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Multiparticle collision dynamics (MPCD) enables us to simulate fluid dynamics including both hydrodynam-
ics and thermal fluctuations. Its main use concerns complex fluids, where the solvent interacts with concentrated
solutes, whether they are colloidal particles, polymers, or electrolytes. A key difficulty concerns the way one
couples the fluid to the solute particles, without losing the key advantages of the MPCD method in term of
computational efficiency. In this paper, we investigate the dynamical properties of solutes that are coupled to
the fluid within the collision step, i.e., when local momentum exchange between fluid particles occurs. We
quantify how the volume where momentum exchange is performed (the size of the collision cells) constrains the
hydrodynamic size of the solute. Moreover, we show that this volume should be taken smaller than the structural
size of the solutes. Within these constraints, we find that the hydrodynamic properties of a 1-1 electrolyte solution
are similar to the behavior predicted by the Fuoss-Onsager theory of electrolyte dynamics, and we quantify the
limitations of the theory for 2-1 and 2-2 electrolytes. However, it is also clear that mapping the diffusion timescale
to that of a real system cannot be done quantitatively with this methodology.
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I. INTRODUCTION

The dynamics of solutes in a solution drives many proper-
ties, from their thermic or electrical conductivity to the rate
of chemical reactions. Dynamical properties of solutes de-
pend on hydrodynamic interactions mediated by the solvent.
These interactions play a role in a very large concentration
range. Typically, in electrolytes [1], they become significant
at concentrations larger than 10−2 mol L−1, and in some case
they become screened in very dense solutions, such as poly-
mer melts [2]. Most transport theories of simple solutions,
electrolyte solutions, dilute polymers, or colloidal suspensions
rely on a description of hydrodynamic interactions derived
from the Stokes equation of fluid dynamics at low Reynolds
numbers. The Fuoss-Onsager theory of electrolyte transport
[1,3] and the classical theories of polymer transport [2,4–6]
both include hydrodynamics using the Oseen tensor. In this
framework, the velocity of a solute is influenced by the
velocities of surrounding solutes through a tensor depending
on the distances between particles. The Oseen tensor can
be derived by evaluating the effect of a force applied on a
fixed point of the fluid described by the Stokes equation.
The size and shape of the particles have no explicit influence
on hydrodynamic interactions within this modeling. Finding
numerical alternatives to these limited theoretical treatments
without resorting to atomistic numerical simulations has given
rise to a variety of mesoscopic methods. Brownian dynamics
with the Rotne-Prager hydrodynamic tensor [6] is the sim-
ulation technique that is the most natural [7], as it contains
ingredients from classical theoretical treatments. This method
has been very successful in computing transport coefficients
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for various systems [8–15], but it has several major pitfalls.
First, when the system is too concentrated, the Rotne-Prager
tensor can be non positive definite for some configurations of
the system, and the simulation cannot proceed. This is a clear
limitation if one is interested in crowded media, such as the
interior of a biological cell. Second, when strong attractive
interactions between particles exist, random displacements
can lead the system in regions of phase space that should not
be realistically explored, which leads to strong instabilities of
the simulation. This difficulty can be partially overcome by
the use of Metropolis Adjusted Langevin Algorithm (MALA);
see, e.g., Ref. [16]. Moreover, it is very difficult to adapt such
simulation strategies to concentrated solutions or confined
solutions for which the use of the Rotne-Prager tensor is no
longer valid [17].

Two popular alternatives to Brownian dynamics are dis-
sipative particle dynamics [18], and multiparticle collision
dynamics (MPCD) [19,20]. In the present paper, we focus
on the use of the latter to study systems with strong hydro-
dynamic interactions between solutes. In MPCD, an explicit
but highly simplified description of the solvent is used, where
ballistic motions and local momentum exchanges between
solvent particles are tuned to reproduce the properties of a
fluid at the Navier-Stokes level. It is a discrete solvent with the
hydrodynamic properties of a continuous solvent, whose hy-
drodynamic regime can be chosen thanks to a relatively small
number of parameters. Solute particles can be embedded in
the MPCD solvent bath, and evolve through a classical molec-
ular dynamics algorithm; Hydrodynamic interactions between
solutes emerge in this case. One advantage of MPCD is that
it describes hydrodynamics more adequately than Brownian
dynamics with the Rotne-Prager tensor, and that it can in
principle be used for any boundary conditions. Moreover, the
algorithm is particularly suited to parallelization as the local
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momentum exchanges happen in collision cells defined by a
grid of fixed size a0.

There are several ways to couple the solute particles to the
MPCD fluid. A central repulsive force between the solute and
the solvent can be added. It creates a spherical zone around
the solute depleted from the solvent [21–23]. This scheme
leads to an effective slip boundary condition at the surface
of the solute. Alternative schemes can lead to an effective
stick boundary condition [24–26]. In cases where the solute
particles are rather small, another possibility is to couple the
solute with the solvent during the collision step, when the
momentum exchange occurs. This coupling scheme is rather
crude, but it is the most efficient from the computational point
of view. In the following, we refer to this coupling scheme as
collisional coupling (denoted by MPCD-CC in what follows).
This scheme has been used for instance to study the dynamics
of small polymer chains [27–30], and allowed to recover the
scaling laws of Zimm theories (see also Ref. [31]). More
recently, this method has been used for a model of solutes with
several sites [32], to mimic hydrodynamic interactions at the
surface of a colloidal particle. Despite these successes, some
of us found in a previous work that the diffusion coefficients
of simple electrolytes predicted by MPCD-CC differed from
those obtained by Brownian dynamics with hydrodynamic
interactions, in contrast with more expensive coupling algo-
rithms [33]. Indeed, one limitation of the MPCD-CC scheme
is that the solute influences the solvent at the length scale of
the collision cell a0 only, so that the hydrodynamic size of the
solute is of the order of a0 in any case. In real systems, the
hydrodynamic radius of a simple ion or of a nanoparticle is
close to its structural radius derived from the atomic structure.
It means that the structural size should also be of the order of
a0, or in other words, that the size of the cell in MPCD should
be chosen to match the structural size when the collisional
coupling is used. In practice, in several papers, authors suggest
to choose a value of the structural diameter of the order of a0

[34–36], but there is no quantification of the effect of the cell
size on the transport properties.

