PHYSICAL REVIEW E 98, 053305 (2018)

Identifying structural changes with unsupervised machine learning methods

Nicholas Walker,! Ka-Ming Tam,"? Brian Novak,* and M. Jarrell'-?
' Department of Physics and Astrononty, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
3Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA

® (Received 23 March 2018; revised manuscript received 13 September 2018; published 7 November 2018)

Unsupervised machine learning methods are used to identify structural changes using the melting point
transition in classical molecular dynamics simulations as an example application of the approach. Dimensionality
reduction and clustering methods are applied to instantaneous radial distributions of atomic configurations
from classical molecular dynamics simulations of metallic systems over a large temperature range. Principal
component analysis is used to dramatically reduce the dimensionality of the feature space across the samples
using an orthogonal linear transformation that preserves the statistical variance of the data under the condition
that the new feature space is linearly independent. From there, k-means clustering is used to partition the samples
into solid and liquid phases through a criterion motivated by the geometry of the reduced feature space of the
samples, allowing for an estimation of the melting point transition. This pattern criterion is conceptually similar
to how humans interpret the data but with far greater throughput, as the shapes of the radial distributions are
different for each phase and easily distinguishable by humans. The transition temperature estimates derived from
this machine learning approach produce comparable results to other methods on similarly small system sizes.
These results show that machine learning approaches can be applied to structural changes in physical systems.
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I. INTRODUCTION

Machine learning (ML) has seen rapid development over
the last decade or so. At present, rather sophisticated packages
are readily available for the application of various ML meth-
ods [1,2]. Conceptually, the ML approach can be regarded as
a data analysis approach for detecting patterns in data and
then using the extracted patterns for classification or regres-
sion. Modern scientific investigations, in particular numerical
study, naturally involve large data sets. However, conventional
approaches often neglect possible nuances in the structure of
the data. Although inference methods, such as the maximum
likelihood method and the maximum entropy method [3,4],
have been routinely applied on certain physical problems, ap-
plications which utilize other ML methods have not attracted
much attention until recently. The advances in ML algorithms
and implementations provide an exciting new proposal for
applying them to understanding data from physical sciences
and perhaps improving upon existing numerical methods [5].

In contrast with conventional approaches, ML provides a
new avenue for unveiling the underlying structure in data
beyond simply measuring the mean, variance, or higher mo-
ments of the data. This provides not only a new method
for a deeper understanding of old problems, but also new
problems which have been hitherto impossible to approach
and therefore ignored. An interesting topic which can benefit
from this new approach is the study of interacting systems
at both quantum and classical scales. Currently outstanding
problems include the calculation of phase transition points
and the prediction of phase diagrams. Some remarkable recent
papers have shown that certain ML algorithms can be used
to identify phase transitions of lattice models, particularly on
spin systems [6,7].
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Utilizing the ML approach for studying phase transitions
implicitly assumes that there is some form of change in the
pattern of the measured data across the phase transition. This
is in fact exactly what happens in most phase transitions. For
instance, in the melting of a crystal, the widely adopted Lin-
demann parameter is essentially a measure of the deviations
of atomic positions in the system from equilibrium positions
[8]. Similar behavior is found in most phase transitions of
molecular systems, often in the form of pattern changes in the
atomic positions. Perhaps more importantly, for sufficiently
complex systems, their phase transitions do not have an
obvious order parameter or the order parameter is simply
an unknown, often prohibiting the detection of such pattern
changes. This is not a hypothetical situation; indeed this is
the case for some interesting materials, such as heavy fermion
materials [9]. ML is a new route of studying those transitions
by searching for hidden patterns in the measured data.

