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Estimation of mutual information between random variables has become crucial in a range of fields, from
physics to neuroscience to finance. Estimating information accurately over a wide range of conditions relies
on the development of flexible methods to describe statistical dependencies among variables, without imposing
potentially invalid assumptions on the data. Such methods are needed in cases that lack prior knowledge of their
statistical properties and that have limited sample numbers. Here we propose a powerful and generally applicable
information estimator based on nonparametric copulas. This estimator, called the nonparametric copula-based
estimator (NPC), is tailored to take into account detailed stochastic relationships in the data independently of
the data’s marginal distributions. The NPC estimator can be used both for continuous and discrete numerical
variables and thus provides a single framework for the mutual information estimation of both continuous and
discrete data. By extensive validation on artificial samples drawn from various statistical distributions, we found
that the NPC estimator compares well against commonly used alternatives. Unlike methods not based on copulas,
it allows an estimation of information that is robust to changes of the details of the marginal distributions. Unlike
parametric copula methods, it remains accurate regardless of the precise form of the interactions between the
variables. In addition, the NPC estimator had accurate information estimates even at low sample numbers, in
comparison to alternative estimators. The NPC estimator therefore provides a good balance between general
applicability to arbitrarily shaped statistical dependencies in the data and shows accurate and robust performance
when working with small sample sizes. We anticipate that the nonparametric copula information estimator will
be a powerful tool in estimating mutual information in a broad range of data.
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I. INTRODUCTION

Mutual information, the fundamental mathematical quan-
tity of information theory, provides a universal way to quan-
tify dependencies, transmission rates, and representations of
data [1]. It has become an indispensable tool in many domains
such as signal processing, data compression, finance, dynam-
ical systems, and neuroscience [2–7]. Mutual information
quantifies the information that one random variable carries
about another by measuring the reduction in uncertainty about
a given variable from knowing another variable. Uncertainty
in turn is quantified by means of entropy. Shannon’s entropy
therefore is at the core of virtually all applications of informa-
tion theory.

Quantifying entropy and information of a random variable
poses a difficult problem because it requires knowledge about
its probability distribution. In most practical applications,
the exact shape of the distribution of a random variable is
unknown and thus needs to be estimated from data. This re-
quires either strong parametric assumptions, such as assuming
for instance that data follow a normal distribution, or large
amounts of data to estimate the distribution directly from the
samples.
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In an ideal case, information estimators would estimate
variable distributions directly from the data and would not
require parametric assumptions that could impose invalid
structures on the data. In addition, ideal estimators would
be accurate also in situations with limited sample numbers.
Furthermore, given that mutual information quantifies only
the dependencies between the variables [8–11], ideal estima-
tors should be sensitive only to the dependencies between
the random variables of interest, which fully define mutual
information, and should be insensitive to other aspects of
the data, such as the marginal distributions of the individual
random variables. To date, it has been challenging to develop
information estimators that have all these properties. It is
clear that developing such estimators would greatly increase
the range of applicability and the accuracy of information
measures over a wide range of important empirical problems.

For continuous random variables, powerful estimators have
been developed that estimate mutual information directly
from the samples in a nonparametric way. One popular class
is based on the k-nearest-neighbor (kNN) estimators [12–14],
which in their original form assume local uniformity in the
vicinity of each point. For accurate information estimation
with these approaches, the required number of samples scales
exponentially with the value of mutual information [15]. This
has limited the effectiveness of these estimators in cases with
strong dependencies and thus high mutual information, or in
situations with smaller numbers of samples. The performance
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of these estimators, especially for strong dependency cases,
has been improved through the introduction of a correction
term for local nonuniformity (LNC) [15]. The LNC method
assumes a particular nonuniformity structure of the distri-
bution in the kNN ball or max-norm rectangle. These as-
sumptions, however, can produce inaccuracies in information
estimates for data with marginal distributions with long tails,
such as the gamma distribution, or distributions with sharp
boundaries. Thus, assumptions about local nonuniformity
could lead to different estimates of mutual information for
two sets of variables that have similar dependency structures,
and hence similar mutual information values, but different
marginal distributions. These methods therefore encounter
a significant tradeoff between assumptions imposed on the
distribution of the data and the number of samples required
for accurate information estimation.

For discrete variables, estimation methods have been pro-
posed based on either subtracting out an analytical approx-
imation to the limited sampling bias [16,17], or in using a
Bayesian approach. In the latter, instead of estimating the
probability mass function, a prior, in the form of Dirichlet
distributions, is placed over the space of discrete probability
distributions. The entropy then is estimated using the inferred
posterior distribution over entropy values [18,19]. A more
complete set of priors has been recently proposed in [20],
using a mixture of Pitman-Yor priors (PYM), which is a
two-parameter generalization of the Dirichlet process and
parametrized to be flat over entropy values. It has been shown
that such a flat prior provides better estimates of entropy and
mutual information with low sample numbers compared to
analytical bias subtraction methods [18,20]. However, like
the LNC estimator, the PYM estimator is sensitive to the
form of the marginal distributions. In particular, Gerlach
et al. [21] confirmed that the PYM estimator reduces the
estimation bias but that the bias scales in the same way
with the number of samples as for other type of estimators.
Moreover, the PYM estimator performs worse on heavy-tailed
distributions [21,22].

The previously proposed estimators considered above have
in common that in one way or another they make use of the full
joint distribution of the random variables of interest, which
includes contributions from both the marginal distributions
and the dependencies between the variables of interest. How-
ever, because mutual information is determined only by the
dependencies between variables [8–10], information estima-
tors only need to focus on correctly capturing the dependency
structure. Such dependency structures are best isolated using
the mathematical construct known as the copula. Formally,
any joint distribution can be decomposed into its marginal dis-
tributions and a copula. The latter quantifies the dependency
structure irrespective of the marginals, and the negative of
the copula entropy exactly equals the mutual information that
one random variable carries about the other [8,23]. Copula-
based methods are therefore well suited for isolating the
dependencies and are insensitive to the form of marginal
distributions. Previous copula based information estimators
have been proposed both in the continuous domain [9–11]
and mixtures between discrete and continuous domains [24].
All such copula based information estimators have made use
of copulas selected from parametric families. The parametric

copula estimators have the advantage of simplicity, but the
disadvantage that they make systematic assumptions on the
dependency structure of the data [25]. These assumptions
might differ greatly from the real data structure, leading to
large estimation errors when used on datasets with complex
and nonlinear dependency structures that are difficult to fit
with simple parametric copula families. However, recently
some nonparametric copula estimation methods have been
proposed in [26–28], and their properties in density estimation
have been studied. Yet, a systematic study of the application
of such methods in mutual information estimation is lacking.