In the present article, we focus on the MPCD-CC method
and investigate its ability to reproduce hydrodynamic interac-
tions as well as transport theories at the Oseen level. First, we
compute from different methods the effective hydrodynamic
radius at infinite dilution of a solute in collisional coupling
with the MPCD solvent. We show that it is in any case of the
order of one third of the cell size a0. If the structural radius
of the solute is chosen equal to the hydrodynamic radius, it
means that several solutes may be in the same collision cell
at a given step, which might lead to spurious effects. We thus
also investigate the influence of the cell size on the diffusion
coefficient of solutes. The results are compared to the ones
we previously obtained for the same systems without hydro-
dynamic interactions and also with MPCD and a central force
between solvent and solute particles. For hard spheres, we find
an upper limit for the cell size compared to the structural ra-
dius over which the diffusion coefficient spuriously decreases.
Finally, we consider the case of solutes with an attractive inter-
action, as it may increase the probability to find two solutes in
the same collision cell. More precisely, we study the transport
properties of simple electrolyte solutions. We compare the

diffusion coefficient of ions in a 1-1 electrolyte computed by
MPCD-CC for two different resolutions of the grid to our
previous numerical results, taken here as references. We also
compute the electrical conductivity of these solutions because
(i) the electrical conductivity of electrolytes is known to be
strongly affected by hydrodynamic couplings, (ii) a reliable
semianalytical transport theory accounting for hydrodynamic
couplings at the Oseen level exists, able to predict the elec-
trical conductivity of 1-1 electrolytes over a wide range of
concentration [1,37]. We find an excellent agreement between
the electrical conductivity computed from MPCD-CC and
the transport theory, which shows that MPCD-CC is able to
capture the hydrodynamic interactions between monovalent
ions. However, we also show that the constraints on the choice
of parameters in the MPCD-CC method prevent us from
representing a real system. Finally, we use the MPCD-CC to
predict the electrical conductivity of 2-1 and 2-2 electrolytes.
For such systems, electrolyte transport theories are less used.
Indeed, to account for the experimental conductivity, it is
often necessary to use unrealistic input parameters, or to
add parameters in the model, such as association constants
[38]. Our MPCD-CC simulations shed light on the cause of
this difficulty. Indeed, we find important differences between
the simulation results and the predictions of the transport
theory for 2-1 and 2-2 electrolytes, even if the description of
equilibrium properties coincide.

The paper is organized as follows. In Sec. II we shortly
describe the simulation methods and the semianalytical theory
used to compute the electrical conductivity. We compute the
effective hydrodynamic radius of a solute in collisional cou-
pling with a MPCD solvent in Sec. III. Then, the influence on
diffusion coefficients of the size of the collision cell compared
to the structural radius of the solute is investigated in Sec. IV
for solutions of neutral solutes and for electrolyte solutions.
Finally, we compare the electrical conductivity computed by
MPCD-CC to the theoretical prediction in Sec. V. The paper
ends with a conclusive discussion.

II. METHODS

A. Multiparticle collision dynamics simulations

The fluid in MPCD is represented by pointlike particles,
whose positions and velocities evolve in two steps [23]. In
the streaming step, positions and velocities are propagated by
integrating Newton’s equations of motion. Without external
forces, this yields a ballistic motion for each fluid particle i:

ri (t + δtc ) = ri (t ) + vi (t )δtc, (1)

where ri , vi are, respectively, the position and the velocity of
particle i, and δtc is the time step. A second step, the collision
step, enables local momentum exchanges between the fluid
particles. The simulation box is partitioned into cubic cells of
given size a0. A randomly oriented axis is defined for each
collision cell, and the velocities of fluid particles relative to
the velocity of the center of mass of the cell are rotated by an
angle α around this axis:

vi (t + δtc ) = vcell
c.o.m.(t ) + Rα

[
vi (t ) − vcell

c.o.m.(t )
]
, (2)
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where Rα is the rotation matrix and vcell
c.o.m. the velocity of the

center of mass of the cell. The angle α is a fixed parameter.
A random shift of the collision grid is performed at each
collision step to ensure galilean invariance [39,40].

The transport properties of the fluid depend on a few
parameters: the number of solvent particles per cell γ , the
rotation angle α, the time between two collisions δtc [20,23].
It is convenient to use the fluid particle mass mf as the mass
unit, the size of the collision cells a0 as the length unit,
and kBT as the energy unit with T the temperature and kB

Boltzmann constant. The time unit is then

t0 = a0

√
mf

kBT
. (3)

The kinematic viscosity of the pure MPCD fluid is ν = νcoll +
νkin [41,42] with

νcoll = 1

λ

(1 − cosα)

18

(
1 − 1

γ
+ e−γ

γ

)
, (4)

νkin = λ

[
1

[4 − 2cosα − 2cos(2α)]

5γ

(γ − 1 + e−γ )
− 1

2

]
,

(5)

where λ is the mean free path of fluid particles, λ = δtc/t0.
By default, in what follows, the parameters of the MPCD

simulations are: {α = 130◦, γ = 5, δtc = 0.1t0}. This ensures
that the Schmidt number (ratio of the timescale of diffusive
mass transfer over the timescale of momentum transfer in
the fluid), corresponds to a liquid-like behavior. For this
choice of parameters, the kinematic viscosity of the fluid is
ν = 0.809 a2

0 .t
−1
0 (with νcoll >> νkin), so that the dynamic

viscosity η is equal to 4.045 mf a−1
0 .t−1

0 .
Solute particles can be immersed in this solvent bath. Their

dynamics is then coupled to that of the fluid particles. In
what follows, we focus on the so-called collisional coupling
scheme, where solute particles (i) interact with each other
through a given force field, (ii) participate to the collision step
with solvent particles located in the same cell. We refer to this
method as MPCD-CC hereafter. Solutes usually have a mass
greater than that of fluid particles. During the streaming step,
the position Rj and velocity Vj of solute j are propagated
with the velocity Verlet algorithm often used in standard
molecular dynamics (MD) simulations:

Rj (t + δtMD) = Rj (t ) + Vj (t )δtMD + Fj (t )

2M
δt2

MD, (6)

Vj (t + δtMD) = Vj (t ) + Fj (t ) + Fj (t + δtMD)

2M
δtMD, (7)

where M is the mass of the solute particle, Fj is the force
acting on solute j at the beginning of the step, and δtMD is the
time step. During the collision step, the velocities of fluid and
solute particles are updated following Eq. (2) in each collision
cell. More details about this simulation scheme can be found
in Refs. [20,43].

Another possible coupling between the dynamics of solutes
and the solvent bath consists in adding an explicit short ranged
interaction between solutes and fluid particles, preventing
fluid particles to penetrate into solutes. In this case, solutes do
not participate to the collision step. Details on this simulation

scheme, called MPCD-CFC (CFC for central force coupling)
in what follows can be found in Ref. [23]. In the present paper,
the results obtained with MPCD-CC are compared in a few
cases with those obtained in a previous study with MPCD-
CFC. For these MPCD-CFC simulations, a purely repulsive
short-ranged interaction potential between solutes and solvent
was used [33].

