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An improved preconditioned multiple-relaxation-time lattice Boltzmann equation model for incompressible
flow (IPMRT-LBE) in porous media is proposed. Motivated by previous LBE models [Guo et al., Phys. Rev. E
70, 066706 (2004); Premnath et al., J. Comput. Phys. 228, 746 (2009); Guo et al., J. Comput. Phys. 165, 288
(2000)], the current model is demonstrated to have the advantages of accurate implementation of the no-slip
boundary condition, reducing the compressible effect as well as fast convergence rate compared with standard
LBE models. To validate the IPMRT-LBE model, flows in two- and three-dimensional synthetic porous media
(square array of cylinders and body-centered cubic array of spheres) are simulated. The results show that
the current model can predict the macroscopic property (such as permeability) accurately with significantly
accelerated convergence rate. Furthermore, simulations of flow through a three-dimensional sandpack confirm
the applicability and advantages of the IPMRT-LBE model.
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I. INTRODUCTION

Flow and transport in porous media are fundamental pro-
cesses but critical in many environmental and industrial ap-
plications, such as contaminant transport in groundwater, oil
recovery, CO2 sequestration, and so on. Accurate descriptions
of such processes, especially small-scale mechanisms and
their impact factors (such as heterogeneity, surface precipi-
tation and dissolution, etc.), are thus important to advance our
understanding of large-scale system behaviors. However, it is
difficult to fully capture microscopic (e.g., pore-scale) fea-
tures by using the macroscopic (e.g., Darcy-scale) approach.
With the fast development of computational algorithms and
computing resources, pore-scale direct numerical simulations
(DNS) have become feasible to investigate flow and trans-
port processes in synthetic and engineered porous media
systems [1,2].

Pore-scale flows can be described by the steady-state
incompressible Navier-Stokes (NS) equations with low
Reynolds numbers (Re � 1) [1,3–5]. Even though the tran-
sient terms in the NS equations can be ignored [5], analytical
solutions are still difficult to obtain due to the complexity
of the equations as well as the pore morphology. In recent
decades, much effort has been taken into developing DNS
to solve the unsteady and steady NS equations. Classified
in two catogories, there are conventional grid-based mod-
els [e.g., the finite-difference method (FDM), finite-volume
method (FVM), etc.], and particle-based models [e.g., the
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lattice Boltzmann method (LBM) and smoothed particle hy-
drodynamics (SPH)] [5–9]. However, most DNS methods
(especially grid-based) have trouble treating complex pore
structures, which has limited their applications in simulating
flow and transport in porous media [1,3].

The lattice Boltzmann equation (LBE) model, which is
favored for its easy treatment of complex boundaries, has been
widely used for simulating pore-scale transport processes
[1,3,4,10,11]. By far, a series of LBE models have been
developed for various purposes, such as miscible flows, nat-
ural convection, non-Newtonian flows, and so on [3,12–15].
Unfortunately, as reported in Refs. [16–18], most of the
existing LBE models suffer from slow convergence even for
steady flows due to the fact that the models are numerically
explicit, which prevents them from practical applications. To
overcome this problem, there have been specific LBE models
developed targeting at fast convergence rate compared with
standard LBE models [19–22]. Nevertheless, these methods
often employ complicated algorithms [18], which are cum-
bersome to implement, especially for objects with complex
geometries, and thus not quite suitable for simulating pore-
scale flows. For the past decade, progresses have been made to
accelerate the convergence of the standard LBE model while
keeping its simplicity. Guo et al. proposed a preconditioned
single-relaxation-time LBE model (PSRT-LBE) for steady
NS equations by including a preconditioning factor in the
equilibrium distribution functions (EDFs) [18]. By adjusting
the preconditioning parameter, one can enlarge the effective
Mach number as well as the relaxation times, both of which
can significantly accelerate the convergence rate. Since the
PSRT-LBE only modified the EDFs by incorporating one
factor, it retains the same simplicity as the standard LBE mod-
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els. However, as pointed out in Refs. [3,23], for simulating
porous media flows, LBE models with single-relaxation-time
collision term (SRT-LBE) have the defect that the computed
permeability increases with the fluid viscosity due to the
incorrect implementation of the no-slip boundary condition
at the fluid-solid interface. This weakness may be over-
come by using the multiple-relaxation-time collision model
(MRT-LBE) if the relaxation times are specifically determined
[3,23]. Most recently, Premnah et al. introduced a precon-
ditioned multiple-relaxation-time lattice Boltzmann equation
(PMRT-LBE) model on the basis of the PSRT-LBE to achieve
a better numerical stability [24], although it is noted that the
relaxation times, which are crucial for accurately implement-
ing no-slip boundary conditions, were not carefully derived
in the PMRT-LBE but using arbitrary values [24]. In other
words, if used for permeability computations, both the PSRT-
LBE and PMRT-LBE cannot eliminate the defect of viscosity-
dependent permeability. What’s more, it is noted that the fluid
density is related to the pressure in both models, suggesting
that the fluid density will change due to the variation of
the pressure even for incompressible flows (i.e., compress-
ible effect) [3,18]. Therefore, computational errors may be
introduced in simulating incompressible flows with pressure
variations. As known, in simulating flow in porous media, the
pressure field usually changes dramatically due to the com-
plex pore structures, indicating that these two models may not
be suitable for such applications [25]. Therefore, to accurately
and efficiently simulate low-speed incompressible flow in
porous media and predict macroscopic properties, LBE mod-
els with fast convergence rate and precise treatments of no-slip
boundary condition are still desirable and remain challenged.

In the present work, we aim to propose a preconditioned
multiple-relaxation-time lattice Boltzmann equation model
for incompressible flow in porous media (IPMRT-LBE),

which is expected to be accurate, efficient, and relatively easy
to implement. The rest of the paper is organized as follows.
The proposed IPMRT-LBE model is explained in Sec. II, with
validations, applications, and discussions in Sec. III. Finally,
a brief summary is given in Sec. IV.

