined hier-
archy of approximation to the Boltzmann equation based on
discrete velocity sets, is an efficient kinetic scheme to model
a range of hydrodynamic applications. Typically, higher-order
LBMs perform much better for resolving complex phenomena
such as Knudsen boundary layer [43,54,55]. Recent works
have indicated that even in the case of turbulence, better
performance is obtained due to the fact that the hydrodynamic
limit of the higher-order LBM is cubically correct and thus
Galilean invariant to the leading order [17,56]. In this section,
we review the construction methodology for the LBM.

Similar to other DVM, in LBM the velocity space is
discretized into a discrete velocity set c with the populations f

as the basic working element. However, unlike other DVMs,
LBM builds the kinetic theory in discrete space and time
too. In order to do so, the physical space is discretized into
a series of grid nodes that together comprise a lattice. At
any point on the lattice, the neighboring nodes are located at
distance of �x = mci�t , where m is a natural number [1,27].
This feature of LBM allows for construction of a numerically
attractive algorithm where fi successively streams along the
grid and collides at the nodes. Furthermore, LBM is typically
written for isothermal condition and motivated from the Boltz-
mann BGK equation, the evolution equation reads as

fi (x + ci�t, t + �t )

= fi (x, t ) + αβ
[
f

eq
i (ρ, u) − fi (x, t )

]
, (19)
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where α = 2 and β = �t/(2τ + �t ) is related to the kine-
matic viscosity ν via relaxation time τ = ν/θ0, with θ0 as
the reference temperature. The above equation can also be
derived by trapezoidal integration of discrete velocity model
with BGK collision [Eq. (6)] [24]. The entropic formulation
of LBM has an extra step where α is found as the root of the
entropy estimate

H [f (x, t ) + α(f eq(ρ, u) − f (x, t ))] − H [f (x, t )] = 0,

(20)
where H is a convex entropy function. It restores the thermo-
dynamic consistency embedded in the Boltzmann description
[43]. This method ensures H theorem for discrete space-time
formulation, and thus leads to a nonlinearly stable solver that
is effective in context of flows with sharp gradients. Thus,
entropic LBM is quite suitable for the case of thermal and
compressible flows where gradients can be sharp [26]. Various
numerical techniques have been proposed to ensure the cor-
rectness and efficient implementation in this step [34,57–63].
The closed form analytical expression for α was recently
found in Ref. [64].

The choice of the discrete equilibrium distribution
f

eq
i (ρ, u) is considered crucial in LBM. It has to ensure

that the macroscopic hydrodynamics equations recovered
upon Chapman-Enskog expansion of Eq. (19) agree with the
Navier-Stokes equations. The discrete equilibrium is required
to conserve the mass and momentum, i.e.,

〈f eq, {1, c}〉 = {ρ, ρu}, (21)

and was historically evaluated by projecting the Maxwell-
Boltzmann distribution on the Hermite basis to obtain a
computationally appealing polynomial expression [11,14,38]

f
eq
i (ρ, u) = wiρ

[
1 + uαciα

θ0
+ uαuβ

2 θ2
0

(ciαciβ − θ0δαβ )

]
,

(22)

where the reference temperature θ0, the velocities ci , and the
weights wi are lattice dependent parameters with

wi > 0, 〈w, 1〉 = 1. (23)

Substituting Eq. (22) into (21) the parameters wi, ci , θ0 are
constrained as

〈w, cαcβ〉 = θ0δαβ ⇒ 〈w, c2〉 = 3θ0, (24)

where we have used the conditions on moments of weights
as specified by Eq. (5). In addition to Eq. (21), f

eq
i should

satisfy a few other constraints in order to recover correct
hydrodynamics for low Mach isothermal flows. For example,
it is important to ensure that the second moment of f

eq
i

is the same as that obtained from the Maxwell-Boltzmann
distribution, i.e.,

〈f eq, cαcβ〉 = ρuαuβ + ρθ0δαβ, (25)

which adds another constraint

〈w, cαcβcγ cκ〉
= θ2

0 �αβγ κ ⇒ 〈
w,

{
c2c2

x, c
4
}〉 = {

5θ2
0 , 15θ2

0

}
, (26)

where �αβγ κ = δαβδγ κ + δαγ δβκ + δακδβγ is the fourth-order
isotropic tensor. The well-known models like the D3Q15,

TABLE I. Weights corresponding to discrete velocities for the
basic models.

Discrete velocity D3Q15 D3Q19 D3Q27

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 1/9 1/18 2/27
(±1, ±1, 0), (±1, 0, ±1), (0,±1, ±1) 1/36 1/54
(±1, ±1, ±1) 1/72 1/216

D3Q19, and D3Q27 satisfy these conditions. They have θ0 =
1
3 and the weights corresponding to their discrete velocities are
tabulated in Table I.

As pointed out in Sec. II, it is evident that in the limit of
τ → 0, the zeroth-order hydrodynamic equation is the Euler
equation. The Navier-Stokes dynamics is correctly recovered
provided

〈f eq, cαcβcγ 〉 = ρuαuβuγ + ρθ0(uαδβγ + uβδαγ + uγ δαβ ).
(27)

Due to the absence of the cubic term in Eq. (22), the above
condition is satisfied only up to linear order by widely used
lower-order lattice Boltzmann models [65]. This condition
on third moment can be fulfilled if the discrete equilibrium
distribution is of the form [27,38,43,66]

f
eq
i (ρ, u) = wiρ

[
1 + uαciα

θ0
+ uαuβ

2 θ2
0

(ciαciβ − θ0δαβ )

+ uαuβuγ ciγ

6 θ3
0

(ciαciβ − 3θ0δαβ )

]
. (28)

The above expression and Eq. (27) impose further restriction
on the weights as

〈w, cαcβcγ cκcζ cη〉 = θ3
0 �αβγ κζη ⇒ 〈

w,
{
c2c2

xc
2
y, c

4c2
x, c

6}〉
= {

7θ3
0 , 35θ3

0 , 105θ3
0

}
, (29)

where �αβγ κζη is the sixth-order isotropic tensor. However,
only very high-order models are known to satisfy such con-
straint in three dimensions [27].

To summarize, the procedure for constructing models for
low Mach isothermal hydrodynamics is to find discrete ve-
locities ci on the lattice whose corresponding equilibrium f

eq
i

mimics the moments of the Maxwell-Boltzmann distribution.
The conditions that are considered indispensable for the ve-
locity space discretization, which lead to cubically correct
hydrodynamics, are

〈w, {1, cαcβ}〉 = {1, θ0δαβ},
〈w, {cαcβcγ cκ, cαcβcγ cκcζ cη}〉 = {

θ2
0 �αβγ κ , θ

3
0 �αβγ κζη

}
.