B. Computation of transport coefficients and of the
hydrodynamic radius from MPCD-CC

The self-diffusion coefficient of solutes Ds is computed us-
ing equilibrium trajectories. The mean-squared displacement
as function of time is computed, and the diffusion coefficient
of solutes is deduced from the slope at long time [44]:

Ds = lim
t→∞

1

6t
〈|Rj (t + t0) − Rj (t0)|2〉t0,j . (8)

At infinite dilution, the hydrodynamic radius ahyd can be
estimated from the self-diffusion coefficient using the Stokes
law, written here in the case of stick boundary conditions
between solute and solvent:

Ds = kBT

6πηahyd
, (9)

with η the dynamic viscosity of the fluid, η = νγ /a3
0 .

The electrical conductivity σ of a solution of charged so-
lutes is computed from equilibrium MPCD simulations using
Kubo’s formula [44]:

σ = 1

3kBT V

∫ ∞

0
dt

〈
Ned∑
i=1

qiVi (t0)
Ned∑
j=1

qj Vj (t0 + t )

〉
t0

,

(10)
with V the volume of the simulation box, Ned the total number
of solutes, qi the charge of solute i, and Vi its velocity.

We have also used nonequilibrium MPCD simulations to
compute the hydrodynamic radius of a solute in collisional
coupling. In this procedure, the solute particle is fixed at the
center of the simulation box, and we impose a solvent flow
along the x direction. To induce the flow, a velocity with
Gaussian distribution centered on a given value v0 is added
to each solvent particle situated in the layer of the simulation
box perpendicular to the x direction, of thickness a0, at x = 0.
We have chosen v0 = 0.02 a0t

−1
0 . At stationary state, we

obtain a flow around the solute with a cylindrical symmetry.
In the approximation of laminar flow (Re � 1), the analytic
solution of the Stokes equation for the fluid around an isolated
sphere of radius ahyd fixed at the origin with stick boundary
conditions is given by [45]

vr (r, x) = −v∞ahyd
xr

2(r2 + x2)
3
2

, vθ = 0,

vx (r, x) = v∞

[
1 − ahyd

(
1

2
√

r2 + x2
+ x2

2(r2 + x2)
3
2

)]
,

(11)

where cylindrical coordinates (r, θ, x) are used, x being the
direction of the flow and r the distance to the origin. The
velocity field hence depends on two parameters: the hydrody-
namic radius ahyd of the sphere and the fluid velocity far from
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the sphere v∞. The incompressibility of the fluid imposes v∞
to be equal to the average velocity within a slice of fluid
in the plane perpendicular to the flow direction x, whatever
the value of x. The value of v∞ in the flow simulated by
MPCD can thus be determined. Then, we have fitted the value
of ahyd by minimizing the mean square deviation between
the Stokes velocity field [Eq. (11)] and the velocity field
computed by MPCD. As the simulation box has a finite size,
the simulated flow field could actually be affected by periodic
boundary conditions. Nevertheless, this effect is to the first
order proportional to ahyd/Lbox with Lbox the size of the
simulation box. As we proceed to show, under the conditions
of our simulations, ahyd/Lbox is less than 0.01, so that the
finite-size effect can be safely neglected.

C. Theoretical computation of the electrical conductivity

The electrical conductivity of electrolyte solutions can be
predicted from analytical or semianalytical theories related to
the Fuoss-Onsager theory developed at the beginning of the
20th Century [3]. These theories are based on the assump-
tion that two main effects influence the dynamics of ions in
solution, namely electrostatic interactions and hydrodynamic
couplings. The forces induce modifications of the velocity of
solutes which depend on the structural organisation of the
solution through the direct correlation function between two
solutes. Analytical expressions of the electrical conductivity
have been proposed for the primitive model of electrolytes
using the mean spherical approximation as closure relation
to solve the Ornstein-Zernike integral equation [46] and to
compute the structural correlation functions [1]. In the frame-
work of the primitive model, ions are charged hard spheres
embedded in a continuous solvent of given viscosity and
dielectric constant. We propose here to use this theoretical
framework to predict the electrical conductivity of solutions
of charged species of given structural and hydrodynamic radii.
These theoretical results will be used as references to compare
our simulation results with.

More precisely, the velocity of ion i at stationary state
under the presence of an electric field E reads

vi = D0
s

kBT
qiE + δvhyd

i + δvelec
i , (12)

where D0
s is the self-diffusion coefficient of species i at infi-

nite dilution, related to its hydrodynamic radius through the
Stokes relation [Eq. (9)], δvhyd

i is the hydrodynamic velocity
correction due to hydrodynamic interactions, and δvelec

i is
the velocity correction due to electrostatic couplings. The
hydrodynamic velocity correction δvhyd

i can be approximated
using the Oseen tensor as [37]

δvhyd
i =

∑
j

njqj E
2

3η

∫ ∞

0
rhij (r )dr, (13)

where nj is the density of species i and hij (r ) is the total pair
correlation function between species i and j at a distance r .
The velocity correction due to electrostatic couplings, δvelec

i

also depends on the equilibrium pair correlation function,
and scales with 1/η. The full expression of this term can
be found, e.g., in Refs. [1,47]. Here, we use the hypernetted

chain closure relation [46] to compute the total pair correlation
function between ions hij (r ). We have checked that for the
systems investigated here these correlation functions were
very close to those obtained by MPCD. The advantage of
the HNC solution for the correlation function is the absence
of statistical noise. Moreover, the hydrodynamic radius ahyd

and the structural radius aHS are two independent parameters
of the calculation, ahyd being related to D◦

s and aHS being a
parameter of the interaction potential. This will allow us to
use exactly the same parameters as those of the MPCD-CC
simulations to compute the electrical conductivity.

This theory has been challenged against experimental data
for a large variety of 1-1 electrolytes. The unique parameter
that can be adjusted is the radius of the ions, the infinite
dilution diffusion coefficient being directly extrapolated from
low concentration data. The calculated electrical conductivity
was found in excellent agreement with experimental data up
to high concentrations [1,37,48,49] for several electrolytes,
either using the crystallographic radius [1], or using a radius
deduced from other quantities, such as the osmotic coeffi-
cients [37]. Nevertheless, for asymmetric electrolytes, e.g.,
2-1 or 2-2 electrolytes, the theory accounts for experiments
only if the radius of the divalent ion is artificially small [1],
or with an additional fitting parameter, such as an association
constant between ions [38].