II. MODEL DEVELOPMENT

A. Governing equations

Flow in porous media at the pore scale are generally
described by the incompressible Navier-Stokes equations as
follows:

∇ · u = 0,
(1)

∂t u + u · ∇u = −∇P + ν∇2u + F,

where u is the velocity vector [i.e., u = (u, v) in two dimen-
sions and u = (u, v,w) in three dimensions], P denotes the
pressure divided by the fluid density, ν is the kinetic viscosity,
and F is the acceleration caused by the body force (e.g.,
gravity). As mentioned in the Introduction (Sec. I), transient
terms [time derivatives in Eq. (1)] as well as the convective
term u · ∇u can be neglected for low Reynolds number flows
in porous media.

B. Preconditioned multiple-relaxation-time
lattice Boltzmann equation

In the lattice Boltzmann method (LBM), the space is
discretized into regular lattices. All distribution functions are
assumed to move with a series of discrete velocities on these
nodes. In two dimensions (2D), the most popular discrete ve-
locity model is D2Q9 (two-dimension-nine-velocity), which
is defined as

ci =

⎧⎪⎨
⎪⎩

c(0, 0), i = 0,

c(cos [(i − 1)π/2], sin [(i − 1)π/2]), i = 1, . . . , 4,

2c(cos [(i − 5)π/2 + π/4], sin [(i − 5)π/2 + π/4]), i = 5, . . . , 8,

(2)

where c = δx/δt is the lattice speed and δx and δt are the lattice spacing and time step, respectively. In addition, the D3Q19
(three-dimension-nineteen-velocity) model is mostly used in three-dimensional scenarios, which are expressed as

ci =
⎧⎨
⎩

c(0, 0, 0), i = 0,

c(±1, 0, 0), c(0,±, 0), c(0, 0,±1), i = 1, . . . , 6,

c(±1,±1, 0), c(±1, 0,±1), c(0,±1,±1), i = 7, . . . , 18.

(3)

As in the standard LBE models, the evolution equation in the present IPMRT-LBE model reads as

f (x + cδt , t + δt ) − f (x, t ) = −(M−1 S)[m(x, t ) − meq(x, t )] + δt F̂, (4)

where f (x, t ) is the particle distribution function (PDF) at position x and time t with velocity c for the velocity space, while
m is the PDF at the moment space. M is the transformation matrix, which maps f to m as m = M · f . In addition, S =
diag[s0, . . . , sb−1] is the diagonal relaxation factor matrix, where b is the number of the discrete velocities and meq(x, t ) is the
equilibrium distribution function (EDF) at the moment space.

To accelerate the convergence rate of the present model, the preconditioning employed in the PSRT-LBE [18] is also adopted
here by introducing a preconditioning factor (γ ) in the EDF. Futhermore, to reduce the compressible effect of the PSRT-LBE and
PMRT-LBE models, we derive a new formulation of the EDF based on the incompressible LBE model developed in Ref. [26].
For the D2Q9 and D3Q19 models, respectively, the new EDFs are expressed as

meq = (0, e, ε, jx, qx, jy, qy, pxx, pxy )T =
(

0, 6P + 3u2

γ
,−9P − 3u2

γ
, u,−u, v,−v,

u2 − v2

γ
,
uv

γ

)T

(5)
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and

meq = (0, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3pixx, pww, pxy, pyz, pxz,mx,my,mz)T

=
(

0, 57P + 19u2

γ
,−27P − 11

2

u2

γ
, u,−2

3
u, v,−2

3
v,w,−2

3
w,

2u2 − v2 − w2

γ
,

−2u2 + v2 + w2

2γ
,
v2 − w2

γ
,
−v2 + w2

2γ
,
uv

γ
,
vw

γ
,
uw

γ
, 0, 0, 0

)T

, (6)

where superscript T denotes the transpose operator. By incorporating the new EDFs, the present IPMRT-LBE model is expected
to retain the fast convergence rate of the PSRT-LBE via preconditioning while reducing its compressible effect.

The discrete external force (F̂) in the current IPMRT-LBE model can be derived as

F̂ =
[

0,
6u · F

γ 2
,
−6u · F

γ 2
,
Fx

γ
,
−Fx

γ
,
Fy

γ
,
Fy

γ
,

2(uFx − vFy )

γ 2
,

(vFx + uFy )

γ 2

]
(7)

and

F̂ =
[

0,
38u · F

γ 2
,
−11u · F

γ 2
,
Fx

γ
,−2Fx

3γ
,
Fy

γ
,−2Fy

3γ
, Fz,−2Fz

3γ
,

2(2uFx − vFy − wFz)

γ 2
,

−(2uFx − vFy − wFz)

γ 2
,

2(vFy − wFz)

γ 2
,
−(vFy − wFz)

γ 2
,
vFx + uFy

γ 2
,
wFy + vFz

γ 2
,

wFx + uFz

γ 2
, 0, 0, 0

]
, (8)

for 2D and 3D scenarios, respectively.
The fluid pressure (divided by the fluid density) and veloc-

ity in the present model are calculated as

P = c2
s

1 − ω0

[
b−1∑

1

fi (x, t ) − u2

2γ

]
,

u =
b−1∑

1

cifi (x, t ) + δt F
2γ

, (9)

where cs = c/
√

3 and ω0 = 4/9 and 1/3 for the D2Q9 and
D3Q19 model as the equilibrium distribution function weight
coefficient, respectively. It is noted that Eq. (4) can be recov-
ered to the preconditioned NS equations through Chapman-
Enskog expansion analysis (refer to Appendix A for more
details):

∇ · u = 0,
(10)

∂t u + 1

γ
u · ∇u = − 1

γ
∇P ∗ + 1

γ
ν∇2u + 1

γ
F,

where P ∗ = γP , and

ν = γ c2
s

(
τν − 1

2

)
δt , (11)

where τν is the viscosity-related relaxation time, which is
correlated to the relaxation factors as 1/τν = s7 = s8 in 2D
and 1/τν = s9 = s11 = s13 = s14 = s15 in 3D. Equation (10)
converges to the same solution for steady flows as Eq. (1)
according to Ref. [18]. In addition, it should be noted that the
pressure in this model is P (numerical) rather than P ∗ (phys-
ical), with a correlation as P ∗ = γP . Finally, cs in Eq. (9)
is the lattice sound speed in standard LBE, while the lattice
sound speed in the present model is

√
γ cs rather than cs . We

can then define an effective lattice sound speed c∗
s = √

γ cs

[18,24]. As reported in Refs. [18,24], the disparity between
the speeds of the acoustic wave and the waves propagating
with the fluid velocity can be decreased by adjusting γ , which
leads to a fast convergence of the LBE.