Pattern recognition is a strong suit of ML methods and
many existing applications of ML methods are designed for
identifying patterns in figures, such as the classic example
of handwriting recognition [10]. Given the relation between
phase transitions and pattern changes in measured data, using
ML methods to identify phase transitions is an attractive
prospect. There are two major categories of ML methods,
supervised and unsupervised. Both categories have been con-
sidered as good candidates for identifying phase transition in
the lattice Ising model in two dimensions [6,7,11,12]. For the
well studied Ising model, in which the phase diagram and even
the critical point are known exactly in two dimensions [13],
those known results facilitate the application of supervised
ML methods. There have also been efforts in classifying crys-
tal structures and predicting melting points in octet AB solids

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.053305&domain=pdf&date_stamp=2018-11-07
https://doi.org/10.1103/PhysRevE.98.053305

WALKER, TAM, NOVAK, AND JARRELL

PHYSICAL REVIEW E 98, 053305 (2018)

[14]. For a system with minimal a priori information, applying
a supervised ML method may be challenging. As interest
in multicomponent high-entropy alloys grows, oftentimes a
problem arises in the fact that the phase diagrams are largely
unknown. For this reason, we have decided to explore an
unsupervised ML method in this paper.

The pattern recognition capabilities of ML methods can
be applied to structural changes found in physical sys-
tems by partitioning a large data set of structural in-
formation according to a similarity criterion into distinct
classes. The distributions of the partitions with respect to
some physical property associated with the structural change
can be used to predict the transition point. As such, this
approach is an empirical method for detecting structural
changes.

As an example of the application of this unsupervised
machine learning approach to detecting structural changes,
this paper focuses on the detection of the solid-liquid phase
transition in small titanium and aluminum systems by ana-
lyzing the structural information of classical molecular dy-
namics (MD) simulations about the melting point. Within the
context of this computation, the approach described above
is similar to the single-phase hysteresis method, which is
an existing empirical method for calculating melting points.
This involves either heating a bulk solid until it melts or
cooling a bulk liquid until it solidifies at fixed pressure,
using an order parameter to classify the system as solid or
liquid. This method incurs a large error due to the effect of
either overheating or undercooling, where the material melts
at higher temperatures and solidifies at lower temperatures in
MD simulations with respect to the experimental data. The
discrepancy can be as large as 20% at the same pressure
[15,16]. This is largely due to the surfaceless feature of the
bulk material, which inherently restricts the nucleation to
being homogeneous rather than heterogeneous. This can be
assuaged through the use of the hysteresis method, which is
empirically based in nucleation theory [17]. The melting tem-
peratures from the heating and cooling methods, 7, and T,;,
can respectively be used to establish a melting temperature
Ty Tur>
which can be in good agreement with experiment [18]. Due
to its status as an empirical method, however, there is no
physical significance to the relationship itself. Error analysis
from this method is also difficult to quantify. It is also worth
mentioning that depending on the system and the experimen-
tal conditions, overheating and undercooling effects can also
be seen in experiments. The approach presented in this paper
can be thought of as an automated version of this empirical
method, using unsupervised machine learning to classify the
crystal structure instead of an order parameter, which requires
a priori information. See Appendix A for information about
additional methods for calculating melting temperatures of
materials.

The organization of this paper is as follows. In the next
section, we explain, in detail, the ML algorithms for the
present project. In Sec. III, we present the main results from
the calculations for titanium and aluminum. In the last section,
we conclude and discuss the future directions for applying ML
approaches to molecular systems.

Ty according to the the equation Ty = Ty + Ty, —

II. UNSUPERVISED MACHINE LEARNING METHOD FOR
CALCULATING MELTING POINTS

The machine learning approach used in this paper follows
a procedure similar to that used in the single-phase method
described in the preceding section. A perfect lattice is heated
from a temperature well below the melting point to a tempera-
ture well beyond the melting point. Then, the system is cooled
back down to the original starting temperature. In this manner,
both the melting and solidification phenomena are captured.
The MD itself should be considered as a sampling method, as
we do not study the dynamics explicitly in this study. One of
the foremost ways that humans distinguish solid and liquid
structures in MD data obtained for crystalline materials is
the radial distribution function. In principle, machine learning
methods can be applied to achieve a similar result, but with
much higher throughput. For this study, the radial distributions
for a subset of the simulation steps were passed through a
clustering algorithm. Qualitatively, this means that the data set
is partitioned into two groups based on a measure of similarity.