III. EFFECTIVE HYDRODYNAMIC RADIUS OF A SOLUTE
IN THE MPCD-CC SCHEME

The effective hydrodynamic radius of a solute can be
deduced from its self-diffusion coefficient at infinite dilution
from the Stokes law. To compute the diffusion coefficient of
a solute in collisional coupling with the MPCD solvent at
infinite dilution, we performed simulations at low density of
solutes (Ned/L

3
box between 0.0008 for the largest simulation

box, and 0.01 for the smallest one, with Ned the number
of solutes), without any direct interactions between solutes
(the solute-solute correlations are those of a perfect gas).
Such simulations require very long trajectories to get enough
statistics. The simulations were run for embedded particles of
mass M = 10mf , for several box lengths between 10 a0 and
50 a0. Seven independent trajectories of 2.5 × 107 steps each,
with δtMD = 0.01 t0 were run. The results are shown in Fig. 1.

We observe in Fig. 1 that the self-diffusion coefficient
is a linear function of the inverse of the box length due to
finite-size effects [50,51]. This scaling was first predicted by
Hasimoto [50] who studied the velocity flow of a fluid across
a periodic cubic array of spheres with Lbox being the distance
between two spheres. For a fluid of viscosity η we expect

Ds (Lbox) = Ds (∞) − 2.837
kBT

6πηLbox
(14)

= Ds (∞) − 0.0372

Lbox
, (15)

with η = 4.045 mf a−1
0 t−1

0 and kBT = 1. This prediction is
in excellent agreement with the fit of our data. It shows that
our simulations do correspond to infinite dilution conditions,
with a very weak effect of solute-fluid interactions on the fluid
viscosity, and hence no visible hydrodynamic interactions
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FIG. 1. Self-diffusion coefficient of MPCD-CC solutes at infinite
dilution as a function of the inverse box length. There are no direct
interactions between solutes. The linear fit of the data writes Ds =
0.0422 − 0.0382 1

Lbox
.

between solutes inside the simulation box. This also enables
us to extrapolate our results to infinite box size so that we ob-
tain Ds (∞) = D◦

s = 0.0422 a2
0 t

−1
0 , and the corresponding hy-

drodynamic radius of the solute from the Stokes law [Eq. (9)]:
ahyd = 0.31 a0. This value is very close to the radius obtained
by other authors in a MPCD solvent with the parameters {α =
130◦, γ = 10, δtc = 0.1t0} for a solute of mass M = 10mf .
They found D◦

s = 0.02 a2
0 t

−1
0 so that ahyd = 0.3 a0 [32,52].

From our value of the hydrodynamic radius, we can compute
an effective packing fraction for the systems investigated
here. It is always lower than 4.10−4, which confirms that
we are in the high dilution regime for indirect hydrodynamic
interactions between solutes in the simulation box.

The hydrodynamic radius of a solute in collisional cou-
pling deduced from the diffusion coefficient at infinite dilution
is thus found smaller than half the size of the collision cell.
One may wonder if we could vary the effective hydrodynamic
radius by changing the mass of the solute, which would mod-
ify the momentum exchange with the solvent particles during
the collision step. We show in Fig. 2 (left) the self-diffusion
coefficient at infinite dilution as a function of the mass M of
the solute. Note that the results have been extrapolated to a
simulation box of infinite size using Eq. (15). We observe that
the diffusion coefficient is an increasing function of the mass
of the solute and reaches a plateau for large values of M/mf ,
more precisely for M larger than ≈2γ . This behavior was
already observed by Ripoll et al. [43]. Indeed, the heavier a
solute is, the more it slows down solvent particles that partic-
ipate in the collision step in the same cell. From these results,
we extract the effective hydrodynamic radius from Stokes law
[see Fig. 2 (right)]. It appears then that the hydrodynamic
radius can not exceed 0.35a0. We have also computed the self-
diffusion at infinite dilution for a solute of mass M = 5mf in
a MPCD solvent with γ = 10, keeping the same values of α

and of δtc. We have obtained D◦
s = 0.02595 a2

0 t
−1
0 . For these

parameters, the viscosity of the solvent is η = 8.7 mf a−1
0 t−1

0 ,
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FIG. 2. Left: Self-diffusion coefficient at infinite dilution of
MPCD-CC solutes as functions of the mass of solutes, for a dilute
system with no direct interactions (Ned/L

3
box = 0.0013). Right: hy-

drodynamic radius ahyd deduced from Ds using the Stokes relation
[Eq. (9)].

so that the effective hydrodynamic radius in this case is
ahyd = 0.23 a0. If we assume that the influence of the solute
mass on the hydrodynamic radius is almost the same as the
one described in Fig. 2, the case M = 5 mf , γ = 10 should
be close to the case M = 3 mf , γ = 5. Indeed, we obtained
ahyd ≈ 0.25 a0 for M = 3 mf , γ = 5. Therefore, increasing
the density of the MPCD fluid should not allow us to increase
the hydrodynamic radius significantly.

Another route to determine the hydrodynamic radius of
a solute is to induce a solvent flow around the solute from
nonequilibrium simulations, and to compare the simulated
flow to the analytical result, as described in Sec. II B. We
have checked that the results were independent from the value
of the solvent velocity in the small velocity regime. We have
again studied the influence of the solute mass on its hydrody-
namic radius. The mass of the particles varied from M = mf

to M = 1000 mf . The Stokes flow field around a sphere
with stick boundary conditions was well reproduced. The
values of the hydrodynamic radius were fitted to minimize the
difference between the computed and analytical velocity flow.
We give in Fig. 3 the obtained hydrodynamics radii. In every
case the root mean squared errors between computed and
analytical velocities were between 1% and 2.5%. The results
again show that the hydrodynamic radius is an increasing
function of the mass, which can be fitted by an exponential
function, ahyd(M ) = 0.295 ∗ [1 − exp(−M/3.3)]. When the
solute fixed at the center of the simulation box is heavy
enough, the solvent particles in its cell are basically stopped
because of the collision step, so that the hydrodynamic radius
becomes independent from the solute mass at large mass. We
also represent in Fig. 3 with a dashed line the exponential
fit of the data obtained from equilibrium simulations [data of
Fig. 2 (right)]. Both methods, equilibrium and nonequilibrium
simulations yield the same limiting value of the hydrodynamic
radius at large solute mass within the statistical uncertainty:
ahyd ≈ 0.3 a0.