(30)

The popular zero-one-three model proposed in Ref. [67]
satisfies Req = RMB + O(u4) and was found suitable for
isothermal and weakly compressible flows. Another excellent
methodology to construct lattices takes the quadrature route
and is employed to propose various models in two and three
dimensions in Refs. [68,69].
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IV. ENERGY CONSERVING LBM FOR
THERMOHYDRODYNAMICS

The link between series expression used for isothermal
equilibrium given by Eq. (28) and the Maxwell-Boltzmann
distribution is well understood [38]. The aim of this section
is to construct a series expansion of the thermal equilibrium
at arbitrary temperature and zero velocity. The discrete dis-
tribution from the continuous one is obtained in two steps.
First, the local Maxwell-Boltzmann distribution is projected
to a finite basis expansion around global Maxwell-Boltzmann
distribution around zero velocity and reference temperature θ0

to obtain

f MB(ρ, u, θ0, c) = f MB(ρ, u = 0, θ0, c)

×
(

1 + c · u
θ0

+ (c · u)2 − u2θ0

2θ2
0

+ O(u3)

)
.

(31)

Notice that even the expanded version is consistent with
the requirement that conserved moments of the equilibrium
distribution are preserved [38]. Then, as the second step,
a quadrature evaluation is performed to obtain the discrete
equilibrium

f
eq
i (ρ, u, c) = wi

f MB
i (ρ, u, θ0, c)

f MB
i (ρ = 1, u = 0, θ0, c)

, (32)

where the discrete weights wi are the equilibrium at zero
velocity and reference temperature.

Following the same idea as the isothermal case, we can
evaluate the equilibrium distribution at zero velocity and
arbitrary temperature. We first project the local Maxwell-
Boltzmann distribution onto a finite basis expansion around
the global Maxwell-Boltzmann distribution at reference tem-
perature to obtain

f̃ MB(ρ, u = 0, θ, c) = f MB(ρ, u = 0, θ0, c)
1

(1 + η)
3
2

× exp

(
c2
i η

2θ0(1 + η)

)
, (33)

where η = θ/θ0 − 1. Now, performing a quadrature evalua-
tion followed by expanding and collecting the terms with like
powers of η one obtains

f̃
eq
i (ρ, u = 0, θ )

= wiρ

(
1 + η

2θ0

(
c2
i − 3θ0

) + η2

8θ2
0

(
c4
i − 10c2

i θ0 + 15θ2
0

)

+ η3

48θ3
0

(
c6
i − 21c4

i θ0 + 105c2
i θ

2
0 − 105θ3

0

)

+ η4

384θ4
0

(
c8
i − 36c6

i θ0 + 378c4
i θ

2
0 − 1260c2

i θ
3
0 +945θ4

0

)

+ O(η5)

)
. (34)

The requirement that f̃
eq
i conserve mass and energy, i.e.,

〈f̃ eq, {1, c2}〉 = {ρ, 3ρθ}, (35)

is trivially satisfied up to O(η4) if we impose the following
conditions on the weights:

〈w, {1, c2, c2c2, c2c2c2, c2c2c2c2, c2c2c2c2c2}〉
= {

1, 3θ0, 15θ2
0 , 105θ3

0 , 945θ4
0 , 10395θ5

0

}
. (36)

The weights, discrete velocities, and θ0 of the model proposed
later in this work will satisfy the above conditions. The
equilibrium at finite velocity can be written as expansion
around this zero velocity state. We would like to note that
the methodology presented in this work differs from Ref. [67]
in not using single expansion in two variables (velocity and
deviation from reference temperature).

V. DISCRETE ENTROPIC EQUILIBRIUM

In entropic LBM (ELBM), one begins with the
convex entropy function of the Boltzmann form H =
〈f, ln(f/w) − 1〉 and construct equilibrium as its minimizer
under the constraints of local conservation laws [Eq. (21)]
[16,39,43,52,53,70–72]. This constrained minimization can
be performed by getting absolute minimum of the functional

� =
Nd∑
i=1

[
fi

(
ln

fi

wi

− 1

)
+ μ̂fi + ζκciκfi + γ c2

i fi

]
, (37)

where μ̂, ζκ , γ are the Lagrange multipliers associated with
mass, momentum, and energy, respectively [39,43]. Solving
the minimization problem ∂�/∂f = 0, one obtains the equi-
librium distribution as

f
eq
i = wiρ exp

(−μ − ζκciκ − γ c2
i

)
, (38)

where for convenience we have transformed the Lagrange
multiplier μ̂ = μ − ln ρ. The five Lagrange multipliers and
thus the equilibrium populations f

eq
i can be found in the

explicit form if the system of five equations representing mass,
momentum, and energy conservation

Nd∑
i=1

f
eq
i

{
1, ciα,

c2
i

2

}
= {ρ, ρuα, e} (39)

were explicitly invertible. However, other than the few special
cases such as the D1Q3 model and its higher dimension
extensions D2Q9 and D3Q27 [39], the explicit solutions are
not known. Therefore, one often uses a numerical route to
compute the Lagrange multipliers and thus find the entropic
equilibrium [42,73,74].

In this section, we will review the procedure to construct
the entropic equilibrium as a perturbation series around a ref-
erence state. The series serves two purposes: in any numerical
methodology of finding the equilibrium distribution, the series
provides a good guess for the Lagrange multipliers (and thus
allows faster convergence to the true entropic equilibrium),
and the series form can be employed to analyze the hydro-
dynamic limit. We use this approximate polynomial form of
the equilibrium to derive the moments of the equilibrium and
comment on its accuracy.

As pointed out earlier, the system given by Eqs. (39)
does not render an explicit solution. Therefore, we try
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to evaluate the explicit solution at a reference state with
mean velocity u = 0. We define the Lagrange multipliers
at this reference state as μ(0), ζ (0)

κ , γ (0), the equilibrium
distribution is f̃

eq
i ≡ f

eq
i (ρ, u = 0, θ ) = wiρ exp(−μ(0) −

ζ (0)
κ ciκ − γ (0)c2

i ), and the five conservation equations
reduce to

Nd∑
i=1

f̃
eq
i

{
1, ciα,

c2
i

2

}
=

{
ρ, 0,

3

2
ρθ

}

≡
{
ρ, 0,

3

2
ρθ0(1 + η)

}
, (40)

where η = θ/θ0 − 1. In the above system of equations, one
can group together the terms of discrete velocities ci with
the opposite discrete velocities −ci terms in the momentum
conservation equations and find the solution ζ (0) = 0. Hence,

we obtain

f̃
eq
i ≡ f

eq
i (ρ, u = 0, θ ) = wiρ exp

( − μ(0) − γ (0)c2
i

)
.

