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Omnidirectional light propagation in two-dimensional (2D) photonic crystals (PCs) has been investigated
by extending the formerly developed 2D finite element analysis (FEA) of in-plane light propagation in which
the corresponding band structure (BS) and photon density of states (PDOS) of 2D PCs with complex geometry
configurations had been calculated more accurately by using an adaptive FEA in real space for both the transverse
electric (TE) and transverse magnetic (TM) modes. In this work, by adopting a wave-guiding theory under
the consideration of translational symmetry, the omnidirectional PDOS corresponding to both the radiative and
evanescent waves can be calculated efficiently based on the in-plane dispersion relations of both TE and TM
modes within the irreducible Brillouin zone. We demonstrate that the complete band gaps shown by previous
work considering only the radiative modes will be closed by including the contributions of the evanescent modes.
These results are of general importance and relevance to the spontaneous emission by an atom or to dipole
radiation in 2D periodic structures. In addition, it may serve as an efficient approach to identifying the existence
of a complete photonic band gap in a 2D PC instead of using time-consuming three-dimensional BS calculations.
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I. INTRODUCTION

In the past three decades, photonic crystals (PCs) have
attracted much attention [1,2]. PCs, according to the dimen-
sion of the periodicity, are divided into three categories:
one- (1D), two- (2D), and three-dimensional (3D) crystals.
Periodic dielectric materials are characterized by photonic
band gaps (PBGs). A PBG can prohibit the propagation of
electromagnetic (EM) waves whose frequencies fall within
the band gap region. These materials are expected to have
many applications in optoelectronics and optical communi-
cations. Controlling the optical properties of materials has
become a key issue in material engineering. It was proposed
that the emission of EM radiation can be modified by the
environment [3,4]. Several environments such as metallic cav-
ities [5], dielectric cavities [6], and superlattices [7–12] have
been studied. The environmental effects have been described
by the photon density of states (PDOS), which is related
to the transition rate of Fermi’s golden rule. In principle,
a complete PBG along all dimensions in space can be best
realized in a 3D system. However, the difficulty in fabricating
such 3D crystals with PBGs in the optical regime prohibits the
progression of many applications. In comparison, 2D PCs are
easier to fabricate while providing the possibility to control
the propagation of light.

Many studies in 2D PCs have been mainly focused on
the in-plane propagation of EM waves [13–18]. In our
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previous work [13], we analyzed the in-plane light propa-
gation in 2D PCs and demonstrated that the corresponding
band structure (BS) and PDOS of 2D PCs can be calculated
more accurately by using an adaptive finite element analysis in
real space for both the transverse electric (TE) and transverse
magnetic (TM) modes, with even more complex geometry
configurations. Various types of period structures exhibit
PBGs. However, for some applications, the investigation of an
omnidirectional light propagation is crucial. Previous studies
have shown the possibility of having omnidirectional absolute
band gaps in some 2D crystal structures by adopting the
off-plane wave vector kz = k0sinθ , where k0 = ω/c [19,20].
Theoretically, there are no band gaps for propagation in the
z direction. As kz increases, the modes decouple and the
bandwidth shrinks to zero [21–26].

In order to obtain the total PDOS, the off-plane band
structure has to be calculated. In addition, a higher cutoff
in kz, i.e., max(kz) = (ω/c)max(

√
εr ) > k0, is needed [21].

According to Snell’s law, a total internal reflection can occur
when an EM wave is incident from a region with a higher
dielectric constant to that with a lower one. In this case, we
have an evanescent wave with a corresponding imaginary in-
plane wave vector in the latter region. A quantitative analysis
of PDOS for 1D PCs with omnidirectional light propagation
had been done using the transfer matrix method [12]. It
was found that the PDOS contributed from an evanescent
wave is larger than that from a radiative one, and this is
consistent with the result in Ref. [10], which shows that when
a dielectric layer is in the near-field region of an atom, the
emission rate is greatly enhanced by the evanescent wave.
The total PDOS of 2D PCs were first calculated by Busch and
John [21] using the plane wave expansion method (PWEM).
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FIG. 1. Schematics of omnidirectional light propagation in 2D
PCs for (a) a triangular lattice and (b) a square lattice with kz = k ·
sinθ (black solid line) and the in-plane light propagation with kz = 0
(blue dashed line), where θ is the off-plane incident angle.