The relaxation factors in the MRT-LBE models are cru-
cial to accurately implement the no-slip boundary condi-
tion, which would potentially avoid the defect of viscosity-
dependent permeability. According to Ref. [27], the viscosity-
independent permeability for any porous media flow can be
obtained when � = (τq − 1/2)(τν − 1/2) (definition of τq

can be found in Appendix B) is kept constant as the bounce-
back rule is employed. It is noted that the value of � for
different flows (e.g., steady flow between two straight and
inclined walls) can be different [28–30]. However, the specific
value of � that ensures the accurate implementation of the
no-slip boundary condition at the fluid-solid interface for the
steady flow between two straight parallel walls is found to
work well even in porous media flows [3,23,28–30]. Here
we also compute the value of � based on the steady flow
between two straight parallel walls. Theoretical results show
that the choice of relaxation factors (sq = s4 = s6 for 2D
and sq = s4 = s6 = s8 for 3D) should be carefully derived
rather than assigned with arbitrary values since they would
directly impact the slip velocities [Eq. (B21) in Appendix B].
Unlike in the PMRT-LBE model, the relaxation factors follow
a correlation listed below in the current IPMRT-LBE model
(� = 3/16; please refer to Appendix B for more details)

sq = 16τν − 8

8τν − 1
. (12)

For more details about the choice of � in other flows, one can
refer to Refs. [23,28–30].
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In summary, the present IPMRT-LBE model has two ad-
vantages over the previous models: (1) reducing the com-
pressible effect in the PSRT-LBE and PMRT-LBE, and (2)
accurately implementing the no-slip boundary condition by
numerically specifying certain relaxation factors rather than
using arbitrary values in the PMRT-LBE. In addition, the
proposed model could still achieve fast convergence while
maintaining the simplicity of the algorithm.

III. RESULTS AND DISCUSSIONS

In this section, a series of numerical experiments are
conducted to evaluate the performance of the present model.
First, flow through a 2D fracture is simulated. The effect of re-
laxation factors on the accurate implementation of the no-slip
boundary condition is then analyzed. Second, flows in both
two- and three-dimensional porous media are simulated based
on synthetic pore structures. Permeabilities are then computed
to compare with previous studies as further validations. Third,
numerical simulations of flow through a digital sandpack are
performed as an application. The convergence rates for all
cases are evaluated.

A. Flow through a 2D fracture

The pressure-driven flow in a 2D fracture (flow between
two parallel plates) is simulated here. The computational
domain is defined as −H/2 � y � H/2, 0 � x � L, where
H = 1.0 and L = 0.5. It is noted that all the physical variables
are in lattice units through the current study unless they
are specially specified. The initial and boundary conditions
employed for this case are expressed as follows:

u(x, y, 0) = v(x, y, 0) = 0,

u(x,−H/2, t ) = u(x,H/2, t ) = v(x,−H/2, t )

= v(x,H/2, t ) = 0,

P (0, y, t ) = Pin, P (L, y, t ) = Pout, (13)

where Pin and Pout are the pressures at the inlet and outlet,
respectively. Based on Eq. (13), an analytical solution can be
obtained as

u(y) = G

ν

H 2

2

(
y

H
− y2

H 2

)
, (14)

where G = −∂P/∂x is the pressure gradient.
In this problem, the dimensionless characteristic param-

eter, Reynolds number (Re), is defined as Re = umaxH/ν,
where umax = GH/8ν is the maximum velocity obtained
from Eq. (14). Two different cases, i.e., Re = 0.1 and 1, are
simulated here. The computations are conducted on a 16 × 32
(L × H ) uniform lattice. No-slip boundary conditions at the
upper and bottom walls are implemented using the halfway
bounce-back scheme, while the nonequilibrium extrapolation
scheme [31] is employed to treat the boundaries at the inlet
and outlet. The convergence criterion in our simulations is
defined as

E =
∑

ij |u(x, t + 100δt ) − u(x, t )|∑
ij |u(x, t + 100δt )| < 10−6. (15)

y
0 0.2 0.4 0.6 0.8 1

u
/
u

m
a
x

0

0.5

1

Analytical
γ = 1
γ = 0.1

(a) (b)

γ = 0.01
γ = 0.005

y
0 0.2 0.4 0.6 0.8 1

u
/
u

m
a
x

0

0.5

1

Analytical
γ = 1
γ = 0.1
γ = 0.01
γ = 0.005

FIG. 1. Flow in 2D fracture: velocity profiles for different pre-
conditioning factors (γ ) at two Reynolds numbers. (a) Re = 0.1;
(b) Re = 1.

The choices of the relaxation factors used in the 2D fracture
simulations include the following: (1) s1 and s2, which are
validated to have little influence on the numerical results
and then specified as 1.0 [3]; (2) s0 = 1.0, s3 = s5 = 0.0,
and s7 = s8 = 1/τν ; (3) s4 and s6 are calculated by Eq. (12)
(s4 = s6 = [16τν − 8]/[8τν − 1]) to ensure accurate imple-
mentation of the no-slip boundary conditions (Appendix B).