The notion of what “similarity”” means varies from method
to method. For the k-means algorithm, originally from sig-
nal processing, n samples are partitioned into k clusters
such that the clusters exhibit prototypical centroids by which
each sample is grouped according to geometrical proximity
[19-21]. The Euclidean metric is used for this application and
the procedure iteratively produces the best choice of centroids
by restarting multiple times to avoid falling into local minima
[1]. This is done by making an initial random choice of
centroids from the sample space, classifying the remaining
samples by proximity to the chosen centroids, then updating
the choice of centroids based on the average positions of the
member samples in each cluster. The procedure is considered
complete when the centroids no longer shift beyond a defined
threshold in the update step. In this application, kK = 2 and
the two clusters are intended to represent the solid and liquid
phases. See Appendix C for detail about the k-means cluster-
ing procedure.

The clustering results using the radial distribution data
themselves is not particularly easy to visualize, as the dimen-
sion of the feature space for the samples is the number of
bins used for constructing the radial distribution data. The
dimensionality of these data can be reduced using principal
component analysis (PCA) [22]. This procedure involves per-
forming an orthogonal linear transformation to a new feature
space of equal or lesser dimension such that the principal
components composing the projections on to the new feature
space guarantee the largest explained variance between the
samples under the condition that the features are linearly
independent. The principal components are ordered by their
explained variance ratios. This smaller feature space is easier
to analyze and allows for the curse of dimensionality to be
avoided while simultaneously ensuring that the statistically
significant features of the data are preserved and easy to
demonstrate. Prior to performing PCA reduction, it is im-
portant to always scale the features beforehand to prevent
inappropriate domination of a subset of the features over the
others. Min-max scaling was used in this application such that
each of the features shared a common domain ranging from 0
to 1. See Appendix B for details about the PCA procedure.
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After performing a PCA feature space reduction with two
principal components, k-means clustering with two clusters is
used to partition the structural data into two groups, clusters A
and B, according to structure similarity. Note that the chosen
clustering method may need to be adjusted depending on the
shape of the data produced by the PCA reduction. For exam-
ple, clustering for data that exhibit irregular boundaries or are
well connected but not necessarily dense may perform better
with agglomerative clustering or spectral clustering. These
cluster centroids are the prototypical radial distributions that
the samples in their respective clusters most closely resemble
as a group, at least in terms of minimizing the variance of
the samples within the clusters. The cluster labels can also
be verified to be the same or similar for both the raw and
the PCA-reduced data to ensure that the important statistical
features are being preserved by the PCA procedure. Once the
clusters are verified to represent the desired phases, a temper-
ature distribution is constructed for each cluster. There will
be a range of temperatures for which the cluster temperature
distributions overlap which will be referred to as the transition
region since samples that belong to either cluster coexist
within this temperature range. To investigate the transition
region more closely, the contributions from each of the cluster
distributions that are contained by the range of temperatures
defined as the transition region are isolated by truncating
the full cluster distributions such that they are restricted to
the transition region. The truncated distributions are then
renormalized such that correct means and standard deviations
can be extracted from them. The mean temperatures of the
truncated distributions, T4 and T, can be averaged in various
ways to estimate the transition temperature. In this paper,
arithmetic and geometric means were used.

A similar approach using PCA has been recently explored
for the two-dimensional lattice Ising model, in which snap-
shots of the spin configurations are used as learning samples
to detect the second-order phase transition [7]. The present
work, when applied to the detection of melting points, can be
considered as a generalization of this approach, with continu-
ous variables instead of discrete spin, a continuum instead of
a lattice, and a first-order transition instead of a second-order
transition. Additionally, we further refine the method used in
the Ising model by clustering the data after the PCA reduction
and by estimating the transition temperature through analysis
of the clustered data distributions.

III. RESULTS

This method is applied to two small systems of 128 ti-
tanium atoms and 108 aluminum atoms. We choose these
two systems as representative examples of metals with body-
centered cubic (bcc) and face-centered cubic (fcc) crystal
structures. The MD simulations were carried out with the
LAMMPS simulation package [23]. The titanium potential used
is a modified embedded atom model (MEAM) spline potential
specifically made for describing phase transitions of titanium
with a stable titanium-g8 phase [24]. The aluminum potential
used is also a MEAM potential, albeit not a spline function
[25,26]. For each MD simulation phase, the systems were
held at 0 bars in the isobaric-isothermal (NPT) ensemble using
3-chain Nosé-Hoover thermostats and barostats with damping
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FIG. 1. K-means cluster centroids for the unreduced titanium
radial distribution function data. These cluster centroids represent the
prototypical radial distributions for each cluster.