However, the 3D dispersion relation computed by solving
the full vector wave equation was very time consuming. The
PWEM was further simplified and used by Li and Xia [19]
and Haas et al. [20] to discover the “omnidirectional PGBs”
considering only radiative waves. Qiu and He [27] developed
an efficient finite-difference time-domain (FDTD) algorithm
for computing off-plane band structure in 2D PCs as the 3D
problem can be reduced to a 2D one when considering the
translational symmetry and that the FDTD method is of order
N . In spite of this, the time-stepping limit depending on kz

would introduce some difficulty, either suffering a numerical
instability or enforcing a tiny time step for large angle cases.
Nevertheless, in these cases, one still has to solve the time-
consuming eigenvalue systems or 2D FDTD updates with
a fast Fourier transform (FFT) for each individual angles.
Therefore, a complete band structure with all angles is difficult
to obtain and an efficient method to calculate the total PDOS
is still not available yet.

In this work, by adopting a wave-guiding theory under
the consideration of translational symmetry and extending
the in-plane model [13], the omnidirectional PDOS corre-
sponding to both the radiative and evanescent waves can
be calculated efficiently based on the in-plane dispersion
relations within the irreducible Brillouin zone [13]. In the
following, we first provide the detailed formulations in our
simulation model in which the contributions of the total PDOS
from both the radiative and evanescent waves for different
polarization characteristics including both the TE and TM
modes can be distinguished, then validate our approach, and
finally demonstrate that the complete band gaps shown by
previous work considering only the radiative modes will be
closed by including the contributions of the evanescent modes.

II. FORMULATION

The propagation of light in a PC can be studied by solving
Maxwell’s equations. Figure 1 shows the schematics of om-
nidirectional light propagation in 2D PCs for (a) a triangular
lattice and (b) a square lattice with kz = k · sinθ (brown dotted
line), and the in-plane light propagation with kz = 0 (blue
dashed line), where θ is the off-plane incident angle. For
time-harmonic fields, it is convenient to use phasor notation.
Maxwell’s equations lead to the wave equations, or the master

equations:

∇ ×
[

1

μ(r )
∇ × �E(r )

]
− ω2ε(r ) �E(r ) = 0, (1)

and

∇ ×
[

1

ε(r )
∇ × �H (r )

]
− ω2μ(r ) �H (r ) = 0, (2)

where ε(r ) and μ(r ) are the permittivity and permeability
functions of the PCs, respectively, and ω is the angular eigen-
frequency. In a 2D periodic system, the dielectric function is
a periodic function of x and y. We assume that the materials
are linear, homogeneous, isotropic, lossless, and nonmagnetic.
We have

εr (x, y) =
{
εa, x, y ∈ air region

εd, x, y ∈ dielectric region
, (3)

where εr (x, y) is the dielectric function profile, and εa and εd

are the dielectric constants of the air and dielectric regions,
respectively. The two master equations are reduced to two
homogeneous Helmholtz’s equations for the air (dielectric)
region:

∇2

{ �E(r )
�H (r )

}
+ ω2

c2
εa(d )

{ �E(r )
�H (r )

}
= 0. (4)

A 2D PC is periodic in two directions (x, y) and ho-
mogeneous in the third one z. For light propagating in the
system retaining translational symmetry, we can separate
the modes into two independent polarizations, TM and TE
modes, and consider the band structures and photon density
of states accordingly. Based on the theory of wave guiding,
the propagation properties of TM and TE modes can be
characterized by the field components parallel to the rods or
along the z direction, Ez(x, y, z) and Hz(x, y, z), respectively.
The corresponding Helmholtz’s equations, the z components
of Eq. (4), for the air (dielectric) region can be rearranged as[

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ ω2

c2
εa(d )

]{
Ez(x, y, z)

Hz(x, y, z)

}
= 0. (5)