Numerical results of the velocity profiles in the transverse
direction are illustrated in Fig. 1, which show good agreement
with the analytical solutions for different preconditioning
factors (γ ) at two Reynolds numbers (Re = 0.1 and 1). To
evaluate the impact of γ on the convergence rate, Fig. 2 shows
the convergence histories for different γ [the residual error is
calculated following Eq. (15)]. It is obvious that the precondi-
tioning (γ < 1) accelerates the convergence rate as compared
with the standard LBE model (γ = 1). In addition, the smaller
the γ , the faster the convergence rate as γ > 0.005, which
is consistent with previous results in Refs. [18,24]. Iteration
number for γ = 0.005 is observed to be larger than those for
γ = 0.1 and 0.01. As shown in Eq. (11), τν increases with the
decrease of γ for the same viscosity. Meanwhile, τq = 1/sq

approaches 0.5 with the increase of τν according to Eq. (12).
As known, the slow convergence rate as well as the numerical
instability will occur as the relaxation times are too close to
0.5 in LBM. Therefore, the iteration number may increase
when γ is too small.

To investigate the effect of relaxation factors (s4 and s6) on
the precise implementation of the no-slip boundary condition,
different scenarios are tested in our simulations. For simplic-
ity, we only pick flows at Re = 1 to be the representative. The
values of s4 and s6 are taken to be arbitrary (0.01, 0.05, 0.5,

FIG. 2. Flow in 2D fracture: convergence histories for different
preconditioning factors (γ ) at two Reynolds numbers. (a) Re = 0.1;
(b) Re = 1.
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FIG. 3. Flow in 2D fracture: the effect of relaxation factors
(s4/s6) in the IPMRT-LBE on the velocity profiles. (a) γ = 0.1;
(b) γ = 1.

1.5) or following the correlation in Eq. (12) (1.482 for γ = 0.1
and 0.445 for γ = 1.0). As displayed in Fig. 3, an optimum
choice of s4 and s6 should be close to the values calculated
from Eq. (12). Arbitrary values would lead to unphysical
results (slip velocities at the wall boundaries) due to the
imprecise implementation of the no-slip boundary condition.
Relative errors between simulated results and analytical solu-
tion are noticed to increase as the values of s4(s6) deviate from
those calculated from Eq. (12). In addition, the slip velocity at
the wall boundary is found to increase with the decrease of γ .
It is reasonable that τν increases with the decrease of γ for the
same Reynolds number, leading to a larger slip velocity (more
details are shown in Appendix B).

The above results indicate that the present IPMRT-LBE
model can achieve faster convergence than standard LBE
models by introducing the preconditioning factor while pro-
viding accurate results by correctly implementing the no-
slip boundary condition at the wall boundaries [selecting the
optimum relaxation factors based on Eq. (12)].

Finally, we evaluate the compressible effect using all three
models (PSRT-LBE, PMRT-LBE, and the current IPMRT-
LBE), which is important to predict macroscopic properties
(e.g., permeability) for flow in porous media. Re = 1 is also
served as the test case here. The relaxation time in the PSRT-
LBE is determined by the fluid viscosity, while the relaxation
factors are all set as si = 1.0/τν in the PMRT-LBE. In the
IPMRT-LBE, si = 1.0/τν, i �= 4, 6, while s4 = s6 = [16τν −
8]/[8τν − 1]. The computed maximum velocities (normalized
by umax from the analytical solution) are displayed in Table I.
As we can see, the maximum velocities calculated by the
PSRT-LBE and PMRT-LBE are larger than 1 (especially when
γ = 0.01), which is attributed to the imprecise implemen-
tation of the no-slip boundary condition, while the present
IPMRT-LBE can provide accurate and consistent results. In
addition, the maximum velocities at the outlet in the PSRT-
LBE and PMRT-LBE are larger than those at the inlet, which

TABLE I. Comparison of three preconditioned LBE models:
normalized maximum velocity at the inlet and outlet.

γ model PSRT-LBE PMRT-LBE IPMRT-LBE

0.1 1.0570/1.0577 1.0570/1.0577 0.9990/0.9990
0.01 5.7116/5.7451 5.7116/5.7451 0.9991/0.9991

FIG. 4. 2D computational domain: circular cylinders in square
array.

is due to the compressible effect existing in these models. By
contrast, the maximum velocities at the inlet and the outlet
are almost identical from the results simulated by the IPMRT-
LBE model, which demonstrates that the present model can
reduce the compressible effect.

B. Flows in two- and three-dimensional synthetic porous media

The accuracy and the overall performance of the IPMRT-
LBE model has been demonstrated via a simple test case in
the previous section. We now employ this model to predict
the permeability of synthetic porous media [selected repre-
sentative element volume (REV) with specific structures]. A
comparative study on the performance of the three models is
again conducted. As known, at the REV scale, flow in porous
media with low Reynolds number can be described by Darcy’s
law [32] as

ud = K

μ
(−∇P + G), (16)

where ud is the Darcy velocity defined as the volume averaged
velocity in the flow field, μ is the dynamic viscosity of the
fluid, P represents the pressure, and G is the external force.
Thus the permeability (K) can be calculated as

K = μud

−∂αP + Gα

, (17)

where ud and Gα are the Darcy velocity and force in the α

(i.e., x, y, z) direction, respectively.

1. Square array of cylinders

The computational domain of the 2D test case is shown in
Fig. 4. For porosity close to 1, the permeability of this REV
can be calculated analytically [32] as

Ka = d2

32c
[− ln c − 1.476 + 2c − 1.774c2 + 4.706c3],

(18)
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ν
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FIG. 5. Flow in 2D porous media: computed permeabilities
(K/Ka) for fluids with different viscosities (ν). (a) Comparison
among three models for γ = 1; (b) tests on different preconditioning
factors γ (red dashed: PSRT-LBE; blue dotted: PMRT-LBE; black
solid: IPMRT-LBE; black symbols: γ ).