Here, we propose information estimators based on non-
parametric copulas (NPC). These NPC estimators first iden-
tify the copula that characterizes the relationship between the
random variables of interest and then calculate the entropy
of the copula to obtain an estimate of the mutual informa-
tion. Contrary to parametric copula families, nonparametric
copulas do not impose strong assumptions on the shape of
the stochastic relationship between the variables of interest
and thereby avoid systematic biases in the information esti-
mates. We present methods to identify the copula nonpara-
metrically, both for continuous and discrete data. We show
that, compared to previously reported information estimators
(in particular the LNC and PYM estimators), NPC mutual
information estimators are robust to the parameters of the
marginal distribution and perform well in cases with low sam-
ple numbers. NPC-based estimators are therefore some of the
first information estimators that simultaneously do not impose
strong parametric assumptions, can work with relatively small
sample sizes, and isolate the dependencies in the data that
matter for mutual information both in the continuous, discrete
or mixed domains.

II. THEORY AND METHODOLOGY

We estimate information by means of copulas and their
entropy. Copulas mathematically formalize the concept of
statistical dependencies: a given copula quantifies a particular
relationship between a set of random variables. Here we give
a brief summary of the basics of the copula and its relation
to mutual information. We then continue by presenting the
nonparametric copula and how it can be computed empirically
from given data.

A. Formal copula definition

A d-dimensional copula is the cumulative distribution
function C(u1, . . . , ud ) : [0, 1]d → [0, 1] of a random vector
defined on the unit hypercube [0, 1]d with uniform marginals
U[0,1] over [0, 1];

C(u1, . . . , ud ) = P (U1 � u1, . . . , Ud � ud ), (1)

where Ui ∼ U[0,1].
The great strength of copulas is their utility for representing

the statistical relationship between multiple random variables.
Copulas can be used to couple arbitrary marginal cumulative
distribution functions (CDFs) to form a joint CDF. Sklar’s
theorem [23,29] lays out the theoretical foundations for this
construction:
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FIG. 1. A bivariate dataset (right panel) is generated from mixing
two marginal distributions (left panels: gamma top, and Gaussian
bottom). The PDF (dashed line) and CDF (solid line) for the two
marginals are shown. They merge with the copula density (middle
panel) to generate the joint density function.

Theorem 1. Sklar’s theorem: For a d-dimensional random
vector X = (X1, . . . , Xd ), let FX be its CDF with marginals
F1, . . . , Fd . Then there exists a copula C such that ∀x ∈ Rd :

FX (x1, . . . , xd ) = C(F1(x1), . . . , Fd (xd )), xi ∈ R; (2)

C is unique, if the marginals Fi are continuous. Conversely,
if C is a copula and F1, . . . , Fd are CDFs, then the function
FX defined by FX (x1, . . . , xd ) = C(F1(x1), . . . , Fd (xd )) is a
d-dimensional CDF with marginals F1, . . . , Fd .

Sklar’s theorem relates the copula C of Eq. (1) to the joint
distribution function of the variables Ui = Fi (Xi ),

C(u1, . . . , ud ) = FX
(
F−1

1 (u1), . . . , F−1
d (ud )

)
, ui ∈ [0, 1],

(3)
where F−1

i are the inverse cumulative distribution func-
tions. For a differentiable copula C, we can define the
copula probability density function (PDF) c(u1, . . . , ud ) =

∂d

∂u1...∂ud
C(u1, . . . , ud ). For ui := Fi (xi ) and fi (·) as PDFs

corresponding to the CDFs Fi (·), we can write the copula
density as

c(u1, . . . , ud ) = fX
(
F−1

1 (u1), . . . , F−1
d (ud )

)∏d
i=1 fi

(
F−1

i (ui )
) . (4)

This means that the multivariate PDF can be decomposed
into the copula density and the product of the marginal
densities. The copula can be interpreted as the part of the
density function that is independent from the single variable
marginals and rather captures the dependencies between the
variables. This decomposition is useful to estimate the joint
density function and also to estimate the likelihood which is
needed in statistical inference, but here in this work we only
focus on the copula density as a tool to compute entropy and
mutual information.

An example bivariate density function is shown in Fig. 1
which consists of a gamma marginal distribution (x1), a Gaus-
sian marginal distribution (x2), and a particular parametric
copula density (student-t copula) as its dependency structure.
The decomposition of the full density function into the de-
pendency structure (copula) and the marginal distributions
makes it possible to study any measure which is independent
from the marginal distributions by considering only the copula
structure. Here the gamma marginal distribution has a sharp
boundary at x1 = 0 which makes it difficult for conventional

density estimation methods to compute the full bivariate den-
sity function. The copula, on the other hand, can easily cope
with the density behavior around x1 = 0.

B. Entropy and mutual information

Entropy quantifies the uncertainty associated with a given
random variable and lays the foundation for mutual informa-
tion. For a continuous multivariate distribution, the differen-
tial entropy h(X ) is defined as

h(X ) = −
∫

fX (x) log2 fX (x)dx, (5)

where fX denotes the multivariate probability density func-
tion [1,3]. With this, the mutual information I (X ; Y ) between
two continuous multivariate random variables X and Y is
given by

I (X ; Y ) = h(X ) + h(Y ) − h(X, Y ), (6)

where h(X, Y ) is the joint differential entropy of the joint
distribution (X, Y ) with joint PDF fX,Y [1,3].

Using Eq. (4), one can show that the mutual information
equals the negative of the entropy of the copula density
between X and Y [8–11]:

I (X ; Y ) = −h(c) =
∫

[0,1]d
c(u) log2 c(u) du, (7)

where u = (u1, . . . , ud ). This makes the computation of mu-
tual information independent from the marginal distributions
and reduces the computational error in estimating the mutual
information (MI) for two reasons. First, the irrelevance of
the marginals removes the need for faithfully capturing their
properties in the information estimation procedure. Thus,
copula-based estimators separate the relevant entropy from
the irrelevant entropies and thereby effectively reduce the
number of implicit quantities contributing to the final mutual
information estimate, thereby reducing the estimation error.
Second, the independence of copula from the marginals makes
copula based methods robust to any irregularity which might
exist in the marginals. This is in contrast to density dependent
methods, such as kNN-based estimators [12–15] which might
struggle with marginal irregularities.

We can estimate the integral Eq. (7) using classical Monte
Carlo (MC) sampling [24,30]. The entropy can be expressed
as an expectation over the copula density c

h(c) = −Ec[log2 c(U )], (8)

where U = (U1, . . . , Ud ) denotes a random vector from the
copula space. This expectation can then be approximated by
the empirical average over a large number of d-dimensional
samples uj = ((uj )1, . . . , (uj )d ) from the random vector U :

−Ec[log2 c(U )] ≈ ĥk := −1

k

k∑
j=1

log2[c(uj )]. (9)

By the strong law of large numbers, ĥk converges almost
surely to h(c). Moreover, we can assess the convergence of ĥk
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by estimating the sample variance of ĥk:

Var[ĥk] ≈ 1

k + 1

k∑
j=1

(log2[c(uj )] − ĥk )2. (10)

With this estimate, the term ĥk−h(c)√
Var[ĥk]

is approximately stan-

dard normal distributed, allowing us to obtain confidence
intervals for our differential entropy estimates [30].