parameters of 128 and 1024 time steps, respectively, and a
simulation time step of 0.00390625 ps. The titanium system
is initialized in the bcc titanium-8 phase with velocities
generated by a Gaussian distribution to produce a temperature
of 1280 K and the aluminum system is initialized in the fcc
configuration with velocities generated in the same manner to
provide a temperature of 256 K. A null value was enforced
for the aggregate linear and angular momenta of both systems
when generating the velocities. In the first MD phase, the
systems are held at the initial temperature for 2.048 ns. The
second phase then ramps the temperature to 3072 K for
the titanium system and 2560 K for the aluminum system
over 8.192 ns. The systems are then held at those maximum
temperatures for 2.048 ns in the third phase before ramping
back down to the initial temperature over 8.192 ns in the
fourth and final phase. Only the second and fourth phases
that respectively characterize the melting and solidification
processes are included in the data analysis. The energy, pres-
sure, volume, and atomic position data are recorded every 32
time steps. The data sets generated and/or analyzed during the
current study are available from the authors upon reasonable
request. In other simulations, various reasonable minimum
and maximum temperatures were tested with the method
without significant impact on the final results.

After all of the data are collected, the radial distribution
functions are calculated with 256 bins for all of the recorded
time steps out to ~/3ly/2 where [, is the minimum side length
of the simulation box, with each value in the function acting
as a feature and each function itself acting as a sample for
the purposes of the machine learning approach to analysis.
All work-flow and postprocessing programming are done
with Python [27]. For handling large data arrays, the NumPy
Python library is used [28]. The scikit-learn Python package
is used to perform the PCA and k-means procedures [1]. All
plots were made using the Matplotlib library for Python and
the perceptually uniform “plasma” color map is used for all
color maps [29].
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FIG. 2. K-means cluster centroids for the unreduced aluminum
radial distribution function data. These cluster centroids represent the
prototypical radial distributions for each cluster.

As seen in Fig. 1, the k-means cluster centroids for the
unreduced titanium radial distribution data paint a very clear
picture of the molecular structure exhibited by the clusters.
There are two clusters, one cold (A), with an average temper-
ature well below the reported melting point for the potential
of around 1900 K [24], and one hot (B), with an average
temperature well above the known melting point. The centroid
of cluster A very strongly resembles that of an equilibrium bcc
lattice, albeit smoothed out a bit. This is consistent with the
initial structure of the titanium-8 system. Cluster B resembles
that of a typical liquid, albeit with a slight kink near the
first local minimum after the first shell. These results would
suggest that the k-means clustering is indeed clustering the
samples in a manner that is consistent with the expected
structures in the sample space.

Similar to the titanium data, the k-means cluster centroids
for the unreduced aluminum radial distribution data in Fig. 2
show the molecular structure exhibited by the clusters. The
colder cluster (A) has an average temperature well below
the melting point of 937 K [26] and the warmer cluster (B)
also has an average temperature above the melting point.
Cluster A resembles a softened fcc equilibrium lattice, which
is consistent with the initial fcc structure as expected. Cluster
B also clearly resembles the structure of a liquid with the
same small kink in the first minimum after the first shell that
was seen in the titanium results. Once again, the k-means
clustering results are consistent with the expected partition
of the samples by molecular structure into solid and liquid
phases.

For both systems, the results of the k-means clustering
suggest that the centroids of the clusters can be interpreted as
the prototypical solid and liquid structures by which the other
samples are categorized by similarity.

In Fig. 3(a), the data show a very strong relationship
between the sample temperature and sample position along
the first principal axis (x¢) for titanium. The shape of the
data also pinches off, almost partitioning the samples along
the second principal axis, suggesting a naive clustering. In
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FIG. 3. Scatter plots of the PCA-reduced two-dimensional ra-
dial distribution samples for titanium with respect to the first two
principal axes, xo and x;. (a) Samples colored with respect to
their instantaneous temperatures. (b) Samples are colored by cluster
temperature average with a line marking the cluster boundary and
circles marking the cluster centroids.