The fact that the hydrodynamic radius of solutes in MPCD-
CC is in any case of the order of 0.3 a0 is clearly a limitation
of the method. For a given structural model of the solute (for
instance the radius for a hard sphere model of solutes), the
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FIG. 3. Hydrodynamic radius ahyd of a solute in collisional
coupling with a MPCD solvent determined from nonequilibrium
simulations as a function of the solute mass M/mf . The solid line
is an exponential fit of the data. The dashed line corresponds to an
exponential fit of the data given in Fig. 2 (right).

resolution of the MPCD grid relative to the size of the particles
is imposed if one aims at keeping the structural radius close
to the hydrodynamic one. Moreover, if the resolution of the
grid is not thin enough, two or more solute particles can be
located in the same MPCD collision cell at the same time.
This raises the question of the validity of the method in such
cases: What is the impact of the pathological description of
short ranged hydrodynamic interactions when they emerge
from momentum exchange including several solutes particles?
In the literature, the resolution of the grid is chosen so that the
size of the collision cells roughly equals the diameter of the
solute particles. This minimizes the probability that several
solute particles participate in the collision step in the same
cell. However, such choice leads to another kind of issue: The
hydrodynamic radius is then different from the structural one.
For a solute hard sphere diameter equal to 1.2 a0, the struc-
tural radius is indeed twice larger than the hydrodynamic one.
This may lead to a decrease of hydrodynamic interactions, as
we proceed to show.

IV. INFLUENCE OF THE SIZE OF THE COLLISION CELL
ON THE DIFFUSION COEFFICIENT

We study in this part the influence of the resolution of the
collision grid on the diffusion coefficient of solutes in colli-
sional coupling with the solvent. We expect spurious effects
on the dynamics of solutes when several solutes participate
to the collision step in the same cell. These effects should
be larger when the size of the cell increases and exceeds the
minimal distance of approach between solutes, and/or when
the concentration of solutes increases, and/or when attractions
between solutes exist.
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FIG. 4. Diffusion coefficient of neutral hard spheres as function
of their packing fraction φHS, using MPCD-CC simulations. The size
of the collision cells is either a0 = 0.4 aHS or a0 = 3.0 aHS.

A. Solutes modeled as hard spheres

We have used the hard-sphere molecular dynamics al-
gorithm [53] to compute the trajectories of solute particles
between two collision steps in MPCD-CC. First, the influence
of the volume fraction on the self-diffusion coefficient was
studied for two different values of a0: a0 = 0.4 aHS and a0 =
3.0 aHS with aHS the hard sphere radius of the solute. For
a0 = 0.4 aHS, the structural size is thus very close to the
hydrodynamic one. The mass of the solute is M = 10 mf in
every case. We present in Fig. 4 the computed self-diffusion
coefficients divided by the value at infinite dilution (D◦

s =
4.22 10−2 a2

0 t
−1
0 ) as functions of the volume fraction �HS =

(4/3πNed)(aHS/Lbox)3. We have checked that the results ob-
tained using a short-ranged Week-Chandler-Anderson inter-
action potential and a standard molecular dynamics algorithm
instead of the hard-sphere algorithm coincide exactly.

As expected, the diffusion coefficient is in every case a
decreasing function of the solute density (see Fig. 4). How-
ever, the influence of the size of the collision cell relative to
that of the solute particles is striking. First, in the case a0 =
3.0 aHS, the diffusion coefficients are considerably smaller
than with a0 = 0.4 aHS. Second, the decrease of the diffusion
coefficient with the volume fraction is much more pronounced
with a0 = 3.0 aHS. This choice of the resolution of the grid is
clearly not correct. We have thus more precisely investigated
the influence of the size of the collision cell on the diffusion
coefficient.

We give in Fig. 5 the diffusion coefficients obtained at a
given volume fraction as functions of the ratio between the
size of the collision cell and the hard-sphere radius of solute
a0/aHS. We focus on two volume fractions, φHS = 0.05 and
φHS = 0.20. For small values of a0, i.e., for thin collision
grids, the diffusion coefficient is almost independent from the
value of a0 (see the circles and the triangles symbols in Fig. 5).
However, the diffusion coefficient of the solute starts to
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FIG. 5. Diffusion coefficient of neutral hard spheres as function
of the size of the collision cell a0 relative to the radius of the solute
particle aHS, using MPCD-CC simulations. Two packing fractions
are considered, φHS = 0.05 and a crowded case φHS = 0.20. The
reference dashed lines correspond to MPCD with central force cou-
pling, and the solid ones correspond to Brownian dynamics without
hydrodynamic interactions.

decrease dramatically for a0 larger than 1.5 aHS. At the high-
est volume fraction, the value of Ds/D

◦
s drops by 60% when

a0 increases from 1.4 aHS to 3.0 aHS. This behavior is less
pronounced in the dilute case, because the probability to have
several solutes in the same collision cell is smaller: D/D◦
drops by 22% when a0 increases from 1.4 aHS to 3.0 aHS.
This strong decrease of the diffusion coefficient comes from
the spurious coupling between solutes when they are in the
same collision cell. Indeed, the maximum distance between
two solutes in a collision cell is equal to

√
3a0 ≈ 1.73 a0,

so that we must have 2 aHS > 1.73 a0 or a0/aHS < 1.16 to
ensure that two hard-sphere solutes cannot be in the same
collision cell. When a0 is larger than this value, it may happen
that two solutes participate in the collision step in the same
cell. For a few values of a0/aHS in the dilute case, we have
changed the ratio between the solute mass and the average
density of the MPCD solvent in a cell (M = 5 mf with γ =
10). In this case, the infinite dilution diffusion coefficient is
D◦

s = 0.02595 a2
0 t

−1
0 . We expected the problem of momentum

exchange between solutes to be reduced in this case: If two
solutes are in the same collision cell, their total mass stays of
the order of that of the solvent also participating to the colli-
sion. Nevertheless, if the decrease of the diffusion coefficient
when a0/aHS increases is smaller in these conditions, it is still
clearly visible (square symbols in Fig. 5).

To get more insight into these results, we compared the
value of the diffusion coefficient with references obtained
in a previous study from our group [33]. In this previous
study, we compared the predictions of Brownian dynam-
ics (BD) simulations with hydrodynamic interactions at the
Rotne-Prager level, BD without hydrodynamic interactions,
and MPCD simulations with a central force coupling (CFC)

between solutes and a MPCD fluid. Self-diffusion coefficients
obtained from BD with hydrodynamics and from MPCD-CFC
were in excellent agreement for neutral solutes interacting
through a WCA potential. These results are independent from
the size of the collision cell, and are represented in Fig. 5 as
horizontal dashed lines for volume fractions equal to 0.05 and
0.20. We also report in the same figure the results obtained
without hydrodynamic interactions as horizontal solid lines.

For the less concentrated system, φHS = 0.05, the solid and
dashed lines are close to each other because hydrodynamic
interactions have a weak influence on the diffusion coefficient.
The MPCD-CC results stand between the reference results
with and without hydrodynamic interactions, which means
that this method is unable to capture such subtle effect.

In the more concentrated case, hydrodynamic interac-
tions have a nonnegligible effect on the diffusion coefficient:
Ds/D

◦
s is equal to 0.61 without HI and to 0.70 with HI.