where Ka denotes the analytical permeability, d = 2a is the
diameter of the cylinder, where a is the radius, c is the solid
volume fraction calculated as c = πd2/4H 2, and φ = 1.0 − c

is the porosity.
In our simulations, L is taken as 200, and d = 41, lead-

ing to a porosity of 0.967. The flow is driven by a con-
stant external force in the x direction with Re = udd/ν =
0.1. No-slip boundary conditions are imposed at the fluid-
solid interface, which are implemented using the well-known
bounce-back scheme. In addition, periodic boundary condi-
tions are employed on all the other boundaries. Simulations
are conducted on 200 × 200 uniform lattices, which is the
same as the case in Ref. [3]. The relaxation factors are se-
lected in different ways among models: (1) in the PSRT-LBE
model, the relaxation factor is determined by the fluid viscos-
ity; (2) s0 = s1 = s2 = s3 = s5 = 1.0, s4 = s6 = s7 = s8 =
1/τν in the PMRT-LBE model; (3) s0 = s1 = s2 = s3 = s5 =
1.0, s7 = s8 = 1/τν, s4 = s6 = [16τν − 8]/[8τν − 1] in the
IPMRT-LBE model. The convergence criterion in this case is
expressed as∑

ij |u(x, t + 100δt ) − u(x, t )|∑
ij |u(x, t + 100δt )| < 10−6. (19)

Simulated permeabilities from all three models (PSRT-
LBE, PMRT-LBE, and IPMRT-LBE) are presented in Fig. 5.
We first consider the special case with γ = 1 (without the
preconditioning). As shown in Fig. 5(a), for PSRT-LBE and
PMRT-LBE, K increases with fluid viscosity, which is un-
physical. By contrast, the present IPMRT-LBE model can
provide a physical, viscosity-independent permeability. The
relative errors between the numerical results from the IPMRT-
LBE model and the analytical solutions are quite minimal
(less than 2%), confirming the accuracy of the present model.
By comparing cases with different γ [Fig. 5(b)], we can also
observe that the smaller the γ , the larger error of the results
from the PSRT-LBE and PMRT-LBE model. It is reasonable
because when γ gets smaller, the viscosity-related relaxation
time in the PSRT-LBE and PMRT-LBE model also becomes
larger, leading to a larger slip velocity at the fluid-solid
interface. On the other hand, since the slip velocity is reduced
in the IPMRT-LBE model by choosing the optimum relaxation
factors to correctly implement the no-slip boundary condition,
K computed from this model varies little for different γ .
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FIG. 6. Flow in 2D porous media simulated by the IPMRT-
LBE: convergence histories for fluids with different viscosities (ν).
Different values of the preconditioning factor γ are also tested.
(a) ν = 1/12; (b) ν = 1/6; (c) ν = 1/4; (d) ν = 1/3.

In addition, the PSRT-LBE and PMRT-LBE models become
numerically unstable for ν ≈ 0.333 as γ = 0.01 due to the
large relaxation time, which is not included in Fig. 5. How-
ever, the IPMRT-LBE model can still provide an accurate
permeability, suggesting the superior numerical stability of
the present model.

The impact of γ on the convergence rate of the IPMRT-
LBE model is further tested. As shown in Figs. 6(a)–6(c), re-
ducing the magnitude of γ can enhance the convergence rate.
As γ gets close to 0.01, the number of iterations decreases
about two orders of magnitude (from 105 to 103) as compared
with the case γ = 1 (standard LBE models). Also, the residual
error is observed to fluctuate significantly in the convergence
process as γ = 1, which would slow down the convergence
rate. Those oscillations are noticed to decrease with smaller γ

demonstrating the effect of preconditioning, which disappear
in the cases with γ = 0.01.

It is also interesting to find that the iteration number varies
nonmonotonously with γ for the case ν = 1/3 [Fig. 6(d)], i.e.,
it first decreases with γ , then rises up. According to Eqs. (11)
and (12), the smaller the γ , the larger the viscosity-related
relaxation time for the same viscosity, suggesting that the fol-
lowing relaxation factor τq = 1/sq is very close to 0.5. It may
make the residual error fluctuate and thus slow down the con-
vergence rate. Therefore, the value of the preconditioning fac-
tor (γ ) should be carefully determined to ensure both the nu-
merical stability and the convergence rate. In summary, results
from 2D cylinder-array simulations indicate that the present
IPMRT-LBE model can accelerate the convergence rate while
retaining the accuracy and enhancing the numerical stability.

2. Body-centered cubic array of spheres

As shown in Sec. III B 1, the PSRT-LBE and PMRT-LBE
models cannot provide a satisfied prediction of the perme-
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FIG. 7. 3D computational domain: periodic body-centered cubic
array of spheres.

ability even for 2D cases. Therefore, only the IPMRT-LBE
is adopted for 3D simulations. The selected REV is a periodic
body-centered cubic (bcc) array of spheres with equal radius
a, as displayed in Fig. 7. The permeability of this REV can be
expressed analytically as in [23,33,34]

Ka = L3

12πad∗ , (20)

where Ka is the analytical solution for permeability and L is
the length of the cubic. In addition, d∗ is the dimensionless
drag, which reads as

d∗ =
30∑

n=0

αnχ
n, χ =

(
c

cmax

)1/3

, (21)

c = 8πa3

3L3
, cmax =

√
3π

8
, (22)

where c is the volume fraction of the solid phase and the
coefficients αn can be found in Ref. [33].

In our simulations, L is set to be 1.0 and a is taken to be 0.2,
leading to a porosity of 0.933. Flows are driven by a constant
external force in the x direction with Re = 2uda/ν = 0.1.
Boundary conditions and their implementations are all kept
the same as in Sec. III B 1 for IPMRT-LBE. Simulations are
conducted on 1283 uniform lattices, which is fine enough to
provide grid-independent results [23]. To ensure the accurate
implementation of the no-slip boundary, the relaxation factors
sq are specified as [16τν − 8]/[8τν − 1], while other relax-
ation factors used here are as follows: s16 = s17 = s18 = sq ,
s3 = s5 = s7 = 1, and the remaining factors are set as si =
1/τν [23]. The convergence criterion is also the same as in 2D
simulations.

As we can see in Fig. 8, the calculated permeabilities for
all cases agree well with the analytical solutions (less than 2%
error), which demonstrates the accuracy of the IPMRT-LBE
model for simulations of three-dimensional flows. It is also
noted that the permeabilities calculated by the present model
are independent of the fluid viscosity, which is consistent
with the results from the 2D case. The effect of γ on the
convergence rate is also evaluated as shown in Fig. 9, which
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FIG. 8. Flow in 3D porous media simulated by the IPMRT-LBE:
Computed permeabilities (K/Ka) for fluids with different viscosities
(ν). Different values of the preconditioning factor γ are also tested.

again shows that reducing γ could significantly accelerate the
convergence process.