(41)
However, the other two Lagrange multipliers μ(0) and γ (0)

can still not be evaluated in the explicit form. Therefore,
we choose another reference state with θ = θ0 within this
reference state. At the new reference state we define the
Lagrange multipliers as μ(0,0), γ (0,0), and it is trivial to check
that μ(0,0) = γ (0,0) = 0 satisfies the mass and the energy con-
servation condition. We first construct the perturbation series
for f̃

eq
i around this reference state. To this effect, we expand

the Lagrange multipliers around μ(0,0) and γ (0,0) in powers
of η:

μ(0) = μ(0,0) + ημ(0,1) + η2μ(0,2) + η3μ(0,3) + · · · ,

γ (0) = γ (0,0) + ηγ (0,1) + η2γ (0,2) + η3γ (0,3) + · · · .
(42)

Substituting Eq. (42) in (41) one obtains

f̃
eq
i = wiρ

(
1 − η

[
μ(0,1) + γ (0,1)c2

i

] − η2

[
μ(0,2) + γ (0,2)c2

i − 1

2

(
μ(0,1) + γ (0,1)c2

i

)2
]

+ · · ·
)

, (43)

with the requirement that 〈
f̃ eq,

{
1,

c2

2

}〉
=

{
ρ,

3

2
ρθ0(1 + η)

}
. (44)

The Lagrange multipliers evaluated by comparing the terms at every order of η on both sides of Eq. (44) are

μ(0) = 3

2
η − 3

4
η2 + 3

6
η3 − 3

8
η4 + · · · , γ (0) = − 1

2θ0
η + 1

2θ0
η2 − 1

2θ0
η3 + 1

2θ0
η4 + · · · . (45)

The procedure is general enough and can be used to find the series expansion for f̃
eq
i up to any arbitrary order in η. The expression

accurate up to O(η4) is

f̃
eq
i = wiρ

[
1 + η

2θ0

(
c2
i − 3θ0

) + η2

8θ2
0

(
c4
i − 10c2

i θ0 + 15θ2
0

) + η3

48θ3
0

(
c6
i − 21c4

i θ0 + 105c2
i θ

2
0 − 105θ3

0

)

+ η4

384θ4
0

(
c8
i − 36c6

i θ0 + 378c4
i θ

2
0 − 1260c2

i θ
3
0 + 945θ4

0

)]
, (46)

provided the lattice parameters satisfy conditions given in Eq. (36). Notice that the above expression is same as Eq. (34) evaluated
in Sec. IV.

The next step is to derive the equilibrium distribution at nonzero velocity by expanding the Lagrange multipliers in ε

(representing smallness of the Mach number) as

μ = μ(0) + εμ(1) + ε2μ(2) + ε3μ(3) + O(ε4),

ζκ = ζ (0)
κ + εζ (1)

κ + ε2ζ (2)
κ + ε3ζ (3)

κ + O(ε4),

γ = γ (0) + εγ (1) + ε2γ (2) + ε3γ (3) + O(ε4).

(47)

Substituting the above expressions in Eq. (38) and collecting terms with various powers of ε, one obtains

f
eq
i = f̃

eq
i

(
1 − ε

[
μ(1) + ζ (1)

κ ciκ + γ (1)c2
i

] − ε2
[
μ(2) + ζ (2)

κ ciκ + γ (2)c2
i − 1

2

(
μ(1) + ζκ

(1)ciκ + γ (1)c2
i

)2] + · · · ). (48)

The mass, momentum, and energy conservation requirements

〈f eq, {1, cα, c2}〉 = {ρ, ρuαε, 3ρθ + ρu2ε2} (49)

are compared at various orders of ε to find the Lagrange multipliers

μ = μ(0) + ε2μ(2) + O(ε4), ζκ = ζ (0)
κ − ε

uα

θ
+ ε3 u2uα

θ2
A + O(ε4), γ = γ (0) + O(ε4), (50)
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where A = 〈f̃ eq
i , c2

ixc
2
iy〉/(3ρθ2) − 1/3, provided an additional isotropy condition at the eighth order

〈w, c4cαcβcγ cκ〉 = 63θ4
0 �αβγ κ (51)

is imposed. Substituting the Lagrange multipliers in Eq. (48), we obtain the expression for discrete equilibrium accurate up to
O(ε3):

f
eq
i =f̃

eq
i

{
1 + uαciα

θ
− u2

2θ
+ 1

2

(uαciα

θ

)2
+ 1

6

(uαciα

θ

)3
− u2uαciα

2θ2
(1 − A)

}
. (52)

The moments of the equilibrium distribution can be calculated as

〈f eq, {1, cα, c2, cαcβ, c2cα}〉 = {ρ, ρuα, 3ρθ + ρu2, ρθδαβ + ρuαuβ + O(u2η3), 5ρθuα + ρu2uα + O(u3η3)}, (53)

and they can be seen to match the moments of the Maxwell-
Boltzmann distribution up to a high accuracy. Any discrete
velocity model whose equilibrium distribution satisfies the
above condition will have correct thermohydrodynamic limit.
The 41 velocity model of Ref. [27] and the off-lattice 27
velocity model of Ref. [18] have sixth-order isotropy imposed
on the moments of their weights.

VI. CRYSTALLOGRAPHIC LATTICE
BOLTZMANN MODEL

Historically, the lattice chosen for the LBM has been the
simple cubic (sc) lattice which demands that the grid is refined
near the solid body or in zones of extreme flow variations
[75,76]. It was recently shown that the optimal discretization
of position space for the LBM is a body-centered-cubic (bcc)
arrangement of grid points, which led to a new class of models
called crystallographic LBM [17]. Figures 2 and 3 depict
the building blocks and the links of a bcc lattice in two and
three dimensions, respectively. It comprises of two simple
cubic (sc) lattices displaced by a distance of 0.5�x in each
direction. The two grids are connected via discrete velocities
as shown in the figures.

Another well-known fact in the computer graphics litera-
ture is that the volume representation (or rendering) is better
on the bcc lattice [77]. As the bcc grid has more points at
the boundaries, it was also found to represent the boundaries
well. To illustrate the difference between sc and bcc lattices,
Table II depicts various rendered images on them. Like the
traditional sc grids, the bcc grid also preserves the ease of
streaming along the links while increasing the local accuracy.
A comment about parallelization of bcc grid is order: while
parallelizing a bcc grid, we need to communicate outgoing

FIG. 2. Building block of a crystallographic lattice in two dimen-
sions, simple cubic links (left) and body-centered links (right) are
depicted here.

populations of two layers (in the sc grid outgoing populations
from only one layer are communicated). This is illustrated
in Fig. 4, where the black lines (solid and dashed) represent
the computational grid and the red lines represent the dummy
grid. Before implementing the advection routine, the outgoing
populations from the computational grid of the Processor A
are copied to the dummy grid of Processor B and vice versa.
We then implement the advection routine as usual.

The number of grid points for which data need to be
communicated (at every face) for parallelization on a bcc
grid of size 2N3 is at least 2N2. On the other hand, for a
standard simple cubic grid of size (21/3N )3 the number of grid
points for which data need to be communicated is (21/3N )2.
Thus, there is ∼26% increase in data traffic for bcc method
as compared to an sc based method. This cannot lead to any
noticeable performance change in communication speed as
typical data size for communication in LBM is in the range of
∼20 MB even for problem size as large as 2563 per node while
a modern communication network (InfiniBand) is capable of
transferring more than a GB per cycle. Thus, similar to the
standard LBM cost of communication is negligible even for
bcc based LBM.

Additionally, the artificial closure on the third order mo-
ment of single speed models (D3Q19, D3Q27), i.e.,

〈
f, c3

α

〉 = c2〈f, cα〉, (54)

is avoided due to the crystallographic nature of the lattice.
This effect plays an important role in regimes where the
Knudsen boundary layer is important [10].