Sampling from the copula

To sample from a d-dimensional copula, we use the Rosen-
blatt transform [31,32]. This approach applies a sequence of
conditional distributions and makes use of the fact that the
marginal distributions of a copula are always uniform. First,
we draw independent uniform samples v1, . . . , vd from [0,1].
Then, we sequentially transform these samples by means of
the inverse conditional CDFs of the copula:

u1 = v1,

u2 = C−1
2|1 (v2|u1),

u3 = C−1
3|1,2(v3|u1, u2),

...

ud = C−1
d|1,...,d−1(vd |u1, . . . , ud−1), (11)

where C−1
i|1,...,i−1 denotes the inverse of the copula CDF of

element i conditioned on the elements 1, . . . , i − 1. The re-
sulting vector (u1, . . . , ud ) is a sample from the copula.

The conditional CDFs can be obtained from the copula
CDF by calculating [29,33]

Ci|1,...,i−1(ui |u1, . . . , ui−1)

= ∂i−1C1,...,i (u1, . . . , ui )/
∏i−1

k=1 ∂uk

c1,...,i−1(u1, . . . , ui−1)
, (12)

where C1,...,i denotes the copula CDF with the elements i +
1, . . . , d marginalized out and c1,...,i denotes its PDF.

For the special case d = 2, computation of the conditional
CDF reduces to a partial derivative of the original copula CDF
with respect to one variable.

C. Parametric copulas

Many parametric families of copulas have been proposed,
representing various relationship shapes with different tail
dependencies and symmetries [29,33,34]. These families are
appropriate for fitting data with corresponding features. How-
ever, such parametric families make strong assumptions about
the shapes of the relationships. This may in turn introduce
considerable biases in information estimates when the shape
of the dependencies in the real data does not match those that
can be described by the copula family.

In this work we will use the parametric copulas for two
different purposes. The first is to test the performance of infor-
mation estimation methods based on parametric copulas. The
second is to use particular parametric families to generate data
with a known ground-truth information value in order to test
the accuracy of our nonparametric copula-based information

estimators. For this purpose, the most convenient parametric
families are those for which we can analytically calculate
mutual information. Two particular parametric families with
known closed-form solutions for calculating mutual informa-
tion are given by the Gaussian and student-t copula families.
We describe their properties in this section. For our simu-
lations, we consider only bivariate copulas. However, these
copulas can be readily extended to large-dimensional copulas
by means of pair-copula constructions [35], as follows.

Gaussian copula family. One of the most commonly ap-
plied parametric copula is the Gaussian copula with CDF de-
fined as CG(u, v) = ��(�−1(u),�−1(v)) where u, v ∈ [0, 1]
and � and �� are the univariate standard normal CDF and
multivariate normal CDF with zero mean and correlation
matrix,

� =
(

1 r

r 1

)
,

respectively. The copula PDF can be written as

cG(u, v) = 1√|�| exp

(
−1

2
X�(�−1 − I2)X

)
, (13)

where X = (x, y), (x, y) = (�−1(u),�−1(v)) and I2 denotes
the 2 × 2 identity matrix.

The Gaussian copula entropy has the following analytical
form:

h(cG) = − 1
2 log2(1 − r2). (14)

Student-t copula family. The student-t copula is another
well established parametric copula family which can be used
to model elliptical dependency structures. Contrary to Gaus-
sian copulas, copulas from the student-t family have tail
dependency and hence can be used to generate datasets with
heavy tails. The bivariate student-t copula is defined by means
of the standardized bivariate student-t CDF t�,ν as Ct (u, v) =
t�,ν (t−1

ν (u), t−1
ν (v)), where � is the correlation matrix and ν

is the degrees of freedom. The PDF of the bivariate student-t
copula is

ct (u, v) = �
(

ν+2
2

)
�

(
ν
2

)
√|�|�(

ν+1
2

) (1 + XT �−1 X/ν)−(ν+2)/2

[(1 + x2/ν)(1 + y2/ν)]−(ν+1)/2
,

(15)

where X = (x, y), (x, y) = (t−1
ν (u), t−1

ν (v)), and �(·) de-
notes the gamma function.

The student-t copula has the following analytical entropy
[9]:

h(ct ) = �

ln(2)
− 1

2
log2(1 − r2), (16)

where

� = 2 ln

[√
ν

2π
β

(
ν

2
,

1

2

)]
− 2 + ν

ν
+ (1 + ν)

[
ψ

(
ν + 1

2

)
− ψ

(ν

2

)]
(17)

is a constant and β(·) and ψ (·) are the beta and digamma
functions, respectively.
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D. Nonparametric copulas

Our information estimator is based on a recently developed
nonparametric version of the copula, which can be used to
model any general dependency structure and does not involve
making assumptions on the structure of data [7,11,24]. One
challenge in using nonparametric copula estimators is to deal
with the close support of the copula: the support of a bivariate
copula is restricted to the unit square [0, 1]2. Most kernel
estimators, for instance, have problems with such bounded
support because for points close to the boundaries, they
typically place some positive mass outside of the support.
To address this problem, we apply a transformation such
that the support of the density in the transformed space is
unbounded [26,27,36].

Let us assume that we want to estimate a copula density c

given n bivariate random samples (ui, vi ), i = 1 . . . n from
the random vector (U,V ). Let � be the standard normal
CDF and φ its density. Then the random vectors (R, S) =
(�−1(U ),�−1(V )) have normal distributed marginals with
support on the full R2 (Fig. 2). In this domain, kernel
density estimators work well and have less asymptotic and
boundary problems since the density slowly converges to zero
on the edges. This transformation is known as the probit
transformation.

By sklar’s theorem for densities, Eq. (1), the density f of
(r, s) will be decomposed into

f (r, s) = c(u, v)φ(r )φ(s). (18)

After change of variables, we get the copula density

c(u, v) = f (�−1(u),�−1(v))

φ[�−1(u)]φ[�−1(v)]
. (19)

The nonparametric copula can be estimated in several ways,
described in what follows.

1. Naive kernel estimation

The naive kernel estimate of the density function can be
written as

cnaive(u, v) =
1
n

∑n
i=1 K	bn

(r − ri, s − si )

φ[�−1(u)]φ[�−1(v)]
, (20)

where the sum is over the n samples (ri, si ) ≡ (ui, vi ) and
(r, s) is related to (u, v) through Eq. (21). For the density
kernel K (·) we consider a symmetric bounded probability
density function with bandwidth vector 	b. Furthermore, we
can make another transformation to the principal component
coordinates, (

p

q

)
≡ W

(
r

s

)
= W

(
�−1(u)

�−1(v)

)
, (21)

where the matrix W is the rotation matrix to the principal
component coordinates. In this coordinate space, since the
covariance matrix is diagonal, we can approximate the ker-
nel function as the product of the two kernels for each of
the coordinates K	b(p − pi, q − qi ) ≈ KbP

(p − pi )KbQ
(q −

qi ) where bQ and bP are the corresponding bandwidths of
each coordinate. An example of bivariate data is shown both
in the (p, q ) and (u, v) spaces in Fig. 2.