We further simulate the flow as a = √
3/4, in which the

spheres are in contact with each other. The porosity of this
structure is about 0.32. The calculated permeabilities are dis-
played in Fig. 10(a), which again confirms the accuracy of the
present model. The effect of γ on the convergence rate is also
studied. For simplicity, only the results for ν = 1.0 × 10−4 are
shown [Fig. 10(b)]. It can be seen clearly that reducing γ can
accelerate the convergence rate.

By simulating flows in synthetic REVs (Secs. III B 1 and
III B 2), the results and the associated analysis indicate that
the IPMRT-LBE model can keep the advantages of previ-
ous preconditioning LBE models (such as accelerating the
convergence rate) and overcome the defect of the viscosity-
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FIG. 9. Flow in 3D porous media simulated by the IPMRT-LBE:
convergence histories for fluids with different viscosities (ν). (a) ν =
1.0 × 10−4; (b) ν = 2.0 × 10−4; (c) ν = 4.0 × 10−4; (d) ν = 5.0 ×
10−4.
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FIG. 10. Flow in touching spheres simulated by the IPMRT-
LBE. (a) Computed permeabilities (K/Ka) for fluids with different
viscosities (ν); (b) convergence histories for ν = 1.0 × 10−4.

dependent permeability existing in the PSRT-LBE and PMRT-
LBE models. In general, the IPMRT-LBE model provides
accurate predictions of the macroscopic properties while
maintaining the numerical stability for a wide range of model
parameters.

C. Flow through rock samples

To utilize the current IPMRT-LBE model and further test
its performance, flows through two different rock samples
(i.e., Sandpack LV60A and F42A) with more complex struc-
tures are simulated. The rock samples used in this section are
the same as the one adopted in Ref. [5], which is reconstructed
from micro-CT images with the same resolutions of 10 μm. In
addition, both rock samples have 3003 voxels. The directional
permeabilities for these two samples have been numerically
computed using the FDM in Ref. [5], which are then served
as the reference solutions here.

The structures of the rock samples are displayed in Fig. 11.
We first introduce the simulations for flow in LV60A. This
sandpack has a size of 3 mm × 3 mm × 3mm and a porosity
of 0.377. The flow is driven by a constant external force
in the x directions (Re = udL/ν ≈ 0.1). No-slip boundary
conditions are imposed at the fluid-solid interface, while

γ
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K
x
/K

re
f
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1

1.05

1.1

FIG. 12. Computed permeabilities for flows through the Sand-
pack LV60A (solid: ν = 2 × 10−5; dotted: ν = 5 × 10−5).

periodic boundary conditions are employed on all the other
boundaries. In the present simulations, only two representa-
tive fluids, i.e., ν = 2 × 10−5 and 5 × 10−5, are employed
(L = 1.0). Relaxation factors adopted here are the same as
those used in Sec. III B 2. Due to the defect of viscosity-
dependent permeability, results simulated by the PSRT-LBE
and PMRT-LBE models are not included. Only IPMRT-LBE
is employed for modeling. Our simulations are conducted
on uniform lattices (300 × 300 × 300), following the same
resolution of the image voxels.

The computed permeabilities (i.e., Kx) for different pre-
conditioning factors are displayed in Fig. 12, which are in
good agreement with the results in Ref. [5]. It is also observed
that the permeabilities predicted by the present model vary
little for different values of fluid viscosities and γ , which
confirms the accuracy as well as the robustness of the present
model. The convergence histories are displayed in Fig. 13.
It can be observed that cases using preconditioning (with
γ < 1) can accelerate the convergence rate as compared with
the standard LBE models (γ = 1). Specifically, (1) for ν =
2 × 10−5, the iteration number decreases with decreasing γ .
The case with γ = 0.3 can speed up about four times as

FIG. 11. Pore structure of the sandpack [5] (red: solid phase; blue: void space). (a) LV60A; (b) F42A.
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FIG. 13. Convergence histories for flows through LV60A.
(a) ν = 2 × 10−5; (b) ν = 5 × 10−5.

compared to γ = 1. (2) As for the case ν = 5 × 10−5, it is
found that the iteration number first decreases with γ , then
rises up. The case with γ = 0.5 can speed up about 10 times of
the convergence rate as compared to γ = 1. However, the case
with γ = 0.3 can only speed up about four times. It is noticed
that the fluctuations exist in the convergence processes in the
cases with γ = 0.3 and 1, leading to a slower convergence
rate, while no fluctuations are observed in the cases with
γ = 0.5 and 0.7. It is worth mentioning that similar results
can also be found in Secs. III A and III B 1, which will not be
analyzed in detail here.

Numerical results for flow in F42A (with a porosity of
0.33) are further summarized in Fig. 14. The computed per-
meabilities are again found to agree well with the reference
solutions. Meanwhile, the permeabilities are observed to be
independent with γ and the fluid viscosities, which can
be attributed to the accurate implementation of the no-slip
boundary condition in the present model. In addition, the con-
vergence histories for ν = 5 × 10−5 are also plotted, which is
quite similar to the case for LV60A with ν = 2.0 × 10−5, i.e.,
reducing γ can enhance the convergence rate.

In general, reducing γ can enhance the convergence rate
in simulating porous flows. However, a too small γ may
cause fluctuations in the convergence processes as shown
in Secs. III A, III B 1, and III C, which may slow down the
convergence rate. The threshold value of γ that causes the
fluctuations strongly depends on the pore structure. To achieve
a fast convergence rate for simulating porous flows, relatively
larger γ (γ < 1) are suggested as fluctuations are observed in
the convergence process.
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FIG. 14. Computed permeabilities and convergence histories
for flows through F42A. (a) ν = 2 × 10−5; dotted: ν = 5 × 10−5;
(b) ν = 5 × 10−5.