VII. LBM FOR THERMOHYDRODYNAMICS

In Secs. III and V, it was shown that in order to get the
correct thermohydrodynamic limit, the moments of equilib-
rium distribution have to match the moments of the Maxwell-
Boltzmann distribution. The conditions on the moments of the
equilibrium translated to constraints on the weights, discrete
velocities, and the reference temperature θ0 of the lattice
[Eqs. (30), (36), and (51)]. To summarize, the constraints are

〈w, {1, cαcβ}〉 = {1, θ0δαβ},
〈w, {cαcβcγ cκ, cαcβcγ cκcζ cη}〉 = {

θ2
0 �αβγ κ , θ

3
0 �αβγ κζη

}
,

〈w, {c4cαcβcγ cκ , c
10}〉 = {

63θ4
0 �αβγ κ , 10395θ5

0

}
,

(55)
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FIG. 3. Building block of a crystallographic grid in three dimensions, simple cubic links (left), face-centered-cubic link (middle), and
body-centered links (right). The dashed grid is offset by a distance 0.5�x in each direction.

which are written in the explicit form as a system of 10
equations [using Eq. (5)]

〈w, 1〉 = 1, 〈w, c2〉 = 3θ0, 〈w, c4〉 = 15θ2
0 ,〈

w, c2c2
x

〉 = 5θ2
0 , 〈w, c6〉 = 105θ3

0 ,
〈
w, c2c2

xc
2
y

〉 = 7θ3
0 ,〈

w, c4c2
x

〉 = 35θ3
0 , 〈w, c8〉 = 945θ4

0 ,
〈
w, c4c4

x

〉 = 189θ4
0 ,

〈w, c10〉 = 10395θ5
0 . (56)

As the total number of constraints is 10, we will require 8
energy shells that combined with w0 and θ0 will make a total
of 10 unknowns. The 8 energy shells chosen are 3 sc, 2 fcc,
and 3 bcc. The set of equations has many solutions and we
accept the one that satisfies the condition that wi > 0 and
real. The discrete velocities and the weights corresponding
to each shell are listed in Table III, and the relevant energy
shells are depicted in Fig. 5. The numbers are given to a high
accuracy so that the conditions in Eq. (56) can be calculated
up to machine precision. The eighth-order moments of the
weights that are not imposed in the model are〈

w, c8
x

〉 = 104.260789709991 θ4
0 ,〈

w, c6
xc

2
y

〉 = 13.5316387022748 θ4
0 ,〈

w, c4
xc

4
y

〉 =13.5316387022748 θ4
0 ,〈

w, c4
xc

2
yc

2
z

〉 = 1.77468903818019 θ4
0 .

TABLE II. Representation of a sphere, an ellipsoid, and cut
section of a red blood cell (RBC) on a sc and bcc lattice at the
same resolution. It can be clearly seen that the bcc lattice used by
crystallographic LBM represents local curvatures in a more efficient
manner as compared to the sc lattice used by the conventional LBM.

The series approximation of the equilibrium distribution
for the set of discrete velocities can be evaluated as

f
eq
i = f̃

eq
i

(
1 + uαciα

θ
− u2

2θ
+ 1

2

(uαciα

θ

)2
+ 1

6

(uαciα

θ

)3

− u2uαciα

2θ2
(1 − A)

)
, (57)

where A = 0.085582531 η3 θ2
0 /θ2 and f̃

eq
i accurate up to

O(η4) is given by Eq. (34). The equilibrium moments for this
model are

〈
f

eq
i , ciαciβ

〉 = ρθδαβ + ρuαuβ

(
1 − 9

2A
) + 3

2A ρu2 δαβ,

(58)

〈
f

eq
i , c2

i ciα

〉 = 5ρθuα + ρu2uα

(
1 − 3

2A − B
)
, (59)

where B = 0.018853638 η4 θ3
0 /θ3. From the relation σ

eq
αβ =

〈f eq
i , ciαciβ〉 − ρuαuβ − pδαβ one obtains

σ
eq
αβ = 3

2Aρ(u2δαβ − 3uαuβ ), (60)

and from the relation q
eq
α = 〈f eq

i , c2ciα/2〉 − uα (E + p) −
uβσ

eq
αβ one obtains

qeq
α = ρu2uα

(− 3
2A + 1

2B
)

(61)

Processor A Processor B

FIG. 4. Communication between two processors on a crystallo-
graphic grid.
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TABLE III. Energy shells and their corresponding velocities with weights for RD3Q67 model, θ0 = 0.7487399237215752.

Shells Discrete velocities (ci) Weight (wi)

0 (0, 0, 0) 0.062612244873699
sc1 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 0.07078157740182597
sc2 (±2, 0, 0), (0, ±2, 0), (0, 0, ±2) 0.018477181295835005
sc3 (±3, 0, 0), (0, ±3, 0), (0, 0, ±3) 0.001159725348044425
fcc2 (±2, ±2, 0), (0, ±2, ±2), (±2, ±2, 0) 0.003016018666364516
fcc3 (±3, ±3, 0), (0,±3, ±3), (±3, ±3, 0) 0.000023115090889762186
bcc 1

2 (±0.5, ±0.5, ±0.5) 0.005042859365786889
bcc1 (±1, ±1, ±1) 0.03854231746999835
bcc 3

2 (±1.5, ±1.5, ±1.5) 0.0012157288848419236

and

Req(u = 0) =
∑

f̃
eq
i c4

i = 15ρθ2 + 6.051158073ρθ2
0 η4.

(62)

It can be seen that the error in σ
eq
αβ is of O(u2η3), in q

eq
α

is of O(u3η3), and that in Req(u = 0) is of O(η4). The
viscosity for this model is μ = τp and the thermal con-
ductivity is κ = 5/2μ. Further, as pointed out earlier in
Eq. (18), the biggest source of error in the Fourier’s law is the
term containing Req − RMB, which for the current model is
6.051158073ρη4θ2

0 . The error could be reduced by taking into
account this deviation via correction of thermal conductivity.
The form of corrected thermal conductivity hence is

κ = 5

2
μ

(
1 + 1.613642153η3 θ0

θ

)
. (63)

In Sec. X A, we will demonstrate that the corrected form
of thermal conductivity indeed increases accuracy at larger
temperature deviations. However, in rest of the benchmarking
simulations, we do not employ this corrected form.

Finally, we compare the computational cost of the pro-
posed crystallographic RD3Q67 with the standard D3Q27
lattice. In order to have the same resolution as the pro-
posed crystallographic RD3Q67 lattice with 2N3 points,
the number of grid points required on a standard D3Q27
lattice is (2N )3 = 8N3. With this understanding, the memory

requirement for the RD3Q67 is approximately (2 × 67)/(8 ×
27) ≈ 0.6 times lower than the standard D3Q27 lattice. To
compare the overall performance of the two lattices, we list
the time taken for various N in Table IV. It can be seen that
the total time taken for same resolution of the two grids is
comparable. However, if we take the same number of points
on both the grids, the memory requirement and the time taken
by D3Q27 are smaller.

VIII. KINETIC BOUNDARY CONDITION

In this section, we will present the kinetic diffuse boundary
condition [78–81] and its implementation for the proposed
model. This boundary condition assumes that upon encoun-
tering the wall, the populations completely forget their his-
tory. It also assumes that the time spent by the population
inside the wall is negligible as compared to any characteristic
time. Here, for illustration we will consider the top wall
with the normal in the y direction. The boundary condition
for other walls can be formulated in the same manner. For
higher-order and crystallographic models, such as the one
proposed in the previous sections, populations from mul-
tiple layers constitute the outgoing set of populations and
need to be properly identified. Note that the incoming and
outgoing populations are reflection of each other about the
wall.