In this case, we observe a rather good agreement between
the diffusion coefficient predicted by MPCD-CC and the
reference for small a0 values. Ds/D

◦
s computed by MPCD-CC

is actually found to weakly increase when a0 increases, at
small a0 values. This is due to the increase of hydrodynamic
interactions because of the increase of ahyd in this range.
Indeed, as shown in previous section, ahyd ≈ 0.3 a0. In the
limit of small a0, the hydrodynamic radius is thus negligible
compared to the structural radius aHS. At a0/aHS = 0.5 we
have ahyd ≈ 0.15 aHS and at a0/aHS = 1.3, we have ahyd ≈
0.39 aHS. This increase of ahyd leads to an increase of the
hydrodynamic interactions. Ds/D

◦
s reaches a maximum at

about a0/aHS = 1.3, but for larger a0 values several solutes
can interact via the collision step. It should be noted that
the maximum value of Ds/D

◦
s computed by MPCD-CC is in

excellent agreement with our reference. On the contrary, for
larger values of a0, the MPCD-CC results tend towards those
obtained without HI and becomes even smaller than them.

It is interesting to look at what happens for a0/aHS = 2,
which is the most common choice in the literature when
MPCD-CC is used [34–36]. For both volume fractions of 0.05
and 0.2, the value of the diffusion coefficient is below the
one that was computed without hydrodynamic interactions.
Does this mean that there are no hydrodynamic interactions?
No, since for this kind of parameters one can recover some
features of hydrodynamic interactions, such as the scaling of
polymer diffusion coefficients with polymer size. However,
one should be careful when interpreting the results because an
artificial coupling between solutes located in the same cell can
happen in this range.

B. Solutes with electrostatic interactions

One may wonder whether the attraction between oppo-
sitely charged particles can change the impact of the size
of the collision cell on the transport coefficients of so-
lutes. To answer this question, we have computed the self-
diffusion coefficients of a mixture of charged hard spheres
of opposite charges, for several volume fractions between
0.033 and 0.185. The system corresponds to a 1-1 electrolyte
solution described by the primitive model of electrolytes.
Ions are hard-spheres of charge equal to +1 and −1 in a
dielectric continuum of relative permittivity εr . Electrostatic
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FIG. 6. Self-diffusion coefficient of charged hard spheres (1-1
electrolyte) as function of their volume fraction φHS. The size of the
collision cell is either a0 = 0.4 aHS, or a0 = 1.3 aHS. The reference
dashed line corresponds to MPCD with central force coupling,
and the solid one to Brownian dynamics without hydrodynamic
interactions.

interactions between ions are computed thanks to an Ewald
summation [44] with a conductive boundary condition. The
characteristic electrostatic length scale, the Bjerrum length
lb = e2/(4πε0εrkBT ) with e the elementary charge, ε0 the
permittivity of vacuum and εr the relative permittivity of the
solvent, is equal to 0.71 nm, corresponding to water at room
temperature. The structural radius of ions is aHS = lb/3.57.
We have compared the results for two different values of the
cell size, a0/aHS = {0.4; 1.3}. For these grid resolutions, we
have shown in the previous section that no spurious effect on
the diffusion coefficient of neutral hard spheres was observed.
As previously, we compare the self-diffusion coefficients to
the reference values obtained in our previous paper (i) with
hydrodynamic interactions (MPCD with Central Force Cou-
pling), and (ii) without hydrodynamic interactions (Brownian
Dynamics without HI).

Results are shown in Fig. 6. They are close to those
obtained with neutral hard-spheres: Diffusion coefficients in-
crease slightly when the size of the collision cell increases,
because the hydrodynamic radius increases, and this effect
is more pronounced at large volume fractions. However, the
computed values are not closer to the reference with hydro-
dynamic interactions than to the reference without hydrody-
namic interactions. This contrasts with the case of neutral
hard-spheres for φ = 0.2 and a0/aHS = 1.3 for which the
computed diffusion coefficient was clearly closer to the refer-
ence with hydrodynamic interactions. The interplay between
electrostatic and hydrodynamic effects may explain this dis-
crepancy, since attractive coulombic interactions increase the
impact of short range hydrodynamic interactions.

In the following, our goal is to compare MPCD-CC sim-
ulations with another reference that is known to describe
accurately hydrodynamic interactions, with a ratio ahyd/aHS

that is exactly the same as with MPCD-CC. In what follows,
we have chosen to compute another transport coefficient of
electrolyte solutions using MPCD-CC, the electrical conduc-
tivity, because a reliable semi-analytical theory of this quan-
tity is available, which includes hydrodynamic interactions
quantitatively.

V. ELECTRICAL CONDUCTIVITY OF
AN IONIC SOLUTION

The measurement of the electrical conductivity is a widely
used technique to analyze an electrolyte solution or a charged
colloidal suspension known to be affected by hydrodynamic
interactions. As ions of opposite charge move and drag the
solvent in opposite directions under an electric field, hydro-
dynamic interactions between ions strongly reduce the con-
ductivity compared to the infinite dilution value. Within the
framework of the semianalytical theory described in Sec. II C,
the hydrodynamic radius and the structural radius of ions can
be treated as independent parameters. The structural radius
aHS is a parameter of the interaction potential within the
primitive model of electrolytes and is involved in the integral
equations solved with the HNC closure to compute the pair
distribution functions. Moreover, this radius is used as the
lower bound of the integral which allows us to compute
the electrostatic relaxation velocity correction δvelec

i . The ef-
fective hydrodynamic radius of the charged solute which is
related to the infinite dilution diffusion coefficient D◦

s through
the Stokes law influences (i) the electrical conductivity at
infinite dilution, also called the ideal conductivity, (ii) the
electrostatic relaxation velocity correction δvelec

i . When this
theoretical framework is used to predict the electrical conduc-
tivity of real systems, aHS is usually obtained by mapping the
equilibrium properties of the system to that of the primitive
model of electrolytes, for example by fitting the osmotic
coefficients [37,54]. The hydrodynamic size ahyd is usually
deduced from the experimental asymptotic self-diffusion co-
efficient at infinite dilution [55]. For most 1-1 electrolytes, aHS

and ahyd are close to each other [37,54].
In our case, the comparison between MPCD-CC simula-

tions and the theory will enable us to check whether both
methods predict the same influence of hydrodynamic and
electrostatic interactions on the electrical conductivity, for a
given value of the hydrodynamic radius constrained by the
MPCD-CC technique. In what follows, we first study the same
model of 1-1 electrolyte solution as in the previous section,
with the size of the collision cell a0/aHS = 1.3. We stick
to this value as it maximises the intensity of hydrodynamic
interactions, as shown previously, without leading to spurious
effects as two solutes cannot be in the same collision cell.
Then, we investigate the case of electrolytes with divalent
ions, namely 2-1 and 2-2 electrolytes. Both ions of the 2-2
electrolytes have the same radius, again with a0/aHS = 1.3.
For the 2-1 electrolyte, we study two different models: in
the first one, named model A, the divalent cation and the
monovalent anion have the same radius (a0/aHS = 1.3). In
the second model, named model B, the cation is larger than
the anion: a0/acation = 0.93 and a0/aanion = 1.3. Model B is
more realistic than model A, as simple cations like the calcium
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ion are usually larger than simple monovalent anions like the
chloride ion (we are considering here hydrated ions).