IV. CONCLUSION

A preconditioned multiple-relaxation-time lattice Boltz-
mann equation model for simulating incompressible flow
in porous media (IPMRT-LBE) is proposed and evaluated.
This model is capable of reducing the compressible effect
as compared with the previous preconditioning LBE models
(PSRT-LBE and PMRT-LBE). In addition, theoretical analysis
ensures the accurate implementation of the no-slip boundary
condition in the current model. Thus the present IPMRT-LBE
model overcomes the defect of the viscosity-dependent per-
meability existing in the PSRT-LBE and PMRT-LBE models.
Finally, since the present model contains the preconditioning
in the EDFs, it significantly accelerates the convergence rate
of the simulations for flow in porous media. To validate the
model, numerical simulations of the pressure-driven flows
through 2D fracture demonstrate the accuracy of the IPMRT-
LBE. Furthermore, simulations of flows through both two-
and three-dimensional synthetic porous media show that the
present model can obtain a viscosity-independent perme-
ability with superior numerical stability. As an application,
flow through a digital sandpack confirms the capability of
the IPMRT-LBE model for simulating flows through realistic
porous media. The preconditioning included in this model can
enhance the convergence rate by orders of magnitude by ad-
justing the preconditioning parameter depending on the prob-
lem. In summary, considering both its efficiency as well as the
accuracy, the present IPMRT-LBE model is expected to be a
useful tool in studying flow and transport in porous media.
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APPENDIX A: CHAPMANN-ENSKOG ANALYSIS OF
THE PRESENT IPMRT-LBE MODEL

In this section, the two-dimensional preconditioned
Navier-Stokes equations are derived from the present IPMRT-
LBE model through the Chapman-Enskog expansion analysis.
The following multiscale expansions are first employed as

mi = m
(0)
i + εm

(1)
i + ε2m

(2)
i + · · · , (A1)

∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇0, (A2)

where ε is a small parameter and mi is the distribution
function for pressure in the moment space.

Applying the Taylor expansion to Eqs. (4), and rewriting
them in the moment space, we can obtain

Dm + δt

2
D2m = − S

δt

[m − m(eq)], (A3)
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where D = ∂t I + Cα∂α , in which I is the unit matrix and Cα

is the discrete velocity matrix.
Substituting Eqs. (A1) and (5) into (A3), we can obtain the

following equations in different order of ε:

ε0 : m(0) = meq, (A4a)

ε1 : D0m(0) = − S
δt

[m(1)−m(1)]+F(1), (A4b)

ε2 : ∂t1m(0)+D0m(1)+δt

2
D2

0m(0) = − S
δt

m(2), (A4c)

where D0 = ∂t0 I + Cα∂0α . Substituting Eq. (A4b) into the left-hand side of Eq. (A4c) we can obtain

∂t1m(0) + D0

(
I − S

2

)
m(1) + D0

[
S
2

m(1)

]
+ δt

2
D0 F(1) = − S

δt

m(2). (A5)

In addition, from Eq. (A4a) we can derive

j (k)
x = j (k)

y = 0, k > 0. (A6)

Then on the t0 time scale, Eq. (A4b) can be rewritten as follows:

∂0xu + ∂0yv = 0, (A7a)

∂t0 [(6P + 3u2/γ )] = − s1

δt

e(1) + 6
(

1 − s1

2

)
u · F(1)/γ, (A7b)

∂t0u + ∂0x (P + u2/γ ) + ∂0y (uv/γ ) = F (1)
x , (A7c)

∂t0v + ∂0x (uv/γ ) + ∂0y (P + v2/γ ) = F (1)
y , (A7d)

∂t0[(u2 − v2)/γ ] + ∂0x

(
2

3
u

)
+ ∂0y

(−2

3
v

)
= − s7

δt

p(1)
xx + 2

(
1 − s7

2

)[
uF (1)

x − vF (1)
y

]/
γ, (A7e)

∂t0(uv) + ∂0x

(
1

3
v

)
+ ∂0y

(
1

3
u

)
= −λ8

δt

p(1)
xy +

(
1 − s8

2

)[
uF (1)

ay + vF (1)
ax

]/
γ. (A7f)

Similarly, Eq. (A4c) can be rewritten on the t1 time scale as

∂t1u + 1

6

(
1 − s1

2

)
∂0xe

(1) +
(

1 − s7

2

)[
1

2
∂0xp

(1)
xx + ∂0yp

1
xy

]
+ δt

2

{
∂0x

[(
1 − s1

2

)
u · F(1) +

(
1 − s7

2

)(
uF (1)

x − vF (1)
y

)]

+ ∂0y

[(
1 − s7

2

)(
uF (1)

ay + vF (1)
ax

)]}/
γ = 0, (A8a)

∂t1v +
(

1 − s8

2

)[
∂0xp

1
xy − 1

2
∂0yp

(1)
xx

]
+ 1

6

(
1 − s1

2

)
∂0ye

(1) + δt

2

{
∂0x

[(
1 − s8

2

)(
uF (1)

y + vF (1)
x

)]

+ ∂0y

[(
1 − s1

2

)
u · F(1) −

(
1 − s8

2

)(
uF (1)

x − vF (1)
y

)]}/
γ = 0. (A8b)

Moreover, we can obtain the following expression under the low Mach number assumption:

∂t0 (uiuj )/γ = −uj∂0iP − ui∂0jP + uiF
(1)
j + ujF

(1)
i . (A9)

With the help of Eq. (A9), Eqs. (A7b), (A7e), and (A7f) can be expressed as

− s1e
(1)

δt

= 2(∂0xu + ∂0yv) + 3s1u · F(1)/γ, (A10a)

− s7p
(1)
xx

δt

= 2

3
(∂0xu − ∂0yv) + λ7

(
uF (1)

x − vF (1)
y

)
/γ, (A10b)

− s8p
(1)
xy

δt

= 1

3
(∂0xv − ∂0yu) + s8

2

(
uF (1)

y + vF (1)
x

)
/γ. (A10c)
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FIG. 15. Schematic of force driven flow and lattice arrangement.