2. Local-likelihood density estimation

When used for nonparametric copula estimation, the naive
kernel estimator has asymptotic problems at the edges of
the distribution support. In particular, it might find false
peaks and troughs when there is an asymmetry in the tails
of the distribution. This happens because small fluctuations
in unbalanced tails are greatly magnified when transformed
back to the copula space [26]. To remedy this problem, we
can make use of a similar approach as in [37], where it was
shown that the the local likelihood density estimation gives
a much better behavior on the boundaries [26]. We adapted
this approach by assuming that the density function can be
written locally for any point (p′, q ′) around each point (p, q )
as a continuous function f (p′, q ′) = ψθ (p,q )(p − p′, q − q ′)
for some parameters θ (p, q ) and a continuous parametric
function ψθ (p,q )(p − p′, q − q ′).

The log likelihood of such an estimate can be written as
follows [26,36]:

L(p, q ) = 1

n

n∑
i=1

Kbp
(pi − p)Kbq

(qi − q )

× log ψθ (p,q )(p − pi, q − qi )−
∫∫

R2
Kbp

(p − p̃)

×Kbq
(q − q̃ )ψθ (p,q )(p − p̃, q − q̃ )dp̃ dq̃. (22)

After fixing the functional form for ψ , the parameters θ can
be obtained by maximizing the log likelihood,

θ (p, q ) = arg max
a1,...,aF

L(p, q ), (23)

where we considered F degrees of freedom for θ . A possible
choice for the functional form of the ψ studied in [26,36–38]
is to assume that its logarithm is a polynomial. For a polyno-
mial of order 2, the ψθ around each point (p, q ) can be written
as

ψθ (p − p′, q − q ′) = a1e
a2(p−p′ )+a3(q−q ′ )+a4(p−p′ )2+a5(q−q ′ )2

,

(24)
where θ = (a1, a2, a3, a4, a5) are the parameters to be defined
at each point (p, q ). Note that the local likelihood density
function is equal to fLL(p, q ) = a1(p, q ). This particular
functional form simply means that locally and not globally,
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around each point (p, q ), the log-likelihood function has a
Gaussian form. The choice of the kernel functions K (·) are
of lower importance, since they will be weighted with the
local function ψ . Given that the data in the probit coordinates
is normal, and has diagonal covariance matrix, the Gaussian
kernel function seems to be a natural choice,

Kb(u) = 1√
2πb

e−u2/2b2
. (25)

We can now solve Eq. (23) by imposing δL(p,q )
δθ

= 0 and
solving the following set of equations which we get after using
Eqs. (23) and (22) at each point (p, q ):⎛⎜⎜⎜⎝

fnaive

f1

f2

f3

f4

⎞⎟⎟⎟⎠ := 1

n

n∑
i=1

⎛⎜⎜⎜⎝
1

(pi − p)
(qi − q )

(pi − p)2

(qi − q )2

⎞⎟⎟⎟⎠Kbp
(pi − p)Kbq

(qi − q )

=
∫∫

R2

⎛⎜⎜⎜⎝
1
p̃

q̃

p̃2

q̃2

⎞⎟⎟⎟⎠Kbp
(p̃)Kbq

(q̃ )ψθ (p,q )(p̃, q̃ )dp̃dq̃.

(26)

The set of equations Eqs. (26) can be solved analytically for
the Gaussian kernel as follows:

⎛⎜⎜⎜⎝
fnaive

f1

f2

f3

f4

⎞⎟⎟⎟⎠ = a1

epeq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a2b

2
p

e2
p

a3b
2
q

e2
q

b4
pa2

2+b2
pe2

p

e4
p

b4
qa2

3+b2
q e2

q

e4
q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp

(
a2

2b
2
p

2e2
p

+ a2
3b

2
q

2e2
q

)
,

(27)

where ep and eq are defined as ep :=
√

1 − 2b2
pa4 and eq :=√

1 − 2b2
qa5.

The functions fnaive, f1, f2, f3, f4 can be computed empir-
ically for given bandwidths bp and bq and from the summation
over the data points (pi, qi ), with i = 1, . . . , n, in Eq. (26).
We can then solve for the likelihood-estimated copula density
fLL(p, q ) as fLL(p, q ) = a1(p, q ) using the following identi-
ties which can be extracted from Eqs. (27):

a2 = e2
p

b2
p

f1(p, q )

fnaive(p, q )
, a3 = e2

q

b2
q

f2(p, q )

fnaive(p, q )
,

ep = bp

(
f3(p, q )

fnaive(p, q )
−

(
f1(p, q )

fnaive(p, q )

)2
)1/2

,

eq = bq

(
f4(p, q )

fnaive(p, q )
−

(
f2(p, q )

fnaive(p, q )

)2
)1/2

,

(28)

which can be used to compute the local-likelihood copula
density at each point (p, q ) as

fLL(p, q )

= fnaiveepeq exp

[
− e2

p

2b2
p

(
f1

fnaive

)2

− e2
q

2b2
q

(
f2

fnaive

)2
]
.

(29)

The copula density function Eq. (29) can be computed at
any point using Eqs. (27). This equation gives an analytic
correction to the naive density estimate fnaive for the local-
likelihood density fLL. The only unknowns at this point are
the kernel bandwidths bp and bq which will be discussed in
the next section.

After computing the density in the (p, q ) space, we can
transform back to the probit dimensions (r, s) and then to the
original (u, v) in the CDF domain u, v ∈ [0, 1],(

r

s

)
= W−1

(
p

q

)
,

(
u

v

)
=

(
�(r )

�(s)

)
, (30)

where W is the transformation matrix to the PCA coordinates.
The transformation from (p, q ) to (r, s) is an isometry, hence
fLL(r (p, q ), s(p, q )) = fLL(p, q ). The copula density is then
computed using Eq. (19).

Selecting proper bandwidths is crucial to get well behaved
and precise kernel density estimates especially on the borders.
This is a sensitive issue which can drastically affect the
local and asymptotic properties of the density estimation. The
transformation of the data to probit coordinates and then to the
principal components makes it natural to consider a diagonal
bandwidth matrix as we did in the previous section with
two diagonal components bp and bq as the only remaining
parameters which should be estimated in Eq. (29).

There are two main approaches for estimating the band-
widths. In the first one, we consider a constant bandwidth
for all the points on the plane while in the second one, we
define the bandwidth according to the local distribution of the
data, for example to be proportional to the distance of each
point to its kth-nearest neighbor point. Since we want to take
advantage of the analytical solution for the local-likelihood
copula, we here use a fixed bandwidth.

As discussed in [26,27], a good choice of the bandwidth
should balance the integrated asymptotic squared bias and
the variance of the considered estimator. We do this by mini-
mizing the mean integrated squared error (MISE). However,
popular data-driven selection strategies are based on cross
validation. The most popular instances are least-squares cross
validation [39] and biased cross validation [40]. Here, the
MISE takes the form

MISE[fLL] =
∫∫

R2
E[(fLL(p, q ) − fT (p, q ))2]dpdq

∝
∫∫

R2
f 2

LL(p, q )dpdq − 2

n

n∑
i=1

f
{CV }
LL (pi, qi ),

(31)

where fT is the true density of the data points (pi, qi ) and
fLL is the local likelihood approximate of the density. The∑n

i=1 f
{CV }
LL term is the cross-validated sum of the copula
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density over the data points. For instance, a leave-one-out or
k-fold procedure can be used to split the data into training
and test subsets. The density at each test set can be estimated
using the density function which is estimated using only the
corresponding training set. By having a cross-validated copula
density for each point, we can estimate the sum in the second
term. The integral part is computed numerically using the
equally spaced binning of the (p, q ) space as it is shown in
Fig. 1. The possible effect of the number of bins on the mutual
information estimation will be shown in the next sections.