As the system has translational symmetry along the z axis,
we can assume the longitudinal wave functions to be a plane
wave, exp(−ikzz). By using separation of variables, Eq. (5)
can be split into transverse and longitudinal parts, and the
problem can be simplified as solving Helmholtz’s equations
in the xy plane. We obtain[

∂2

∂x2
+ ∂2

∂y2
+

(
ω2

c2
εa(d ) − k2

z

)]{
Ez(x, y, z)

Hz(x, y, z)

}
= 0. (6)

The in-plane propagation (kz = 0) can be considered as
a limiting case or a cutoff condition of the omnidirectional
propagation (kz � 0), as shown in Fig. 1. Therefore, we can
solve the following 2D Helmholtz’s equations for the cutoff
eigenvalues:[

∂2

∂x2
+ ∂2

∂y2
+

(
ω2

c

c2
εr

)]{
Ez(x, y)

Hz(x, y)

}
= 0, (7)

where ωc is the cutoff angular eigenfrequency for the omnidi-
rectional propagating waves. Then the corresponding disper-
sion relations for the omnidirectional light propagation in the
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2D PCs can be determined by [12]

k2
z = ω2 − ω2

c

c2
εr . (8)

To perform the 3D PDOS calculations, we construct two
equifrequency regions ω(kx, ky, kz) = ω and ω(kx, ky, kz) =
ω + dω, where ω is an arbitrary value of the angular fre-
quency and dω is an infinitesimal increment [12,13]. The
differential volume element in k space is dVk = dkxdkydkz

Finally, according to the definition, the expression for the total
PDOS is dN (ω) ≡ D(ω)dω:

D(ω) = V
√

μrεr

8π3c

∫
ωk

ω√
ω2 − ω2

c

dkx dky, (9)

where V is the volume of the system in real space and μr =
1 for nonmagnetic material. One should note that Eq. (9)
includes all the propagating modes if ω > ωc. Here we can
further differentiate radiative and evanescent modes by using
Snell’s law for a total internal reflection at the interface
between the dielectric and air,{

θ � θc, D(ω) ∈ radiative wave

θ > θc, D(ω) ∈ evanescent wave,
(10)

where θ is cos−1(ωc/ω) and θc is sin−1(
√

εa/
√

εd ).

III. RESULTS AND DISCUSSION

The omnidirectional PDOS can be obtained by employ-
ing Eq. (9) in which we perform a numerical integration
of the 2D in-plane dispersion relations, Eq. (7). According
to the wave-guiding theory, the contributions to the total
PDOS from both the TE and TM modes can be considered
and calculated independently, so that the polarization char-
acteristics of PDOS can be distinguished. In addition, using
the formulation of the critical angle from Snell’s law, the
PDOS of the radiative [cos−1(ωc/ω) � sin−1(εa/εd )1/2] and
evanescent [cos−1(ωc/ω) > sin−1(εa/εd )1/2] modes can be
calculated separately while performing the numerical integra-
tion [12]. One should note that the in-plane dispersion rela-
tions, Eq. (7), are calculated using the adaptive finite element
method (FEM), in real space which had been demonstrated
to be very accurate [13]. Therefore, since the calculation of
total 3D PDOS for a 2D PC is based on the adaptive FEM
and numerical integration, the evaluation of the 3D PDOS
in our extended model is justified. Furthermore, we should
emphasize that the calculation of the in-plane dispersion rela-
tions is a one-time evaluation process, and therefore the total
PDOS determination using this approach is very efficient.
For all cases demonstrated here, the eigenfrequencies for
861 k-points uniformly distributed in the irreducible Brillouin
zone have been calculated via the FEM approach. Due to
the symmetry consideration, we effectively discretize the first
Brillouin zone into 6241 and 9852 grid points for the square
array and the triangular array, respectively, ensuring the frac-
tional errors of all eigenvalues are smaller than 10−3 [13].