Fig. 3(b), the clustering assignments and the line separating
them show that the data are partitioned into clusters slightly
to the side of the recess noted in the shape of the data, towards
the colder sample. Furthermore, the line is almost vertical with
respect to xp, consistent with the temperature gradient along
the axis, likely because of the near symmetry of the data about
the said axis. Indeed, the PCA analysis reports that xo explains
35.94% of the variance in the data while the second primary
axis (x1) explains only 1.98% of the variance in the data.

Figure 4(a) also shows a very strong relationship between
the sample temperature and the sample position along xg
for aluminum. Once again, there is a pinching in the data
for aluminum, though not quite along x¢ as with titanium.
The shape of the aluminum samples is more curved and
lacks the symmetry about x( that the titanium data exhibited.
However, the aluminum samples are more stretched along xg
than with the titanium samples such that said axis explains
73.95% of the variance in the data and x; explains 4.39%. The
clustering results show that the boundary is not quite vertical,
as one could presume from the curvature of the data, and the
boundary is once again slightly biased towards samples colder
than the location of the recess in the data, albeit a bit more
biased than was seen with the titanium data. The reason for the
elongated “tail” in the data seen in the aluminum samples but
not in the titanium samples may be due to the different initial
structures of the two metals. An fcc lattice can be expected
to exhibit much more variation in structure as it approaches
its melting point since it bears much less similarity than a bcc
lattice does to a liquid structure.

For both systems, there is ample evidence that the PCA
analysis is adequately capturing the statistical significance
of the features and that a third principal axis is unneeded
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FIG. 4. Scatter plots of the PCA-reduced two-dimensional radial
distribution samples for aluminum with respect to the first two
principal axes, xo and x;. (a) Samples are colored with respect to
their instantaneous temperatures. (b) Samples are colored by cluster
temperature average with a line marking the cluster boundary and
circles marking the cluster centroids.

as it necessarily explains less variance than the axis that
precedes it. Furthermore, the cluster assignments are found
to be nearly identical to the unreduced case, with some minor
deviations near the cluster boundary for both systems. Thus,
PCA reduction is found to be useful for representing the data
in a much more easily visualized manner with very minor loss
of statistical significance or fidelity in the analysis for both
systems.
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FIG. 5. Temperature distributions for the PCA-reduced titanium

radial distribution clusters with arithmetic and geometric mean tem-
peratures of the overlap region truncated distributions.
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FIG. 6. Temperature distributions for the PCA-reduced alu-
minum radial distribution clusters with arithmetic and geometric
mean temperatures of the overlap region truncated distributions.

The temperature distributions of the clusters in Figs. 5 and
6 provide some more detailed insight into the relationship
between the temperatures and the structures of titanium and
aluminum that are suggested by the PCA-reduced scatter plots
in Figs. 3 and 4. The overlap region for titanium extends from
1639 K to 2604 K and the overlap region for aluminum ex-
tends from 593 K to 1182 K. In order to determine the transi-
tion temperature between the two structures, the distributions
are truncated and renormalized such that the domain of the
new distributions lays solely within the overlap region. The
mean temperatures of these regions are then determined both
arithmetically and geometrically. The arithmetic formulas for
determining the means (T,n) and standard deviations (O agih)
of each cluster with N samples of temperature 7; and weight
w; (the proportion of the data at temperature 7;) within the
transition region are as follows:

N
Tuin = »_wiT;. (1)
i=1
N
iy = | _ wi(T; — Tain)’ )
i=1

The corresponding geometric formulas for Teeo and oy, are
then

N
Tyeo = €XP Z w; In T}, (3)

i=I

N T
Ogeo = | EXP Z Wi In? (T—l> — 1| Tgeo. )
i=1

geo

For titanium, the arithmetic mean temperatures of clusters
A and B within the overlap region are 1867 K and 2325 K,
respectively, with standard deviations of 175 K and 198 K,
respectively. The arithmetic mean of these values gives a
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temperature of 2096 K with a standard deviation of 186 K.
The geometric mean temperatures of clusters A and B in
the overlap region are 1859 K and 2316 K, respectively,
with geometric standard deviations of 178 K and 211 K,
respectively. The geometric mean of these values then gives a
temperature of 2075 K with a standard deviation of 194 K. The
single standard deviation intervals for the predicted transition
temperature with arithmetic and geometric averaging are then
[1910 K, 2282 K] and [1881 K, 2269 K], respectively. The
known transition temperature of 1900 K is only contained by
the interval obtained with geometric averaging.