The bandwidth parameters b = (bp, bq ) can then be esti-
mated numerically by minimizing the MISE[fLL],

b = arg min
bp,bq

{∫∫
R2

f 2
LL(p, q )dpdq − 2

n

n∑
i=1

f
{CV }
LL (pi, qi )

}
.

(32)

In the results presented in this paper we used fivefold cross
validation to estimate MISE. We did not observe any signif-
icant difference in results when using values of k as large as
20, for a dataset with n = 1000 samples.

3. Bandwidth selection

One possible simplification for the bandwidth selection is
used in [27,38] where it was shown that a rule of thumb way
of defining the bandwidth can perform well. In this rule, the
bandwidth will be proportional to the square root of the co-
variance matrix b ∝ �1/2 where � is the empirical covariance
matrix in the (p, q ) coordinates (so it is diagonal). We can
then use this approach and instead of optimizing Eq. (32)
for two free parameters; we can solve the problem for one
parameter α after defining the bandwidth as b = α�1/2. We
will refer to the density function obtained from the simplified
one-parameter bandwidth as LL1 and the density function
obtained from two-parameter bandwidth as LL2.

4. Copula density normalization

One important property of the copula density is that it has
uniform marginals. It is important to ensure that the estimated
empirical copula density satisfies this property as well. This
means that we should have∫ 1

0
c(u, x)dx =

∫ 1

0
c(x, v)dx = 1, u, v ∈ [0, 1]. (33)

Because of numerical imperfections and approximations of
the kernel estimation, these constraints might be violated.
In order to impose these constraints, we follow the iterative
normalization suggested in Nagler et al. [38] by repeatedly
dividing the copula density by its marginals,

c(u, v) → c(u, v)∫ 1
0 c(u, x)dx

∫ 1
0 c(x, v)dx

. (34)

A relatively small number of iterations (∼1000) is sufficient
to get copula densities with almost uniform marginals. Finally,
in order to be sure that we get a proper density function, we
normalize the resulting copula density with its integral over
the two-dimensional domain (u, v) ∈ [0, 1]2. This numerical
normalization assures that the resulting density satisfies the
properties of a copula density.

Also note that numerical computation of the integrals
required for the estimation of bandwidths in Eq. (32) as well
as for the estimation of the density in Eq. (29) and in the
normalization procedure of Eq. (34), we use a grid of the
(p, q ) domain as shown in Fig. 2. In principle, it would be
possible to use different grid sizes for bandwidth optimization
and for density estimation. For example, it may be useful to
use a coarser grid to estimate the bandwidth (since it will
be more efficient in terms of computational time) and a finer
grid size to estimate the density (to have a higher resolution
density estimation) or in the sampling procedure. For the
simulations presented in this paper, we used equal grids for
bandwidth optimization and density estimation both to get
a lower bound of the information estimation error and to
simplify the procedure.

III. RESULTS

Our approach is to compare the NPC-based estimator with
current information estimators using numerical simulations in
both continuous and discrete domains. We focus on the per-
formance of the NPC-based estimator in terms of optimizing
its parameter selection, and evaluating its accuracy, sensitivity
to sample size, and robustness to the form of the marginal
distributions. We also focus on comparing the properties of
NPC-based estimator to those of the best performing estima-
tors among those currently available.

A. Continuous variables

We first consider the case of estimating information be-
tween continuous valued variables. These cases are relevant
for many important applications, ranging from analysis of
gene networks [41] to the analysis of neuroimaging data
such as electro- and magnetoencephalograms [11] and to the
analysis of continuous valued dynamical systems [7,42].

In the continuous domain, we tested the NPC-based
information estimators in four different simulated con-
ditions. We generated the datasets so that we had the
ground-truth theoretical values of the mutual informa-
tion for those probability distributions. We quantified es-
timation accuracy by computing the mutual information
absolute error E[|Iestimate − Itheory|], the normalized bias
E[Iestimate − Itheory]/Itheory, and the normalized variance of the
estimator E[(Iestimate − E[Iestimate])2]/Itheory over a number
of simulations (1000 simulations for each condition). For
each condition, we generated simulated data using a known
parametric copula dependency structure and known marginal
structures. For the dependency structure between variables,
we considered two families of parametric copulas: the Gaus-
sian copula family and the student-t copula family, each of
which has closed-form solutions for calculating the associated
entropies (see Sec. II C). For the Gaussian copula, r was
varied from 0.2 to 0.9. For the student-t copula, r was set
to 0 and ν was varied between 0.2 and 0.9, forming entirely
nonlinear dependencies and zero linear correlation (see the
copula in Fig. 1).

Note that the mutual information is positively correlated
with r and negatively correlated with ν. We combined cop-
ulas from each of these families with marginal distributions
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FIG. 3. Mutual information absolute error is computed for four
different datasets using one-parameter bandwidth (ILL1 and I naive

1 )
and two-parameter bandwidth (ILL2 and I naive

2 ) nonparametric copula
using both the naive and local likelihood estimators. Data are gener-
ated by means of the copula method with k = 100 grid size and N =
1024 sample size. The data in each panel are combinations of two
similar marginal distributions and a parametric copula. (a) Gaussian
copula with parameter r , Gaussian marginals. (b) Same Gaussian
copula, gamma marginals. (c) Student-t copula with parameters
r = 0 and ν, Gaussian marginals. (d) Same student-t copula, gamma
marginals.

that were either Gaussian N (μ = 0, σ = 1) or gamma-
exponential �(α = 0.1, β = 10). The selected parameters for
the gamma-exponential marginal distribution formed a sharp
boundary peak at zero (similar to the gamma distribution
shown in Fig. 1), which is difficult to capture with meth-
ods that operate on the properties of the density function.
We therefore generated bivariate distributions with selected
marginals and a relationship structure specified by the selected
copula (see Sklar’s theorem 1). In each case, we simulated the
data with the sampling approach explained in Sec. II B.