MPCD-CC simulations were run for 2 × 105 t0. If the value
of t0 in real units is obtained by mapping the viscosity of wa-
ter, it corresponds to a physical time of 23 ns. The electrolyte
concentration was varied in MPCD-CC by changing the num-
ber of ions in the simulation box, keeping in every case the
same box size. We have checked in every case that the radial
distribution functions between ions obtained from MPCD-CC
simulations were very close to those obtained within the HNC
closure for every distance within the simulation box. The
interest to use HNC total pair distribution functions in the
theory instead of those computed from simulations is that
they are obtained for larger distances and do converge to zero
without statistical noise. For systems where there is a small
discrepancy between pair distribution functions obtained by
HNC and by MPCD-CC, we have checked that the electrical
conductivity computed from the semi-analytical theory was
the same in both cases. In what follows, we give the electrical
conductivity σ divided by its value at infinite dilution σ ◦,
which reads for solutions of charged solutes

σ ◦ = e2E(z2
+N+ + z2

−N−)D◦
s

kBT L3
box

, (16)

with e the elementary charge, E is the value of the electric
field, N+ (respectively, N−) the number of positive (respec-
tively, negative) ions in the simulation box, and z+ (respec-
tively, z−) is the valency of the positive (respectively, nega-
tive) ions.

A. MPCD-CC is able to predict the electrical conductivity of
1-1 electrolytes

We give in Fig. 7 the electrical conductivity as a func-
tion of the molar concentration of the 1-1 electrolyte c =
N+NA/(L3

box) with NA the Avogadro number. Error bars of
the MPCD-CC results (open squares) are derived from the
comparison of 10 independent simulations for each concentra-
tion. Results are compared to those obtained with the transport
theory (filled circles).

The agreement between MPCD-CC and the theoretical pre-
dictions is excellent. For all systems but the more concentrated
one, the values derived from the theory largely fall within the
error bars of MPCD-CC results. For the system at 6.3 molL−1,
it is impossible to say whether the disagreement comes from
a limitation of the theory or from the simulations. We also
plot in Fig. 7 the results obtained with the theory without
hydrodynamic interactions (filled squares and dashed lines):
Only the correction to the velocity due to the electrostatic
couplings, δvelec

i , was taken into account in the theory. It is
equivalent to suppress hydrodynamic interactions from the
transport theory. We see in Fig. 7 that the values of the elec-
trical conductivity are much higher in this case, and closer to
the ideal conductivity (σ/σ ◦ is close to 1). Moreover, we plot
the theoretical results obtained by using ahyd = aHS instead
of ahyd = 0.4 aHS (see the triangles in Fig. 7), i.e., in a case
where hydrodynamic couplings are expected to be increased.
The electrical conductivity is found to be strongly decreased
compared to the case where ahyd = 0.4 aHS. This illustrates
the fact that MPCD-CC simulations describe hydrodynamic

interactions that are significantly weaker than those of real
systems, for which the hydrodynamic radius is very close to
the structural one. This is a limitation to have in mind when
comparing MPCD-CC results to experimental data. In conclu-
sion, these results show that: (i) MPCD-CC is able to capture
hydrodynamic couplings corresponding to an hydrodynamic
radius ahyd = 0.4 aHS, and (ii) the agreement between the the-
ory with hydrodynamic couplings and the MPCD-CC requires
that both treatments include hydrodynamic couplings with a
quantitatively similar intensity.

B. MPCD-CC reveals the limitations of the semianalytical
transport theory for 2-1 and 2-2 electrolytes

We give in Fig. 8 the electrical conductivity of 2-1 and 2-2
electrolytes as a function of the molar concentration of the
electrolyte c = N+NA/(L3

box) with NA the Avogadro number.
The electrical conductivity of the 1-1 electrolyte is also shown
in this figure. For the 2-1 electrolytes, we observe on Fig. 8
that the electrical conductivity of model B is larger than that of
model A for all concentrations, both in simulation and theory.
The only difference between these two models is the size
of the cation, which is larger in model B than in model A.
Actually, increasing the structural radius leads to a decrease
of electrostatic and hydrodynamic couplings between ions,
resulting in a lower conductivity.

We observe for the 2-1 and 2-2 electrolytes a large dis-
crepancy between MPCD-CC results and the prediction of the
transport theory, except for the most dilute cases. Semianalyt-
ical calculations overestimate the conductivity of the solution.
This result gives an explanation to the use of unrealistically
small radii as input parameters of the theory in previous
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FIG. 7. Electrical conductivity σ divided by the value at in-
finite dilution σ ◦, as a function of the electrolyte concentration.
Open squares: MPCD-CC simulations with a0/aHS = 1.3; Filled
circles: HNC-transport theory with the same parameters as MPCD-
CC (D◦

s = 4.22 10−2 a2
0 t

−1
0 , aHS = a0/1.3); Filled squares: HNC-

transport theory without hydrodynamic interactions; Filled triangles:
HNC-transport theory with ahyd = aHS.
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FIG. 8. Electrical conductivity σ divided by the value at infinite
dilution σ ◦, as a function of the electrolyte concentration for different
electrolytes. Open symbols: MPCD-CC simulations; filled sym-
bols and lines: HNC-transport theory with the same parameters as
MPCD-CC.

studies of 2-1 and 2-2 electrolytes. For instance, in Ref. [1],
the structural radius of the magnesium cation is taken equal
to 1.3 Å, which is very small for an hydrated divalent ion.
More generally, the overestimation of the conductivity by the
theoretical calculation when multivalent ions are present is
often attributed to defaults in the description of the equilib-
rium pair distribution functions of ions, and not to dynamical
ingredients of the theory. These equilibrium defaults either
come from a default of the model (the primitive model does
not explicitly account for ion polarizability for instance), or
from the approximations within the integral equation theory,
which implies that the correct structure of the primitive model
is not obtained by solving Ornstein-Zernike equation with a
given closure equation. In both cases, the long range ion-ion
correlation are usually correctly described, but short-range
interactions need to be added. The simplest way to add these
contact effects is to define an effective equilibrium constant
between ions [38]. The primitive model is still used but with
the presence of new species, the ion pairs.