For aluminum, the arithmetic mean temperatures of clus-
ters A and B within the overlap region are 724 K and 989 K,
respectively, with standard deviations of 115 K and 140 K,
respectively. The arithmetic mean of these values gives a
temperature of 856 K with a standard deviation of 128 K.
The geometric mean temperatures of clusters A and B in the
overlap region are 715 K and 978 K, respectively, with geo-
metric standard deviations of 117 K and 157 K, respectively.
The geometric mean of these values gives a temperature of
836 K with a standard deviation of 136 K. The single standard
deviation intervals for the predicted transition temperature
with arithmetic and geometric averaging are then [728 K, 984
K] and [700 K, 972 K], respectively. The known transition
temperature of 937 K is contained by both intervals.

IV. CONCLUSIONS

The results show that unsupervised machine learning meth-
ods can be used both to isolate the statistically relevant data
in structure information and to cluster those data into groups
that represent the expected phases present in a structural
change as evidenced by the examples identifying the melting
point transitions in titanium and aluminum. The results of the
clustering with or without dimensionality reduction are almost
identical, indicating that large data sets can be reduced safely
without loss of fidelity. The results of the dimensionality
reduction with PCA also showed that the majority of the
variance in the data is captured by the first principal axis,
especially by comparison with the second principal axis. The
location of a sample along the first principle axis is also very
well correlated with the temperature of the sample and the
partitions made by the k-means clustering are almost exactly
along said axis. These features of the unsupervised ML ap-
proach to detect structural changes show that this method
is promising for unsupervised classification of structures in
physical systems.

In the melting point examples, the reported estimates for
the melting temperatures are close to but not exactly coinci-
dent with the best estimates, though considering the system
size, this is to be expected. The melting temperature estimates
tended to be off by about 10% for both cases (9.21% and
10.67% for titanium and aluminum, respectively) using the
geometric averaging scheme, though the result for titanium is
an overestimate and the result for aluminum is an underesti-
mate. The ranges constructed using the standard deviations of
the temperatures did indeed capture the true melting temper-
atures of the potentials in both cases, though the ranges are
rather large. Various maximum temperatures well beyond the
expected melting point are used to generate MD simulation

data and they did not affect the results with any statistical
significance. These results are omitted because they provided
superfluous information, but serve to indicate that this method
is not necessarily sensitive to the temperature range chosen
for the simulation data. As it stands, this method does not
necessarily outperform existing methods for calculating the
melting temperature in terms of accuracy. It may seem to
reduce the importance of this approach at first sight, but we
stress that these results provide proof of principle for the
application of the ML approach to investigating structural
changes in physical systems. It has the benefits of conceptual
simplicity, ease of application, and speed. More importantly,
it can be applied to complicated systems in which there are
few a priori data available, contrary to many conventional
approaches.

Further improvements on the method may increase per-
formance, such as improved sampling methods for procuring
data, more appropriate choices of structural data, and more
complex ML methods. For instance, in the melting point
example, Monte Carlo sampling may prove more appropriate
than MD sampling [16] as well as a different choice of struc-
tural information other than the radial distribution function.
It is also worth mentioning that a larger system size can
also improve results. For the ML analysis, alternative data
scaling, nonlinear dimensionality reduction methods, different
clustering methods, or a supervised approach may prove to be
more effective.
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APPENDIX A: ADDITIONAL METHODS FOR
IDENTIFYING MELTING POINTS

Melting is an important physical phenomenon that has
inspired the development of many MD methods for investigat-
ing said phenomenon. In general, there are three methods that
have been used to determine the melting curves of materials
using MD that will be discussed here in addition to the single-
phase hysteresis method in the main body.