1. Optimization of the nonparametric copula

Given that the use of nonparametric copulas has been
introduced only recently [26,43,44], we first investigated how
to optimize the performance of various possible implemen-
tations of the nonparametric copula (Fig. 3). We considered
versions with a two-parameter bandwidth and a simpler ver-
sion with a one-parameter bandwidth local-likelihood method
(see Sec. II D 3). For all the simulated dataset conditions, we
did not find a significant difference between the two- and one-
parameter bandwidth versions of the NPC estimator in terms
of information estimate accuracy (Fig. 3). This result suggests

that, in the (p, q ) space, the covariance of the distribution
was enough to capture the local variations in the density
and hence the optimal shape of the kernel function. We also
compared the absolute mutual information error obtained with
the local-likelihood copula with that obtained with the naive
copula. It has been already shown that the local-likelihood
density copula describes better data with sharp variations,
edges, or other types of local nonuniformity [26]. In Fig. 3 we
tested whether these properties lead to a more accurate mutual
information estimation. As expected, the naive estimation of
the copula density was accurate in simple situations, such as
the Gaussian copula. However, for the case of high nonlinear
correlations in a student-t copula (smaller ν values), the naive
method failed to capture the sharp corners of the copula
and had double the estimation error of the local-likelihood
methods. We therefore chose to use the LL1 as the copula
estimator for the comparison with other methods.

This version had the advantage of having fewer parameters
for the bandwidth parameterization, which made the opti-
mization of Eq. (32) faster and easier to converge, without
much cost to the accuracy of the density function and the
mutual information estimations. The only free parameter of
the nonparametric copula that needs to be selected a priori is
the number of grids k that are used to quantize the (p, q ) space
for estimation of the bandwidths in Eq. (32) and normalization
of the copula density in Eq. (34). To test how this parameter
affected the estimated mutual information, in Fig. 4 we tested
the NPC estimator, on the same simulated data used in the
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FIG. 4. Mutual information absolute error for a range of grid
sizes is shown for the same data as of Fig. 3 using the LL1
local-likelihood nonparametric copula method. Insets show the 95%
confidence interval of the mean of MI absolute error for each k value
after correction for multiple comparison for the r, ν = 0.5 cases.
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previous figure, varying k from 10 to 200 (in the previous
figure a value of k = 100 was used). For k � 50, there was
little improvement in the information error with increasing
values of k, both in strongly correlated and less correlated
copulas. We thus selected k = 100 for the remaining analysis.
For smaller k’s, e.g., k = 10, the resolution of the binning of
the copula space was not sufficient to capture the sharp corners
of the student-t copula, even though it performed well for the
Gaussian copula (Fig. 4). In the practical implementation of
the above procedures, we found that, for strongly correlated
data (e.g., large r values of the Gaussian copula or small ν val-
ues of the student-t copula), the MI absolute error decreased
monotonically with k until reaching a constant value at larger
k, and a small number of iterations was enough to optimize
bandwidth. For weak correlation cases, we still observed a
decrease of the estimation error when increasing k, although
in such cases the copula bandwidths were usually larger and so
the bandwidth optimization needed more iterations for large
k values. In the results presented in this paper, we used a
bounded optimization function since the size of the bandwidth
is bounded by the extension of the data in the (p, q ) domain.1

2. Comparing the NPC estimator in the continuous domain with
existing established estimators

We next compared the NPC method with two other alter-
native established methods. First, we tested our nonparametric
copula estimator against a parametric copula-based estimator
based on the Gaussian copula (GC) whose parameters were
estimated by maximum likelihood [11]. This estimator was
selected for comparison because it is a popular method for
estimation of information in continuous brain signals [11].
Second, we also compared our NPC estimator against the
mutual information estimates obtained with the LNC method
[15]. This comparison was chosen because, as we also con-
firmed in our experience on our simulated data, the LNC
method is considered to be the best performing among those
not based on copulas such as those based on nearest neigh-
bors [12,14,15]. The results for all four simulation conditions
and for a range of copula parameters are shown in Fig. 5.

The GC gave the most accurate results in the case of
data generated using a Gaussian copula, Fig. 5, as expected
because in this case the parametric copula used for generating
the data matched the one used for estimating information, but
it gave the largest error in estimating the mutual information
on data generated by the student-t copula, which lacked linear
correlations in the data.

The LNC method worked well for both copula families
when we used normal marginal distributions to generate the
data but it was highly sensitive to the change of marginal

1The MISE is a convex function which can be optimized easily
and reliably. We used the MATLAB function fminbnd with maximum
500 number of iterations for the optimization. Using smaller number
of iterations as low as 100 will have minimal effect on the results
specially in the more correlated cases. The bandwidths are bounded
to zero from below and to the rule-of-thumb bandwidth value used in
[38] from the above.
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FIG. 5. Mutual information absolute error is shown for data
similar to Fig. 3 using different information estimation methods.

distribution to gamma distribution.2 The absolute mutual in-
formation error obtained using the LNC method was nearly
an order of magnitude larger for the gamma function marginal
distribution compared to the Gaussian marginals, for the same
copula function. This result shows that the LNC method was
strongly affected by the form of the marginal distribution,
especially in the strongly correlated situations, e.g., large r for
Gaussian copula and small ν for student-t copula. In contrast
to the LNC and the GC methods, the NPC had both desirable
properties expected by an ideal estimator.

First, it worked well for all the types of dependencies used
to generate the data, giving low absolute errors for both data
generated with the Gaussian and the student-t copula. Second,
further quantification of the difference in the error in mutual
information estimates when using either Gaussian or gamma
marginal distributions (Fig. 6) showed that the NPC-based
estimator was not affected by the marginal distributions used
to generate the data. The mutual information depends only on
the copula, thus an ideal estimator should give equal results re-
gardless of the marginal distribution. In sum, unlike previous
methods the NPC-based estimator had the double advantage
that it both functioned accurately for both types of copula fam-
ilies, including both linear and nonlinear dependency struc-
tures, and was insensitive to the marginal distributions. To
further investigate the performance properties of the mutual
information estimators, we computed the normalized bias and

2The numerical estimations from LNC are computed with k = 5
(k being the number of nearest neighbors) and the default value of α

parameter, using the toolbox available online [45].
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FIG. 6. The difference of mutual information estimated with
normal and gamma marginal distributions is shown for LNC and
NPC methods for (a) the Gaussian copula and (b) the student-t
copula, with similar parameters as in Fig. 3. In all the simulations
we used k = 100 and N = 1024 samples.

standard deviation of each of them, for the same data used
in the above figures. The results (Fig. 7) show that the better
performance of the NPC estimator is largely due to a decrease
in bias, but that the NPC estimator has also the additional
desirable property of having in general less variance. Given
that, in practical applications, data available for information
estimation are often scarce, it is important that an estimator
is accurate also when small datasets are available. We thus
investigated in Figs. 8 and 9 how the performance of the NPC-
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FIG. 7. Mutual information bias ratio is shown for similar data as
in Fig. 3 using different information estimation methods. The error
bars represent the standard deviation over the 1000 simulations of the
data.
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FIG. 8. Mutual information absolute error similar to Fig. 3 but
for different sample sizes (N ), and the fixed values of r = 0.5 and
ν = 0.5.

based estimator varied with the sample size. We computed,
for the four simulated data conditions and across a range
of sample sizes (N = 25, . . . , 213), the mutual information
absolute error (Fig. 8) and the mutual information normalized
bias (Fig. 9). In these cases, we fixed the parameters of the
copulas as r = 0.5 for the Gaussian copula and ν = 0.5 for
the student-t copula. The NPC method rapidly converged to
a low error level with increasing sample size and had low
error even at the smallest sample size. At most of the cases
and sample sizes, the NPC method outperformed the LNC
method, including for sample sizes as small as 64, for which
there was an order of magnitude difference in the estimation
error between the NPC and LNC methods for the simulated
data with gamma function marginal distributions.