Substituting Eq. (A10) into Eqs. (A8a) and (A8b), we can
obtain that

∂t1u = ∂0x

[
c2
s

(
1

s1
− 1

2

)
δt (∂0xu + ∂0yv)

]

+ ∂0x

[
c2
s

(
1

s7
− 1

2

)
δt (∂0xu − ∂0yv)

]

+ ∂0y

[
c2
s

(
1

s8
− 1

2

)
δt (∂0xv + ∂0yu)

]
, (A11a)

∂t1v = ∂0x

[
c2
s

(
1

s8
− 1

2

)
δt (∂0xu + ∂0yv)

]

+ ∂0y

[
c2
s

(
1

s7
− 1

2

)
δt (∂0yv − ∂0xu)

]

+ ∂0y

[
c2
s

(
1

s1
− 1

2

)
δt (∂0xu + ∂0yv)

]
. (A11b)

Coupling the equations on the t0 and t1 scale, the macro-
scopic equations (1) can be obtained.

APPENDIX B: ON THE ACCURATE IMPLEMENTATION
OF THE NO-SLIP BOUNDARY CONDITION

Previous studies have indicated that the relaxation factors
(e.g., s4) have significant influences on the precise implemen-
tation of the no-slip boundary condition. Therefore, the choice
of the relaxation factors in the present IPMRT-LBE model will
be analyzed in this section.

As shown in Fig. 15, we consider a steady incompressible
Poiseuille flow driven by a constant force F = ρ(Fx, 0) for
simplicity, in which we assume that

∂ψ

∂t
= 0, ρ = const, uy = 0,

∂ψ

∂x
= 0, (B1)

where ψ is an arbitrary flow variable.
We can first obtain the following equations based on the

relationship between f and m at the node i = 1:

f 1
1 − f 1

3 = 1
3j 1

x − 1

3
q1

x , (B2)

f 1
5 − f 1

6 = 1
3j 1

x + 1
6q1

x + 1
2p1

xy, (B3)

f 1
8 − f 1

7 = 1
3j 1

x + 1
6q1

x − 1
2p1

xy, (B4)

from which we can obtain

j 1
x = ux − δt

2γ
Fx. (B5)

Next, the postcollision distribution functions can also be
expressed in a similar way as follows:

f ′1
1 − f ′1

3 = 1
3j ′1

x − 1
3q ′1

x , (B6)

f ′1
5 − f ′1

6 = 1
3j ′1

x + 1
6q ′1

x + 1
2p′1

xy, (B7)

f ′1
8 − f ′1

7 = 1
3j ′1

x + 1
6q ′1

x − 1
2p′1

xy, (B8)

where ψ ′ (ψ = f, q, p) are the postcollision distribution
functions. Meanwhile, the postcollision distribution functions
in the moment space in Eqs. (B6)–(B8) can be obtained from
Eq. (4) as

j ′1
x = (1 − s3)j 1

x + s3ux +
(

1 − s3

2

)
Fxδt/γ, (B9)

q ′1
x = (1 − s4)q1

x − s4ux −
(

1 − s4

2

)
Fxδt/γ, (B10)

p′1
xy = (1 − s8)p1

xy. (B11)

Then, substituting Eq. (B5) into Eq. (B9), we can obtain that

j ′1
x = ux + Fxδt

2γ
. (B12)

In addition, we can get the following relationship from the
unidirectional property of the flow:

f 1
1 − f 1

3 = f ′1
1 − f ′1

3 . (B13)

Combining Eqs. (B2), (B5), (B6), (B10), and (B12), we can
obtain that

q1
x = −ux −

(
2

s4
− 1

2

)
Fxδt/γ, (B14)

q ′1
x = −ux −

(
2

s4
− 3

2

)
Fxδt/γ. (B15)

It is noted that the relationship between the distribution
functions at i = 1 and i = 2 are

f 2
5 − f 2

6 = f ′1
5 − f ′1

6 , f 1
8 − f 1

7 = f ′2
8 − f ′2

7 . (B16)

Similarly, substituting Eqs. (B3), (B4), (B7), and (B8) into
(B16), we can obtain the expression of p1

xy as follows:

p1
xy = [(2/s8 − 1)(u1 − u2) − 3Fxδt/γ ]

3(2 − s8)
, (B17)

and then p
′1
xy can also be obtained with the help of Eq. (B11).

Furthermore, we can also obtain the following relationship as
the bounce-back scheme is adopted:

f 1
5 − f 1

6 = f ′1
7 − f ′1

8 . (B18)

With these results at hand, the relationship between u2 and u1

can now be obtained as follows:

u2 = 3u1 +
[

2 − 4τq − 3

2(τν − 0.5)

]
Fxδt/γ, (B19)

where τq = 1.0/s4 = 1.0/s6 and τν = 1.0/s7 = 1.0/s8.
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As for the steady Poiseuille flow considered here, the
velocity can be written as

ui = 4uc

yi

L

(
1 − yi

L

)
+ us, i = 1, 2, (B20)

where yi = (i − 0.5)δx , uc = FxL
2/8ν, and us represents the

slip velocity resulting from the bounce-back boundary condi-
tion. Substituting Eq. (B20) into Eq. (B19), we can obtain the
dimensionless slip velocity

Us = us

uc

= 16(τq − 0.5)(τν − 0.5) − 3

3
�2, (B21)

where � = δx/L, and Us can be zero if τq is chosen as
[8τν − 1]/[16τν − 8]. Thus the corresponding relaxation rates
s4 and s6 in the present model to satisfy the no-slip boundary

condition are

s4 = s6 = 16τν − 8

8τν − 1
. (B22)

For the D3Q19 model, we can also obtain the following
equations:

s4 = s6 = s8 = 16τν − 8

8τν − 1
, (B23)

to ensure the precise implementation of the no-slip boundary
condition in 3D. Finally, it is worth mentioning that the re-
laxation factor which can ensure the accurate implementation
of the no-slip boundary condition on inclined walls can also
be obtained in a similar way. More related information can be
found in Refs. [28–30].
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