In order to validate the extended model, we consider the
omnidirectional light propagation in an inhomogeneous, lin-
ear, and nonmagnetic medium and employ a 2D PC model
with a triangular lattice of air cylinders etched into silicon

FIG. 2. Comparisons of 3D total PDOS calculated by the FEM
(black solid line) and the PWEM (green open circles) for a 2D PC
with a triangular lattice of air cylinders etched into silicon (εd =
11.90) at a filling ratio of 67% as used in Ref. [21]. The total
PDOS is contributed from both the radiative (red dotted line) and
evanescent (blue dashed line) modes. The PBG calculated by the
FEM for the off-plane radiative waves ranges from 0.395(2πc/a)
to 0.399(2πc/a) while that for the in-plane case ranges from
0.382(2πc/a) to 0.400(2πc/a) [13].

(εd = 11.90) at a filling ratio of 67% air as calculated by
the PWEM in Ref. [21], similar to the schematic shown
in Fig. 1(a). Figure 2 shows the comparisons of 3D total
PDOS of the 2D PC calculated using the FEM and PWEM,
represented by the black solid line and the green open circles,
respectively. As one can see, the 3D total PDOS calculated
by our method is contributed from both the radiative (red
dotted line) and evanescent (blue dashed line) modes, and the
results showing no complete 3D PBG are in good agreement
with those calculated by the PWEM. The PWEM is based on
the Bloch-Floquet theorem, which states that eigensolutions
of differential equations with periodic coefficients can be
expressed as a product of plane waves and lattice-periodic
functions. Consequently, all periodic functions are expanded
into appropriate Fourier series. Inserting these expansions
into the differential equation results in an infinite matrix-
eigenvalue problem, which, suitably truncated, provides the
eigenfrequencies and expansion coefficients for the eigen-
functions. In the framework of PWEM, the 3D total PDOS
calculation is based on fully 3D PBG computations, and
the Fourier coefficients are determined by integrating over
the 3D Wigner-Seitz cell. Therefore, there is no decoupling
of the two transverse polarizations, and the full 3D vector
problem has to be solved [21]. A Fourier-based method is
not only time-consuming but also suffers from several prob-
lems. For instance, the dielectric function is discontinuous, so
Fourier-type expansions converge slowly. Furthermore, it was
found that the discontinuous nature of the dielectric function
severely limits the accuracy of the PWEM [28].

On the other hand, the FEM can be easily adapted to
solve problems of great complexity and unusual geometry.
The eigenvalues can be efficiently calculated no matter how
complex the geometric structures are, as demonstrated in
our previous work [13]. Based on the finite-element analysis
of the in-plane dispersion relations of the 2D PCs in the
irreducible Brillouin zone, the 3D total PDOS of a 2D PC
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FIG. 3. 3D PDOS for (a) TE modes and (b) TM modes
of a triangular array with air cylinders etched into a dielectric
(εd = 12.96) at a filling ratio of 75% [19] and for (c) TE modes
and (d) TM modes of a square array with air cylinders etched into
a dielectric (εd = 16.00) at a filling ratio of 72.38% [20]. The blue
dashed (red dotted) lines correspond to the PDOS of evanescent
(radiative) waves. The PBGs calculated by the FEM for the radiative
waves are (a) 0.310–0.495(2πc/a) and 0.827–0.834(2πc/a),
(b) 0.403–0.434(2πc/a), (c) 0.410–0.487(2πc/a), and (d)
0.218–0.259(2πc/a) and 0.389–0.416(2πc/a).