FIG. 5. The energy shells in RD3Q67 model: sc1, sc2, sc3 (left), bcc 1
2 , bcc1, bcc 3

2 (center), fcc2, fcc3 (right).
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TABLE IV. Time (in seconds) taken for 100 iterations for the
proposed RD3Q67 and the standard D3Q27 model on an Intel(R)
Xeon(R) CPU E7-4890 v2 @ 2.80GHz processor.

N RD3Q67 (2N3) D3Q27 (2N )3 D3Q27 (2N3)

64 41.46 36.69 9.44
128 310.84 277.56 70.58
192 1254.95 1219.49 230.60

For the RD3Q67 model, at each wall we encounter six
layers Lk, k = 1 . . . 6 (see Fig. 6), that have populations
missing post streaming and need to be refilled. The total
number of incoming and outgoing populations at the layers
L1 to L6 are 23, 19, 14, 10, 5, 5, respectively. The incoming
populations are listed in Table V.

The outgoing populations f O
i,Lk

, k = 1 . . . 6, are diffused
into the wall and are reflected back in form of a new distri-
bution f I

i,Lk
, k = 1 . . . 6. The magnitude of incoming popula-

tions f I
i,Lk

is updated via the prescription

f I
i,Lh

(x, t ) =
∑

k=1,3,5

∑
f O

j,Lk
(x, t )|cjy |∑

k=1,3,5

∑
f

eq
j,Lk

(ρw, uw, θw)|cjy |
× f

eq
i,Lh

(ρw, uw, θw), h = 1, 3, 5

f I
i,Lh

(x, t ) =
∑

k=2,4,6

∑
f O

j,Lk
(x, t )|cjy |∑

k=2,4,6

∑
f

eq
j,Lk

(ρw, uw, θw)|cjy |
× f

eq
i,Lh

(ρw, uw, θw), h = 2, 4, 6 (64)

where i are the populations at each Lk corresponding to
Table V, ρw = 1, and the uw, θw are wall velocity and tem-
perature, respectively. The above prescription conserves the
mass flux at the boundary. The minor fluctuations introduced
in mass due to difference

∑
(f O

i,Lk
− f I

i,Lk
) are eliminated

by manipulating the stationary population f0 at each node.
However, the implementation of the complex boundary con-
ditions (anything other than bounce back) is a nontrivial open
question. Extensions of the bounce-back boundary condition
for imposing temperature and velocity are the diffuse bounce-
back boundary condition [82] or the boundary condition pro-
posed in Ref. [83]. We leave the extension of kinetic diffuse
boundary condition as the subject of subsequent studies with

L1
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L3

L4

L5

L6

0.25Δx

0.5Δx

Δx

x

y

z

FIG. 6. Populations at each layer that see the top wall and need
to be repopulated post streaming are listed in Table V.

TABLE V. Incoming populations at each layer near the top wall.

Layer Incoming populations f I
i,Lk

Total number

L1 (0, −1, 0), (±1, −1, ±1) 23
(0, −2, 0), (±2, −2, 0), (0,−2, ±2)
(0, −3, 0), (±3, −3, 0), (0,−3, ±3)

(±1.5, −1.5, ±1.5), (±0.5,−0.5, ±0.5)
L2 (0, −1, 0), (±1, −1, ±1) 19

(0, −2, 0), (±2, −2, 0), (0,−2, ±2)
(0, −3, 0), (±3, −3, 0), (0,−3, ±3)

(±1.5, −1.5, ±1.5)
L3 (0, −2, 0), (±2, −2, 0), (0,−2, ±2) 14

(0, −3, 0), (±3, −3, 0), (0,−3, ±3)
(±1.5, −1.5, ±1.5)

L4 (0, −2, 0), (±2, −2, 0), (0,−2, ±2) 10
(0, −3, 0), (±3, −3, 0), (0,−3, ±3)

L5 (0, −3, 0), (±3, −3, 0), (0,−3, ±3) 5
L6 (0, −3, 0), (±3, −3, 0), (0,−3, ±3) 5

the following suggestion as a possible remedy:

f I
i,Lh

(x, t ) =
∑

j

f O
j,Lh

(x, t )|cj · n|∑
f

eq
j,Lh

(ρw, uw, θw)|cj · n|
× f

eq
i,Lh

(ρw, uw, θw), h = 1 . . . 6. (65)

In the above equation, each outgoing population will con-
tribute individually to each incoming population, i.e., each
incoming population will receive fractions of each of outgoing
populations.

In the following sections, we will benchmark the RD3Q67
model and the implementation of the boundary condition for
various thermal and compressible flows.

IX. HYDRODYNAMICS: STARTUP OF
SIMPLE SHEAR FLOW

In this section, we consider the startup flow of fluid sit-
uated between two parallel plates due to sudden movement
of the plate at y = 0 with a constant velocity Uwall in the x

direction. The other plate at y = H is kept stationary. The
solution for velocity profile at sufficiently long time u(y, t =
∞) = Uwall(1 − y/H ) is linear. The analytical expression for
velocity profile is [84]

ū(ȳ, t̄ ) = (1 − ȳ) −
∞∑

n=1

2

nπ
exp(−n2π2 t̄ ) sin nπȳ, (66)

where the nondimensionalized variables ū = u/Uwall, ȳ =
y/H , and t̄ = tν/H 2 with ν as the kinematic viscosity. This
solution is a good test to assess the accuracy of transient
dynamics.

This setup was simulated on a grid of size 8 × 128 × 8
points with wall imposed in the y directions and periodic
boundary conditions in the other two directions. The velocity
of the moving wall was taken to be Uwall = 0.02. The kine-
matic viscosity was chosen such that the Reynolds number
Re = UwallH/ν = 512. The mean planar velocity at various
times is compared against the analytical solution given by
Eq. (66) in Fig. 7 and is found to be in good agreement.
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FIG. 7. Nondimensionalized mean planar velocity profiles ob-
tained from RD3Q67 at various diffusion times compared against
the analytical solution.

X. HEAT CONDUCTION: STEADY STATE

In this section, we consider the steady state for the heat
transfer in one and two dimensions. The first two subsections
have no flow at the steady state, while the third subsection has
nonzero velocity at the steady state.

A. One-dimensional heat conduction

We consider the steady state for the heat transfer in fluid
confined in a one-dimensional domain of height H . The top
wall at y = H is subjected to a constant elevated temper-
ature θtop and the bottom wall at y = 0 is kept at θ0. The
steady-state temperature profile is θ = θ0 + (θtop − θ0)y/H .
The simulations were performed on a grid of size 8 × 32 × 8
and Knudsen number Kn = 10−3. The relaxation time τ is
related to Kn via Kn = τcs/H , where the sound speed cs =√

(5/3)θ . The temperature profiles for various values of the
temperature jump are given in Fig. 8. It can be seen that the
model is accurate and stable for temperatures elevations as
high as 50% of θ0. Further, from Fig. 9(left) it can be seen that
the magnitude of the L2 norm decreases upon increasing the
grid resolution.