One of the major interests of simulations is to separate
the effects of the model per se from the influence of the
approximations of the theory. Here, we use the primitive
model in both MPCD simulations and HNC theory. Therefore,
pair formation due to subtile hydration effects or dispersion
interactions are not described in any cases. The combined use
of simulations and theory allows us to show that the difference
between MPCD results and predictions from the electrolyte
transport theory has nothing to do with the equilibrium
ingredients within the theory. The ion-ion pair distribution
functions from HNC and those from the simulations are very
close to each other. If we take the pair distribution functions
from the MPCD simulations as input of the transport theory,
we find very small differences (less than 1%) compared to the

transport theory fed with HNC equilibrium pair distributions.
An important dynamical effect seems to be missing in the
semianalytical electrolyte transport theory. Some additional
work is needed to characterize in more details the nature of
the differences in the dynamical treatment.

VI. CONCLUSION

The use of mesoscopic simulation techniques to interpret
dynamical properties of solutions usually requires special
care, in particular, when one is interested in a quantitative
mapping between a real system and the simulated model.
Traditional techniques, such as Brownian dynamics, bene-
fit from the fact that they are tightly related to the usual
theories, and that the input parameters such as the infi-
nite dilution diffusion coefficient or the hydrodynamic ra-
dius are widely used. Experimental studies have been im-
proved to determine this class of parameters. More recent
mesoscopic techniques, such as MPCD, rely on input pa-
rameters that are totally specific to the technique, and can
be related to the properties of the fluid within a partic-
ular set of approximations. To understand the limitations
of such methodologies, it can be useful to quantify com-
monly used dynamical quantities such as the hydrodynamic
radius.

In this study, we find that the effective radius of a solute in
collisional coupling with a MPCD solvent is about one third
the size of the collision cell. To ensure that two hard-sphere
solutes cannot be in the same collision cell, we should have
in principle a0/aHS < 1.16 with aHS the hard-sphere radius
of the solute. Moreover, we have shown that for neutral
hard-spheres, hydrodynamic interactions between solutes are
maximum at about a0/aHS = 1.3. In addition to these results,
it should be noted that since the mean free path λ needs
to stay close to 0.1 to keep the Schmidt number low [43],
the value of the kinematic viscosity ν is also constrained.
Such constraints on the choice of MPCD parameters can
be rephrased in term of timescales. When the solution is
infinitely diluted, there are no hydrodynamic interactions.
The only timescale of importance for transport is given by
the infinite dilution diffusion coefficient or by the product
ηahyd. The MPCD dynamics can be mapped onto a real time
dynamics by mapping the MPCD diffusion coefficient to the
value of the real diffusion coefficient of the solute. When
solute concentration increases, a second important timescale
emerges, the timescale at which hydrodynamic interactions
are propagated, through the diffusion of momentum in the
solution. This timescale is related to the kinematic viscosity
ν. These two timescales are intimately related, as the diffusion
coefficient depends on viscosity: At infinite dilution, we have
D◦

s = kBT /(6πηahyd). The constraint on the hydrodynamic
radius ahyd which depends on the size of the collision cell
makes it impossible to have both D and ν match the values
of a real system. For instance, let us consider a typical ion in
water at ambient temperature, like a chloride or a sodium ion.
Its diffusion coefficient is of the order of 10−9 m2s−1, and the
dynamic viscosity of water is close to 10−3 kg m−1s−1. The
structural radius of an ion is about 0.15 nm. In our MPCD
simulation, for typical values of the parameters (M = 10 mf ,
γ = 5, α = 130, λ = 0.1), the diffusion coefficient is equal
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to 4.22 10−2 a2
0 t

−1
0 , and the kinematic viscosity is equal

to 0.809 a2
0 t

−1
0 . The value of the MPCD time unit t0 can

be mapped into a real unit by choosing either the diffusion
coefficient D, setting DMPCD = Dreal or η, setting νMPCD =
νreal. The two values of t0 obtained by these mappings differ
by one order of magnitude.

In the case of a polymer made of N monomers of infinite
dilution diffusion coefficient D◦

s , within the Zimm theory,
one can express the diffusion coefficient as a sum of a term
depending on the diffusion coefficient, and a term depending
directly on the viscosity and on an equilibrium property (the
average inverse distance between monomers):

D = D◦
s

N
+ kBT

6πη

〈
1

rij

〉
. (17)

The typical scaling appears when the first term becomes
negligible, i.e., when the infinite dilution diffusion timescale is
no longer relevant, and only hydrodynamic interactions affect
transport. In such case, the main dynamic properties of the
system should be qualitatively reproduced, and the MPCD
timescale can be mapped onto the dynamics of the real system
by setting νMPCD = νreal. This is in agreement with the results
obtained with polymers using the same simulation method-
ology. Although the hydrodynamic friction per monomer is
very small, the correct scaling of diffusion properties on the
number of monomers per polymer chain recovers the Zimm
prediction, with 〈 1

rij
〉 computed using the adequate theory of

polymer equilibrium properties.
However, things might become more complicated when the

scaling regime is not reached, for instance, when finite-size
effects are important, typically for small values of N in the
case of polymers. In the case of electrolytes, for most systems
there is no regime in which hydrodynamic interactions totally
dominate. In such case, although it is not possible to quantita-
tively map the dynamics of MPCD to that of a real system, the

mesoscopic simulation can be used to assess the validity of a
theory for which the parameters have been artificially chosen
to be equal to those in MPCD. Such strategy is indeed the only
possible way to explore the range of validity of theories for
systems such as suspensions of nanoparticles or nanoporous
media. Indeed, for such systems the interpretation of exper-
iments often relies on concepts and parameters, such as the
ζ potential, whose relationship with the underlying molecular
system can be questionable [56,57]. We made in the present
article an attempt to quantify the limitations of a common
transport theory of electrolytes. This theory belongs to the
family of treatments of hydrodynamic and electrostatic inter-
actions presented in the seminal work of Fuoss and Onsager.
These theories have mainly been extended to account for
more sophisticated treatments of the equilibrium correlation
between the electrolyte species, but the original dynamical
treatment has not evolved much (see, e.g., Ref. [58]). We
found that there are strong differences between the theory and
the simulations for 2-1 and 2-2 electrolytes that are not due to
the description of the equilibrium properties of the system.
An important dynamical effect seems to be missing in the
semianalytical electrolyte transport theory. Some additional
work is needed to characterize in more details the nature of
the differences in the dynamical treatment. In a future article,
we will extend this study to suspensions of small charged
nanoparticles, and use MPCD simulation as a tool to test
the approximations of the transport theories used in these
systems.
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