can be calculated more efficiently by extending our previous
model with the wave-guiding theory to consider omnidi-
rectional or off-plane light propagation. In Fig. 2 the PBG
calculated by the FEM for the off-plane or omnidirectional
radiative waves ranges from 0.395(2πc/a) to 0.399(2πc/a)
while that for the in-plane case ranges from 0.382(2πc/a)
to 0.400(2πc/a) [13]. The PBG diminishes when one con-
siders off-plane or omnidirectional propagation of the radia-
tive modes. However, there is no complete PBG when one
also includes the evanescent waves. For demonstration, we
further consider two more cases, as illustrated in Figs. 1(a)
and 1(b), respectively, including a triangular array with air
cylinders etched into a dielectric (εd = 12.96) at a filling ratio
of 75% [19] and a square array with air cylinders etched
into a dielectric (εd = 16.00) at a filling ratio of 72.38%
[20]. Both these two specific cases were previously studied
and demonstrated to exhibit large omnidirectioinal PBGs.
Figures 3(a) and 3(b) show our calculated 3D PDOS for the
TE (purple solid lines) and TM (brown solid lines) modes of
the triangular array, respectively. Figures 3(c) and 3(d) show
those of the square array. The blue dashed and red dotted lines
correspond to the PDOS of evanescent and radiative waves.
The corresponding PBGs for the radiative waves are deter-
mined as (a) 0.310–0.495(2πc/a) and 0.827–0.834(2πc/a),
(b) 0.403–0.434(2πc/a), (c) 0.410–0.487(2πc/a), and (d)
0.218–0.259(2πc/a) and 0.389–0.416(2πc/a).

As one can see, the 3D PDOS of the evanescent waves is
larger than that of the radiative waves for both the TE and TM
modes. Although the 3D PDOS for the TE and TM modes
exhibit similar behavior, the corresponding contributions from

FIG. 4. 3D total PDOS (black solid lines) of (a) a triangu-
lar array and (b) a square array normalized to that of the vac-
uum. The blue dashed (red dotted) lines correspond to the nor-
malized PDOS of evanescent (radiative) waves. The PBGs calcu-
lated by the FEM for the radiative waves in (a) and (b) range
from 0.403(2πc/a) to 0.434(2πc/a) and from 0.410(2πc/a) to
0.416(2πc/a), respectively. In comparison, those calculated by
the PWEM in Refs. [19] and [20] range from 0.423(2πc/a) to
0.437(2πc/a) and 0.4045(2πc/a) to 0.4197(2πc/a)

the radiative and evanescent parts are quite different. To better
understand the spontaneous emission or dipole radiation in a
2D PC, one may differentiate the PDOS contributed from not
only different polarizations, i.e., TE and TM modes, but also
different types of waves, i.e., radiative and evanescent waves,
by employing our approach.

Figure 4 shows the 3D PDOS normalized to that of the
vacuum for the two cases. The blue dashed and red dotted
lines correspond to the normalized PDOS of evanescent and
radiative waves of both the TE and TM modes. The PBGs
calculated by the FEM for the radiative waves in (a) and
(b) range from 0.403(2πc/a) to 0.434(2πc/a) and from
0.410(2πc/a) to 0.416(2πc/a), respectively. In comparison,
those calculated by the PWEM in Refs. [19] and [20] range
from 0.423(2πc/a) to 0.437(2πc/a) and 0.4045(2πc/a) to
0.4197(2πc/a), respectively. Although the 3D PDOS of the
radiative waves for both cases exhibit a PBG, the “com-
plete band gaps” predicted by previous work have been
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closed by including the contribution of the evanescent modes.
Therefore, there is no complete PBG for omnidirectional light
propagation in a 2D PC if one considers both radiative and
evanescent waves.

IV. CONCLUSIONS

In summary, omnidirectional light propagation in 2D PCs has
been investigated. The polarization characteristics including
both the TE and TM modes was considered in our simulation
model by extending the formerly developed 2D finite element
analysis. The contributions to the 3D total PDOS from the
radiative and evanescent waves of different polarizations can
be determined separately. We have carefully validated our
extended model by comparing the results with those calcu-
lated by the well-known PWEM, resulting in good agreement.
It has been demonstrated that the “complete PBGs” shown
by previous work considering only the radiative modes will
be closed by including the contributions of the evanescent
modes. Therefore, a complete PBG does not exhibit in 2D PCs
retaining translational symmetry in the longitudinal direction,

if one considers both radiative and evanescent modes. With
our approach, an omnidirectional PDOS of 2D PCs can be
determined efficiently. These results are of general importance
and relevance to the spontaneous emission by an atom or to
dipole radiation in 2D periodic structures. In addition, it may
serve as an efficient approach to identifying the existence of
a complete PBG in a 2D PC instead of using time-consuming
3D BS calculations.
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