As pointed in Eq. (63), the corrected thermal conductivity
is expected to reduce the error. Figure 9(right) contrasts the L2

norm obtained with using the thermal conductivity correction
to without. It can be seen that for lower values of θtop the
L2 norm remains almost the same while for higher values it
decreases upon using the thermal conductivity correction.
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FIG. 8. Temperature plots without including the thermal conduc-
tivity correction for different magnitudes of the top wall temperature.

B. Two-dimensional cavity heated at the top

We consider another simple heat transfer problem in a
two-dimensional box of length L and width W subjected to
an elevated temperatures at the top wall as represented in
Fig. 10. The simulations were performed on a grid of size
256 × 128 × 8 with �θ = 0.10 θ0 at Kn = 10−3. The rapid
heating at the top wall will initiate thermoacoustic convection
in the early stages of the simulation, which will be discussed
in later sections. We study the system at steady state where the
only mode of heat transfer is pure conduction.

The analytical expression for the normalized temperature

θ̄ (x, y, t = ∞) = 2

π

∞∑
k=1

1 − cos(kπ )

k
sin(kπx)

× sinh(kπy)

sinh(kπW/L)
(67)

is found as the solution of conduction equation. The mean
planar temperature profiles at x = 0.1, 0.25, 0.5 and y =
0.25, 0.5, 0.75 are represented in Figs. 11(left) and 11(right),
respectively, and are found to match well with the analytical
solution.

C. Viscous heat dissipation

In this section, we consider the steady state of flow induced
by wall at y = H moving with a constant horizontal velocity
Uwall and maintained at a constant elevated temperature θhot.
The lower wall at y = 0 is kept stationary at a constant
temperature θcold(<θhot ). This setup is well suited to validate
the effect of viscous heat dissipation. Each layer of fluid
drags the layer below it due to friction which results in the
mechanical energy being converted to thermal heating and,
therefore, the heat produced affects the temperature profile in
the bulk. The analytical solution for the temperature profile
for this setup is [85]

θ − θcold

θhot − θcold
= y

H
+ Ec

2

y

H

(
1 − y

H

)
, (68)

where the Ec = U 2
wall/(cp�θ ) is the Eckert number that rep-

resents the ratio of viscous dissipation to heat conduction
with cp = 5

2 as the specific heat at constant pressure and
�θ = θhot − θcold is the temperature difference between the
two walls.

Simulations were performed for Ec = 0.5, 2.0, 5.0 on a
grid size of 24 × 128 × 24 with Uwall = 0.02 and �θ calcu-
lated according to respective Eckert numbers. The walls were
maintained at temperatures θ0 + 0.5�θ and θ0 − 0.5�θ with
periodic boundary condition in the other two directions. The
normalized mean planar temperature profile at steady state is
compared against the analytical solution given by Eq. (68) in
Fig. 12 and is found to be in agreement. This suggests that the
thermal transport phenomenon is modeled correctly.

XI. COMPRESSIBLE THERMOHYDRODYNAMICS

A variety of problems of practical interest have velocity
and temperature dynamics coupled together. This coupling
makes it nontrivial for any fluid solver to represent the physics
accurately. The aim section of this section is to benchmark the
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FIG. 9. L2 norms of temperature: deviation from linear temperature profile at θtop = 1.2θ0 and different grid resolutions (left) and
comparison for corrected and uncorrected thermal conductivity at various magnitudes of the top wall temperature (right).

proposed model for a few thermal and compressible flows.
The setups chosen are the Sod shock tube, a common test
for the accuracy of compressible solvers, the thermoacoustic
convection, which has the presence of various timescales and
length scales, and the Rayleigh-Bénard convection, a standard
test case for thermal flows [41].

A. Sod shock tube

We study the time evolution of a one-dimensional front in
Sod’s shock tube. This is considered a standard test case to
check the accuracy and stability of compressible flow solvers.
The setup consists of an initially quiescent fluid in the two
regions L and R. The two regions located in x = −0.5 to 0.0
and x = 0.0 to 0.5, respectively, are separated by an interface
at x = 0 across which the density and pressure have a jump

⎛
⎝ρL

uL

pL

⎞
⎠ =

⎛
⎝1

0
1

⎞
⎠,

⎛
⎝ρR

uR

pR

⎞
⎠ =

⎛
⎝0.125

0
0.1

⎞
⎠. (69)

The presence of a sharp discontinuity in the initial condition
at the center of the domain generates a moving compressive
shock front in the low density region and rarefaction front
in the high density region. These two fronts leave behind
in the tube a central contact region of uniform pressure and
velocity [86].

Here, for the test case we consider the reference viscosity
μ = 10−5. The simulations were performed on a coarse grid
A of size 500 × 8 × 8, and a refined grid B of size 2000 ×
8 × 8. The periodic boundary conditions were implemented
in (y, z)-normal directions and standard bounce back in x-
normal direction. The timescale is chosen based on the length

x

y

W

L0

θtop = θ0 + Δθ

θbottom = θ0

θright = θ0θleft = θ0

y/W = 0.25

y/W = 0.5

y/W = 0.75

x/L = 0.1

x/L = 0.5

x/L = 0.25

FIG. 10. Sketch representing the geometry of the
two-dimensional box and the imposed wall temperatures.

of the domain and speed of sound in the right section of the
domain. The simulations were run until the nondimensional
time t∗ = 0.2, that is earlier than either of the fronts hit the
wall.

Figure 13 contrasts the density, pressure, and velocity
obtained from the present model with those from the direct in-
tegration of Navier-Stokes-Fourier equations. Simulations on
the coarse grid show oscillations in the region of discontinuity.
The contact region shows a very minute jump in the pressure
and there exists a small discrepancy in velocity at the tail of
the expansion front. It is evident that the speed of the shock is
captured accurately by the model.

B. Thermoacoustic convection

Thermoacoustic convection refers to the convective cur-
rents set up in a compressible fluid due to rapid heating
of one of the walls [87–89]. It manifests in the form of a
pressure wave initiated at the heated wall that is reflected back
and forth in the domain until it gets dissipated by viscosity.
The thermally induced motion is known to enhance the heat
transfer relative to pure conduction by addition of a convective
mode [87]. As the steady state is attained, the convective mode
gradually dissipates and conduction becomes the dominant
mode of heat transfer [90]. The numerical modeling of ther-
moacoustic phenomenon is considered a challenging problem
due to the presence of multiple timescales and length scales.

The simulation setup consists of a grid of size 8 × 128 × 8
with θhot = 1.01θ0, θcold = θ0, and utop = ubottom = 0. The
viscosity is calculated from the Knudsen number Kn = 10−4.
To benchmark the results, the compressible Navier-Stokes-
Fourier (NSF) were solved using the scheme of Ref. [87]
subjected to the boundary conditions

u(y = 0, t ) = u(y = H, t ) = 0,

θ (y = H, t ) = θhot,

θ (y = 0, t ) = θcold,

(70)

and initial condition ρ(y, t = 0) = ρ0, u(y, t = 0) = 0, and
θ (y, t = 0) = θcold. Figure 14 compares the temperature, den-
sity, and pressure profile obtained from the RD3Q67 simula-
tions with solution to NSF equations and they are found to
be in agreement. This suggests that the current model is well
suited for studying the various compressible flows.
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FIG. 11. Steady-state conduction in a two-dimensional plate: temperature plots along constant x lines (left) and along constant y lines
(right). The solid lines are the analytical solution of the conduction equation while the symbols are from simulations.