The first method is the two-phase coexistence method
which involves allowing a coexisting system to evolve to the
temperature at which the free energies of the solid and liquid
phases are identical [30,31]. This works by providing an initial
guess for the melting temperature. A large solid system is
then equilibrated at that temperature. Half of the atoms in the
system are then frozen while the atoms in the other half are
heated to a temperature sufficient for melting. After cooling or
rescaling the velocities of the liquid atoms back to the guessed
melting point, a short NPT equilibration step is run. If the
entire system solidifies or melts during this equilibration run,
then the guess is too far from the melting temperature and
must be revised. After the NPT run, the system is allowed to
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evolve for a much longer time in either the microcanonical
(NVE) ensemble or more accurately the isobaric-isenthalpic
(NPH). During this last step, the system will melt or solidify
while the temperature decreases or increases towards the melt-
ing temperature due to the latent heat of fusion. From the latter
part of the last step, the average temperature is calculated
and used as a new guess for the melting temperature. After
multiple iterations, the guess will have converged to within
uncertainty to the melting temperature; the interface positions
and temperature in the final step will be stable and the free
energies of the phases will be equal. The physical significance
of this method is well established and there are no super-
heating or supercooling issues as with the hysteresis method,
but to obtain an accurate melting temperature this method
requires tens of thousands of atoms and rather long simulation
times, which makes the method much more computationally
expensive and inaccessible to ab initio MD. However, there
are methods for using the coexistence approach with small
systems that can predict the melting point within 100 K in
systems of more than 100 atoms that can be used with ab initio
MD [32].

The second method is the free energy method, which as
the name implies involves directly calculating and comparing
the free energy from the solid and liquid phases separately.
However, for this method, the free energies of solid and liquid
phases are calculated by way of thermodynamic integration
[33-35] from phases with exactly known free energies and
with carefully chosen paths to avoid singularity. The melting
temperature is obtained when the difference between the free
energies is null and the results are generally consistent with
the coexistence method [36,37]. This method does not require
particularly large systems as it does not require stabilization
of the two phases simultaneously, so it can be used for both
classical [34] and ab initio [35] MD. However, the thermody-
namic integration procedure has to be done with utmost care
and for some complicated systems, the reference crystal phase
free energy is unknown.

Lastly, the Z method starts with a perfect lattice that is
allowed to evolve in the NVE ensemble. In principle, there
is a maximum energy E s that can be granted to a crystalline
system before the system melts [38]. If the energy surpasses
this quantity, then the system will spontaneously melt at
temperature 77 g, but due to the increase in potential energy
largely due to the latent heat of fusion, the temperature will
then decrease [38,39]. The temperature reached during this
step coincides with the melting temperature 7). The name of
this method is due to the Z shape that is traced out by the
temperature as a function of the energy as the temperature
rises with the energy, suddenly drops at the melting point, then
continues to increase. This method can be used with ab initio
MD [40].

However, there are two problems with the Z method
involving the waiting time and critical assumptions about
melting [41]. First, before the system melts into a liquid,
it will stay in the solid phase for a short time called the
waiting time that is proportional to both the inverse square
of the overheating excess and the inverse of the number of
atoms [42]. Consequently, the melting results are dependent
on the simulation time such that the simulation time must
be greater than the waiting time. The second problem is

that there is an assumption in the Z method that melting
occurs homogeneously throughout the system, which is not
true in general, especially as system size and simulation time
are increased [42]. These two problems are in conflict with
one another, but the modified Z method was developed to
solve both problems simultaneously by using a parallelepiped
simulation box such that one dimension is effectively infinite
compared to the others and seeking a time evolution into the
steady solid-liquid coexistence state [41].

APPENDIX B: PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a linear dimen-
sional reduction algorithm using singular value decomposi-
tion to project data into a lower dimensional space [1]. The
name is in reference to being an analog of the principal axis
theorem from classical mechanics. Assume that the initial data
are encoded in a matrix X of shape (m, n) such that there
are m observations for n samples that may be correlated with
one another. The goal of PCA is to perform an orthogonal
transformation into a new basis set of linearly uncorrelated
observations called principal components such that the first
one encompasses the largest possible variance in the data and
each subsequent principal component also has the largest pos-
sible variance under the constraint that they are orthogonal to
every preceding principal component [22]. Thus, the principal
components are guaranteed to be an uncorrelated orthogonal
basis set. The dimensionality reduction is accomplished by
only considering the first k principal components necessary to
capture the variance in the original data set sufficiently well.
The mathematical procedure is as follows. The initial data X
are of the structure