B. Discrete variables

We next considered the problem of estimating the mutual
information between two random variables taking integer
numerical variables. Having efficient information estimators
in such cases is important for many applications. For example,
in neuroscience experiments it is often important to estimate
the information that the number of spikes emitted by neurons
carry about sensory or behavioral variables taking integer
values. Note that any discrete set of discrete variables can in
principle be one-to-one mapped to a set of integer variables,
with similar probability mass function of the original discrete
variables; this makes the current setting quite general.

The local-likelihood kernel method requires a continuous,
smooth, and integrable copula density, which is not the case
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FIG. 9. Mutual information bias is plotted for data similar to
Fig. 3 but for different sample sizes (N ) and the fixed values of
r = 0.5 and ν = 0.5. The error bars represent standard deviation over
data simulations.

for integer variables. We therefore used a simple approach to
transform discrete data into the continuous domain, without
affecting the information content, by adding appropriate noise
to the data. This approach provided a single framework for
computing mutual information between continuous and inte-
ger variables and their mixtures.

1. Adapting the NPC estimator to discrete numerical variables

We first examined how to transfer integer variables into the
continuous domain without affecting the information content.
Consider a bivariate set of integer variables (nX, nY ). We
can show that there exists proper noise variables εX and εY

independent from (nX, nY ) such that

I (nX + εX; nY + εY ) = I (nX; nY ). (35)

One possible noise distribution satisfying Eq. (35) is a union
of uniform distributions filling the gaps between consecutive
integer variables. Consider {ni} as the sorted set of integer
variables (ni > ni+1 for all i = 1 . . . Nmax − 1) according to
their indices. We then add the following uniform noise:

εi ∼ U[ni ,ni+1], (36)

to each integer ni transforming it to their corresponding ñi in
the real domain satisfying ñi > ñi+1 for all i = 1 . . . Nmax −
1. For i = Nmax, we can define the noise as εNmax ∼ U[ni ,ni+1].

We can then write the probability of the noised variable ñi as

p(ñi ) = p(ni + εi ) =
Nmax∑
n=1

P (n)p(εi = ñi − n). (37)

Since, based on the definition of the noise εi , we have
p(εi = ñi − n) = 0, for n = ni we will have

p(ñi ) = P (ni )p(εi ). (38)

Similarly, the joint density can be decomposed as the product
of the mass function of the integer variables nX and nY and
the noise densities

p(ñX, ñY ) = P (nX, nY )p(εnX
)p(εnY

). (39)

We then write the mutual information between the continuous
variables ñX and ñY as

I (ñX; ñY ) =
∫∫

ñXñY

p(ñX, ñY ) log2
p(ñX, ñY )

p(ñX )p(ñY )
dñXdñY

=
∑
nX,nY

P (nX, nY ) log2
P (nX, nY )

P (nX )P (nY )

×
∫∫

εnX
εnY

p(εnX
)p(εnY

)dεnX
dεnY

= I (nX; nY ),

(40)

which means that adding this noise and transforming the in-
teger data to the real domain does not change the information
between the variables. We can then use the variables (ñX; ñY )
in the continuous domain together with the kernel copula to
estimate their mutual information. An example simulation of
such continuation of integer bivariate data into the continuous
domain is shown in Fig. 10. We note that a similar approach
for continuation of the discrete domain into mixed variables
for density estimation has been proposed in [46], to which we
refer for further details.

2. Testing the performance of the discrete NPC estimator

To test the performance of the NPC method, we simulated
data using Gaussian and student-t copulas with r = 0.5 and
ν = 0.5, respectively. Here, for the marginal distributions, we
used Poisson distributions with a variable range of Poisson
rates λ = 20, . . . , 70 to see how changing the properties of
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FIG. 10. A set of bivariate integer data points (left) become con-
tinuous (right) after adding variables with proper noise distributions
to each point.
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FIG. 11. The MI absolute error (top) and MI bias (bottom) are
shown for the NPC model with a range of k = 10, . . . , 200 number
of bins, parametric Gaussian copula, and PYM methods. To simulate
the dataset, we used Poisson marginal distributions with λ = 50 and
the Gaussian (left) and student-t copulas (right) and generate N =
1024 samples. The error bars of the MI bias plots are the standard
deviation over 1000 data simulations.

the marginal distribution affects the mutual information esti-
mation. Poisson distributions fit well many empirical data of
relevance, such as the distribution of spike count of cortical
neurons [47]. We added noise to the data using Eq. (36)
and computed the corresponding copula and its entropy. We
compared the NPC method with direct fitting using a Gaussian
copula, because this comparison is useful to illustrate the
specific advantages of a nonparametric copula. We also tested
the NPC against the Pitman-Yor mixture (PYM)3 information
estimation method [20]. We selected the PYM method for
comparison because, as also confirmed by our experience on
these simulated data, it has been shown [20,49] to further
improve the performance of previous pioneering Bayesian
estimators [18,19], and the latter compare favorably to other
bias subtraction methods [19,50].

We first focused on how to optimize the computation of the
NPC estimator. As we did for the continuous case, we tested
various values of k (the binning parameter), compared models
across simulation conditions, and analyzed estimation errors
and biases as a function of sample size. In the discrete cases,

3For all the comparisons with PYM, we used the default setting
of the codes available online [48]. We computed the joint entropy
H (X, Y ) from the multiplicities of all the unique pairs of integers in
the data.

we used the method used in [24,51] to compute the ground
truth mutual information.

The NPC-based estimator had a low and flat error across
a wide range of k values as is shown in Fig. 11, with
similar levels of error for k > 10. Also, the performance of
the NPC estimator was insensitive to the properties of the
marginal distributions and had similar levels of error across
all tested values of λ. Further, the NPC estimator performed
similarly well on both the Gaussian copula and student-t
copula datasets. These results indicate that the NPC-based
estimator performed similarly on integer variables as it did on
continuous data. They also show flat normalized bias over the
change of the Poisson rates (Fig. 11). We then compared the
NPC to other approaches over a range Poisson rates. As shown
in Fig. 11, the NPC estimator had significant advantages.
Direct fitting with the GC approach worked well on the data
generated from the Gaussian copula, but performed poorly
on the data simulated with the student-t copula, as expected.
The PYM approach performed worse than the NPC estimator
on both cases, especially on the Gaussian copula case. The
PYM method showed a strong dependency on the form of
the marginals and had an order of magnitude larger errors for
the largest values of λ. The NPC-based method was the only
approach that generalized well across values of the marginal
distributions and across the type of dependency structure in
the data. Furthermore, the sample size dependency of different
methods are shown in Fig. 12. The performance of the NPC-
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FIG. 12. The MI absolute error (top) and normalized bias (bot-
tom) are shown for different sample sizes for the NPC, parametric
Gaussian copula, and PYM methods for Poisson marginal distri-
butions with λ = 50 and the Gaussian (left) and student-t copulas
(right). The error bars of the bottom panels are the normalized
standard deviation computed over a set of data simulations.
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FIG. 13. The standard deviation of MI is computed over a set of
marginal distributions with firing rates λ = 20, . . . , 70. The Poisson
marginals are combined with (a) the Gaussian copula and (b) the
student-t copula to generate the samples.

based method, with a fixed Poisson rate at λ = 50, had a
weaker dependence on the sample size than the PYM method
and had significantly lower estimation absolute error than the
PYM method for sample sizes N < 210. Furthermore, the
NPC shows small and flat normalized biases and variances
over the same range of sample sizes, contrary to the PYM
estimator which shows large negative normalized biases and
large variances for small samples sizes.