C. Rayleigh-Bénard convection

Rayleigh-Bénard convection is considered a classical
benchmark on the thermal models [23]. The setup consists
of a horizontal layer of viscous fluid confined between two
thermally well conducting parallel plates kept at a distance L.
The bottom plate is at an excess temperature θbottom, while the
top plate is maintained at a lower temperature θtop. The flow is
caused by the temperature induced unstable density gradients
in the presence of external force field (usually gravitational
field).

The dynamics is characterized by nondimensional param-
eter Rayleigh number (Ra), that represents the strength of
buoyancy driven inertial force to the viscous force and is
defined as

Ra = gβ̂�θL3

ναT

, (71)

where g is the gravity in the negative y direction, β̂ =
−1/ρ(∂ρ/∂T )P is the thermal expansion coefficient, �θ is
the temperature difference between the two walls, ν is the
kinematic viscosity, and αT is the thermal diffusivity. Below
a certain critical Rayleigh number (Rac ≈ 1708) where the
heat transfer is entirely conductive in nature, a steady solution
exists with the velocity zero everywhere and the temperature
a linear function of the vertical coordinate

θ = θbottom − �θ
y

L
. (72)
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FIG. 12. Mean planar temperature profiles obtained from
RD3Q67 at steady state compared against the analytical solution.

However, when Ra is increased above the critical value,
this solution becomes unstable to small disturbances and the
convection currents are set up. As Ra is increased further, the
flow becomes turbulent in nature.

The gravitational force is incorporated in the collision step
via a forcing term Fi . The update of populations is written as

fi (x + ci�t, t + �t )

= fi (x, t ) + αβ
[
f

eq
i (ρ, û, θ̂ ) − fi (x, t )

]

+
(

1 − αβ

2

)
�tFi, (73)

where

û = 1

ρ
〈f, c〉 + �t

2
g, θ̂ = 1

3ρ

(〈
f, c2

〉 − ρ û2
)
, (74)

and α = 2 is the single relaxation time standard LBM. For
high Ra, α needs to be computed from the entropic formula-
tion of LBM [64]. The force term is

Fi = ρwi ci · g
θ0

. (75)

Here, it should be pointed that the alternate ways to evaluate
the hydrodynamic moments involve averaging the moments
before and after collision [91] or shifting them [68], and are
subject of further research for the proposed model.

The numerical simulations were carried on a grid size
of 256 × 128 × 8 with θbottom = 1.05θ0 and θtop = 0.95θ0.
Constant temperature boundary conditions at the top and the
bottom walls were imposed and periodic boundary condi-
tions were applied in the other two directions. Following
Refs. [24,29], the setup was initialized with a sinusoidal
perturbation of the temperature field and left to evolve until
two diffusion times. However, any random initial perturbation
provided to the system triggers the instability. The Nusselt
number and the temperature contours at the steady state are
independent of the initial perturbation provided to the system.
At Ra > 106 for this setup, α was recomputed from the
entropic formulation of LBM to suppress the disruptive nu-
merical instabilities [64]. Figure 15 depicts the isotemperature
contours for 2D Rayleigh-Bénard convection at various Ra.
Figure 16 visualizes the temperature field for 3D Rayleigh-
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FIG. 13. The figure shows the variation of density (ρ), velocity (u), and pressure (P ) along the tube for the Sod’s shock test. The figure
contrasts RD3Q67 simulation results from runs A (left) and B (right) with NSF equations at t∗ = 0.2.

Bénard convection at a grid size of 1024 × 512 × 1024 at
Ra = 109. For quantitative analysis, we calculate the Nusselt
number (Nu) which is the measure of heat transfer in the
system and represents the ratio of net heat transfer to the

conductive heat transfer

Nu = 1 + 〈uyθ̃〉
αT �θ/H

, (76)
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FIG. 15. Temperature field for the Rayleigh-Bénard convection at Ra = 1.0 × 104 (top left), 3.0 × 104 (top right), 1.5 ×
105 (bottom left), 1.0 × 107 (bottom right). The lines represent isotemperature contours of temperature normalized from 0 to 1 in
steps of 0.05.

where αT is the thermal diffusivity, and 〈·〉 represents aver-
age over the entire domain of flow. Here, θ̃ = θ̂ − (θbottom −
�θy/L) is the deviation from the temperature distribution
in the static state [92,93]. In Fig. 17, the Nusselt num-
ber obtained from current simulations is compared with
that from Ref. [93] and the empirical power law Nu =
1.56(Ra/Racr )0.296. In Fig. 18, a grid convergence study is
performed at Ra = 104, and is found to reveal second-order
convergence of the scheme. To test the accuracy of the
model at large temperature deviations, a Rayleigh-Bénard
simulation at Ra = 104 on a grid size of 256 × 128 × 8
with top wall temperature 0.5θ0 and bottom wall temper-
ature 1.5θ0 was performed. The Nusselt number obtained
was 2.6797, whereas the Nusselt number for wall temper-
atures (1 ± 0.05)θ0 was 2.6426 while the empirical power
law suggests the Nusselt number to be 2.6321. Hence, the
50% temperature run gave an error of 1.8% whereas the
5% temperature deviation gave an error of only 0.4%. This
suggests that the accuracy of the model is not compromised at
large temperature deviations. A detailed quantitative analysis
of high Ra convection has been kept out of the scope of this
paper.

XII. OUTLOOK

In this paper, we have presented an energy conserving
lattice Boltzmann model based on a single set of populations.
It exhibits accurate thermohydrodynamic behavior with a high
degree of accuracy and is therefore capable of simulating
compressible and thermal hydrodynamics. The theoretical re-
quirements and the methodology to construct this model have
been described in detail and can be employed to construct
even more accurate models. Several test cases were simulated
using the proposed model and it was found to be nonlinearly
stable for a wide range of parameters. The test cases confirmed
that the model correctly captures viscous heating, shocks,
heat conduction, and compressible hydrodynamics. The test
case of thermoacoustic convection clearly proves excellent
agreement with the NSF equations at the diffusive timescales.
Some preliminary studies have shown that it also reproduces
correct behavior at acoustic timescales, which is a subject of
further research. As the model is nonlinearly stable, it opens
the possibility to study turbulent thermal flows such as the
turbulent Rayleigh-Bénard convection. The limitation on the
Prandtl number is due to the BGK collision model and can be
addressed by using quasiequilibrium models [94,95].
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FIG. 16. Rayleigh Bénard convection at Ra = 109: temperature field at the boundaries (left) and on a horizontal slice close to the top wall
(right).
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APPENDIX: EVOLUTION OF THE
THERMOHYDRODYNAMIC MOMENTS

We begin with the Boltzmann BGK equation

∂tf + ∂β (f cβ ) = �(f ), (A1)

where �(f ) = (f eq − f )/τ is the collision kernel, with τ as
the relaxation time. We define the peculiar velocity ξα = cα −
uα , and the integral∫

f ψ (ξ )dξ = 〈f,ψ (ξ )〉. (A2)

The various moments can be found as〈
f,

{
1, ξα, ξαξβ, 1

2ξ 2, ξαξβξγ , 1
2ξ 2ξα, ξ 2ξαξβ, ξ 4

}〉
= {

1, 0, pδαβ + σαβ, 3
2p,Qαβγ , qα, Rαβ, R

}
. (A3)

The traceless part Aαβ of any second-order tensor Aαβ is
defined as

Aαβ = 1
2

(
Aαβ + Aβα − 2

3Aγγ δβα

)
. (A4)

We also define

Qαβγ = Qαβγ − 2
5 (qαδβγ + qβδαγ + qγ δαβ ) (A5)

and

Rαβ = Rαβ − 1
3Rδαβ. (A6)
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FIG. 18. Grid convergence study for Ra = 104 reveals second-
order convergence. The converged NuR is 2.6311 with 360 points in
the vertical direction. The line is the fitted curve.