X, xi=|: |, (BD)

Xin

where each x; contains all of the observations for a sample.
Note that at this point, it is assumed that the data are in
the mean deviation form such that the mean value for each
observation across all of the samples has been subtracted
off each entry. The basis of these data is the m-dimensional
identity matrix. In order to change the basis of the data,
consider the linear transformation PX =Y where the new
matrix Y is the projection of the data for the samples in X
onto a new basis encompassed by the rows of the matrix P.
This is clear when you write the transformation explicitly:

P1-x1 P1 - X,

Y =PX = (B2)

Pm - X
The rows of P are defined to be orthonormal such that

pi - Pj = d;j, where §;; is the Kronecker delta function. The
covariance matrix of X is defined as

XX
Sx =

Pm - Xn

. (B3)
n—1
The diagonal entries are the variances of the observations
and the off-diagonal entries are the covariances of the obser-
vations. Thus, the covariance matrix describes the pairwise

053305-7



WALKER, TAM, NOVAK, AND JARRELL

PHYSICAL REVIEW E 98, 053305 (2018)

correlations between all observations. The goal is to determine
the basis set P such that the off-diagonal elements of the
covariance matrix for Y (Sy) are minimized. This effectively
removes redundancy in the observations and requires the
diagonalization of Sy. The covariance matrix of Y can be
expressed as follows:

YY”  (PX)(PX)”  PXX'P’

Sy = =
Y n—1

n—1 n—1 B4

The matrix XX can be diagonalized such that it is equiv-
alent to EDE” where the rows of E are the right eigenvectors
and D is a diagonal matrix of the corresponding eigenvalues.
The choice of P = E7 alongside the property of orthonormal
matrices such as P that P = P~! gives the result

_P®P'DPP! D

n—1

Sy

B5
p— (B5)

This gives the intended result of minimizing the covari-
ances in the data through an orthogonal transformation. Note
that according to the earlier definition of the covariance matrix
of X, the following is true:

XxX” pP~'DP
SX = =

(B6)

n—1 n—1"

Thus, an eigenvalue decomposition of the covariance ma-
trix of X must be performed to determine P, where the
rows of the matrix are the principal components. They are
ordered form least to greatest variance, which is given by their
corresponding eigenvalues. The eigenvalue decomposition is
calculated using the singular value decomposition algorithm.

In practical terms, PCA is a useful tool for summarizing
data. As was stated prior, the approach is fundamentally
intended for reducing redundancy in data. When considering
data composed of many observations, one will often find that
the observations overlap greatly in common properties among
the samples that they describe. A naive approach would in-
volve selecting individual observations that appear to contain
the most underlying information in the data and ignoring the

rest. This risks missing important patterns from the data set
by neglecting the possibility of linear combinations of the ob-
servations, however. PCA assuages this situation by providing
a new orthogonal basis set that maximizes the variance with
a linear transformation. The primary weakness of this method
is that it can fail to account for nonlinear characteristics in the
original data.

APPENDIX C: K-MEANS CLUSTERING

K-means clustering is a method of partitioning scattered
data into distinct groups [19-21]. Assume that the initial data
of the ith data point X is an n-dimensional vector:

Xil
X; = - ((62))]
Xin

There are N data points in total. The goal of a general
clustering method is to partition these N data points into
k different groups according to some criteria. For k-means
clustering, the each partition is characterized by the “center
of mass” or centroid, C;, which is an n-dimensional vector.
There are a total of k “center of masses,” one for each group
that the N data points are partitioned into. The criterion for
choosing the centroids and the assignment of a group label to
each data point is given by minimizing the total “moment of
inertia,”

k

1:2 Z Ix; — Cj|. (C2)

j=1 X;EC,‘

The term |x; — C;| is defined as the the norm that can be any
metric in general. In this work we defined it as ), (xjx —
C jk)z. The algorithm used employs an iterative approach to
find the centroids commonly referred to as the expectation
maximization method [1]. This involves initially choosing the
centroids, assigning the data points to the centroids by the
minimization criterion, then updating the centroids according
to the expected mean of the cluster assignments.
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