These results further demonstrate that the NPC method
has an important property of mutual information estimators,
namely that they estimate similar mutual information values
for a fixed dependency structure over a wide range of marginal
distributions and sample sizes. In order to quantify the degree
of the dependency of each estimator to the parameters of the
marginal distributions, after fixing the dependency structure,
we computed the variability in the estimated mutual informa-
tion, measured as the standard deviation of the information
values estimated over a range of Poisson rates λ (Fig. 13).
Across a wide range of sample sizes, the variability in the
information estimate with varied λ was flat for NPC and
GC methods and low relative to that of the PYM method.
The PYM shows strong marginal distribution dependency
especially for smaller sample sizes. The NPC-based estimator
therefore appeared unaffected by large changes in sample size
or marginal distributions, consistent with what was observed
in the continuous case.

IV. CONCLUSIONS

Here we developed a mutual information estimator based
on nonparametric copulas. We have demonstrated that the
method has several desirable features of a high-performance
information estimator. First, the method is nonparametric,
which means that assumptions about relationships in the data
are not imposed. Second, the method is not sensitive to the
distributions of individual variables (marginal distributions);
rather, by virtue of its focus on the copula, it only takes into
account the dependencies between variables. We were able
to extend this advantage even to the discrete case, forming
a single framework for the study of continuous, discrete,
and mixed combinations of variables. Third, the NPC-based

estimator worked well at low sample numbers, which has
commonly been challenging for nonparametric approaches.
We additionally demonstrated that this approach performed
and generalized better than state-of-the-art mutual informa-
tion estimators in many cases.

Many currently used mutual information estimators have
made important progress in being able to estimate information
accurately and from limited samples, also in cases when
the underlying probability distributions do not necessarily
fit traditional parametric families of probabilities. However,
these existing nonparametric methods do not explicitly sin-
gle out the copula as the only part of the joint distribution
that is taken into consideration for mutual information es-
timates [12,15,20]. We showed that estimators such as the
kNN-based estimators and the PYM estimator were sensitive
to the properties of the marginal distributions and can thus
lead to inaccurate information estimates. For example, even
with the same dependency structure and thus identical mu-
tual information, these methods could erroneously estimate
different levels of mutual information due to differences in
the properties of the marginal distributions. By making use
of copulas, we isolated the part of the joint distribution that
is relevant for the mutual information and avoided contami-
nation of the information estimates from irregularities in the
marginal distributions. Both in the continuous and integer
domains, the NPC estimator provided a stable information
estimate across values of the marginal distributions and across
sample sizes, and it shows less performance degradation
at small sample numbers. These results indicate that the
NPC approach is able to identify the dependency structure,
which is exactly the property critical for the mutual infor-
mation between the variables of interest, and the method
was correctly not affected by changes in other aspects of the
data.

To model the copula, we made use of nonparametric meth-
ods. Contrary to parametric methods, nonparametric methods
do not make strong assumptions with respect to the shape
of the distribution and the dependency structure of the data.
Here we showed that the use of nonparametric approaches
allowed for successful information estimation both in data
generated from Gaussian dependencies with linear correla-
tions and from student-t copulas with only nonlinear rela-
tionships. In particular, we used the probit transformation in
conjunction with principal component analysis to transform
the data samples in the copula domain into a space that lends
itself well to kernel density estimators. We made progress in
kernel-based methods for copula density estimation. In such
methods, the selection of the appropriate kernel bandwidth is
a crucial factor for achieving faithful density estimates [28].
We derived analytical solutions for the likelihood-estimated
copula density with Gaussian kernels, making possible quick
calculations of the density and the associated mean integrated
square error. This allowed us to apply efficient methods for
selecting the right kernel bandwidth. While other nonpara-
metric copula methods such as splines smoothing [52] and
Bernstein polynomials [53] have been put forward, a recent
comparison suggests that probit-transformation-based meth-
ods tend to outperform alternative nonparametric estimators
over a wide range of used cases [28] when combined with the
local-likelihood density estimation [26].
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Thus, the advantages of the NPC estimators result from
being able to combine, into a single formalism, the best of
two complementary approaches: the advantage of the copula
to focus specifically on the parts of the probability distribution
that are important for information and the advantage of non-
parametric methods in being able to adapt to a wide range of
situations.

We tested the NPC-based estimator only in the bivariate
case. The extension of copulas to multivariate cases has
been developed through the vine-copula structures, showing
that density estimators based on the vine copula have better
bias and variance scaling properties in terms of sampling
size with respect to conventional noncopula based methods
[26,28,33,35,54,55]. Because the multivariate d-dimensional
structures can be built using d(d − 1)/2 bivariate copulas, the
performance of the bivariate NPC suggests that similar trends
are expected in higher dimensions. Investigation of the vine
copula as a mutual information estimator in higher dimensions
is an important area of focus for future work.

We anticipate that, due to their adaptability to complex
structures and their robustness to sample size, the NPC-based
information estimator will be generally applicable in a wide
range of fields and will advance and enhance the impact of
information theory in many domains, in particular, application
of information theory especially to biological problems in
which data collection is constrained by insurmountable prac-
tical reasons and is both limited by the difficulty of estimating
information accurately from limited samples [6,56] and by the
presence of complex nonlinearities [57].

As an important example, in neuroscience, hypotheses
about how neurons encode information about certain behav-
ioral variables (such as the parameters quantifying the nature
of sensory stimuli or of behavioral choices) have thus far

been limited to testing simple quantifications of the neural
response, such as the number of action potentials fired in a
given time window. Yet, evidence suggests that information
may be encoded by more complex neural variables that in-
clude, for example, the pattern of firing of single neurons
[58] or of neuronal populations [59], or the interactions
between the timing of action potentials and of continuous
neural response variables such as the power or phase of brain
oscillations [60]. The nature of the interactions between such
neural variables and potentially complex external variables
of ethological interest (such as the value of sensory stimuli
of naturalistic complexity) is largely unknown and cannot be
safely described by parametric methods. Yet, the number of
samples that can be collected is limited by factors such as
the small length of time in which a subject can perform a
cognitive task. Our NPC information estimator can be used
to measure accurately relationships between such neural and
behavioral variables, helping researchers to crack the code
used by neurons to mediate complex behaviors [61].
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