Multiplying Eq. (A1) with φ(ξ ) one obtains

∂t (f φ(ξ )) − f ∂tφ(ξ ) + ∂β (f cβφ(ξ )) − f cβ∂βφ(ξ )

= �(f )φ(ξ ). (A7)

Applying the chain rule and integrating over the velocity space
one obtains

∂t 〈f, φ(ξ )〉 − 〈
f, (∂t ξα )∂ξα

φ(ξ )
〉 + ∂β〈f, (ξβ + uβ )φ(ξ )〉

− 〈
f, cβ (∂βξα )∂ξα

φ(ξ )
〉 = 〈�(f ), φ(ξ )〉. (A8)

Now, substituting ∂tξα = ∂t (cα − uα ) = −∂tuα and ∂βξα =
∂β (cα − uα ) = −∂βuα we get

∂t 〈f, φ(ξ )〉 + (∂tuα )〈f, ∂ξα
φ(ξ )〉

+ ∂β〈f, ξβφ(ξ )〉 + ∂β[uβ〈f, φ(ξ )〉]
+ (∂βuα )〈f, cβ∂ξα

φ(ξ )〉 = 〈�(f ), φ(ξ )〉. (A9)

1. Evolution of density

Substituting φ(ξ ) = 1 in Eq. (A9) we obtain the evolution
of density (the continuity equation) as

∂tρ + 0 + 0 + ∂α (ρuα ) + 0 = 0. (A10)

2. Evolution of velocity

Substituting φ(ξ ) = ξγ in Eq. (A9) we obtain the evolution
of velocity as

0 + ∂tuγ + 1

ρ
∂β (pδγβ + σγβ ) + 0 + uβ∂βuγ = 0. (A11)

3. Evolution of pressure, temperature, and the stress tensor

Substituting φ(ξ ) = ξγ ξκ in Eq. (A9) we obtain

∂t [pδγκ + σγκ ] + 0 + ∂βQβγκ + ∂β[uβ (pδγκ + σγκ )]

+ (∂βuα )〈f, cβ (ξκδαγ + ξγ δακ )〉

= 1

τ

(
σ eq

γ κ − σγκ

)
. (A12)

Substituting cβ = ξβ + uβ and integrating further we obtain

∂t [pδγκ + σγκ ] + ∂βQβγκ + ∂β[uβ (pδγκ + σγκ )]

+ (pδβκ + σβκ )∂βuγ + (pδβγ + σβγ )∂βuκ

= 1

τ

(
σ eq

γ κ − σγκ

)
. (A13)

Taking the trace (i.e., multiply with δγ κ ) of the above equation
we obtain

3∂tp + 3uβ∂βp + 5p∂βuβ + 2∂βqβ + 2σβκ∂βuκ = 0,

(A14)
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which gives the evolution of pressure as

∂tp + uβ∂βp + 5
3p∂βuβ + 2

3σβγ ∂βuγ + 2
3∂βqβ = 0. (A15)

Substituting p = ρθ in the evolution of pressure and rearranging the terms one obtains

∂tθ + uβ∂βθ + 2

3
θ∂βuβ + 2

3ρ
σβγ ∂βuγ + 2

3ρ
∂βqβ + θ [∂tρ + ∂β (ρuβ )] = 0, (A16)

where the term in square brackets is zero because of Eq. (A10). Therefore, we obtain the evolution of temperature as

∂tθ + uβ∂βθ + 2

3
θ∂βuβ + 2

3ρ
σβγ ∂βuγ + 2

3ρ
∂βqβ = 0. (A17)

Multiplying Eq. (A15) with δγ κ and subtracting from Eq. (A13) one obtains

∂t [pδγκ + σγκ ] + ∂βQβγκ + ∂β[uβ (pδγκ + σγκ )] + (pδβκ + σβκ )∂βuγ + (pδβγ + σβγ )∂βuκ

−
[
∂tp + uβ∂βp + 5

3
p∂βuβ + 2

3
σβγ ∂βuγ + 2

3
∂βqβ

]
δγ κ = 1

τ

(
σ eq

γ κ − σγκ

)
, (A18)

which can be simplified as

∂tσγ κ + ∂β[uβσγκ ] + ∂βQβγκ − 2

3
δγ κ∂βqβ + p∂κuγ + p∂γ uκ − 2

3
pδγκ∂βuβ + σβκ∂βuγ + σβγ ∂βuκ

− 2

3
δγ κσβγ ∂βuγ = 1

τ

(
σ eq

γ κ − σγκ

)
. (A19)

Rearranging the terms in the above equation we obtain the evolution of the stress tensor as

∂tσαβ + uγ ∂γ σαβ + ∂γ Qαβγ + σαβ∂γ uγ + 2σγβ∂γ uα + 2p∂βuα + 4

5
∂βqα = 1

τ

(
σ

eq
αβ − σαβ

)
. (A20)

4. Evolution of the heat flux

Substituting φ(ξ ) = ξ 2ξα/2 in Eq. (A9) we obtain

∂tqα + (∂tuβ )

[
5

2
pδαβ + σαβ

]
+ 1

2
∂βRαβ + ∂β (qαuβ ) + (∂βuα )

〈
f,

1

2
ξ 2(ξβ + uβ )

〉

+ (∂βuγ )
〈
f, ξαξγ (ξβ + uβ )

〉 = 1

τ

(
qeq

α − qα

)
, (A21)

which after substituting ∂tuβ from Eq. (A11) is further simplified as

∂tqα −
(

uκ∂κuβ + 1

ρ
∂βp + 1

ρ
∂κσβκ

)[
5

2
pδαβ + σαβ

]
+ qβ∂βuα + 1

2
∂βRαβ + ∂β (qαuβ ) + Qαβγ ∂βuγ

+ 3

2
puβ∂βuα + uβ (pδαγ + σαγ )(∂βuγ ) = 1

τ

(
qeq

α − qα

)
, (A22)

where upon rearranging the terms we obtain the evolution for heat flux as

∂tqα + 1

2
∂β

(
Rαβ + 1

3
R δαβ

)
+ Qαβγ ∂γ uβ + ∂β (qαuβ ) + 7

5
qβ∂βuα + 2

5
qα∂βuβ + 2

5
qβ∂αuβ

− 5

2

p

ρ
∂αp − σαβ

ρ
∂βp − 5

2

p

ρ
∂θσαθ − σαβ

ρ
∂θσβθ = 1

τ

(
qeq

α − qα

)
. (A23)
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