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Entropy of plasmas described with regularized κ distributions
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In classical thermodynamics the entropy is an extensive quantity, i.e., the sum of the entropies of two
subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two
subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for
the so-called κ distributions, which describe plasma constituents with power-law velocity distributions. We
demonstrate here, by employing the recently introduced regularized κ distributions, that entropy can be defined
as an extensive quantity even for such power-law-like distributions that truncate exponentially.
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I. INTRODUCTION AND MOTIVATION

The so-called κ distributions have become popular [e.g., 1]
to quantitatively describe the power-law behavior of veloc-
ity, momentum, or energy distributions of various energetic
particle populations, reaching from flare-accelerated electrons
[e.g., 2–4] via suprathermal electrons and ions in the inter-
planetary medium [e.g., 5–8] as well as in the outer helio-
sphere [9,10] even to laboratory laser physics [e.g., 11,12].
These distributions have been employed in most cases as
useful tools, i.e., in the pragmatic spirit with which they were
introduced in the 1960s in the context of magnetospheric
physics [13,14].

Attempts to physically justify these special power laws can
be divided into two groups. On the one hand, it is possible to
rigorously derive κ distributions for specific systems where
particles interact with external radiation [15], with plasma
fluctuations [e.g., 4,16–18], or with a constant temperature
heat bath [19]. On the other hand, κ distributions should be
motivated on the basis of more fundamental considerations
related to generalizations of the concept of entropy [20] or
Gibbsian theory [21]. Both approaches face limitations: While
the former appears to be valid for systems with special con-
straints resulting in a special class of κ distributions (termed
“Kappa A,” see below) and only allows specific κ values
as discussed in Ref. [22], the latter requires a generalized,
nonextensive entropy, apparently implying internal inconsis-
tencies [23] that have as yet not been resolved [24,25].

It has been pointed out recently by Scherer et al. [26]
that, even if these difficulties could eventually be overcome,
the resulting κ distributions would still be hampered by an
only finite number of nondiverging velocity moments, i.e., the
condition that κ > (l + 1)/2 for the velocity moment of order
l to exist. This implies, in particular, that the definition of the κ

distribution itself, requiring the existence of the second-order

moment, i.e., kinetic temperature, is valid only for κ > 3/2.
Moreover, the heat flux is given by the third-order moment
and requires even larger values κ > 5/2 [see, e.g., 27,28],
while the convergence of higher-order moments should en-
sure closure schemes for a macroscopic description. These
motivated Scherer et al. [26] to introduce the regularized κ

distribution (RKD). The suggested regularization removes all
divergences, allows us to analytically calculate all (isotropic)
velocity moments for all positive κ values, and may adjust
to power-law distributions observed in the solar wind with
clear evidences of exponential cutoffs. As we demonstrate
in the present paper, these improvements are not the only
advantages: The RKD also possesses an additive entropy,
which is, thus, an extensive quantity.

The paper is organized as follows. In Secs. II and III we
define the different forms of the κ distributions discussed
in the literature, consider the (Boltzmann-)Gibbs entropy,
and calculate the entropy of a spatially homogeneous RKD
plasma. In Sec. IV we demonstrate explicitly, with an applica-
tion to isolated plasmas, the additivity, i.e., extensitivity of the
RKD’s entropy. Finally, in Sec. V, we consider an inhomoge-
neous system that is better described with the entropy density
rather than the entropy itself. All results are summarized and
discussed in a concluding Sec. VI.

II. κ DISTRIBUTIONS: DEFINITIONS

Most of the applications and fundamental approaches con-
sidering (isotropic) κ distributions employ the following form,
originally introduced in Refs. [13,14],

fκ (v) = n

π3/2�3

�[κ + 1]

κ3/2�[κ − 1/2]

(
1 + v2

κ�2

)−κ−1

, (1)
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FIG. 1. The Kappa-A and Kappa-B distributions discussed in
Sec. II in comparison to the Maxwellian obtained in the limit κ →
∞. Adapted from Ref. [30].

where n denotes the number density of the considered particle
species, �[x] the gamma function, v the particle speed, and
κ > 3/2. The reference speed �, introduced as the most
probable speed [14], is related to a kinetic temperature T via
the second-order moment

T = m

nkB

∫
v2fκ (v)d3v = κ

κ − 3/2

m

2kB

�2. (2)

Here m is the particle mass and kB the Boltzmann constant.
For a generalization to bi-κ distributions, see, e.g., Refs. [29]
and [30].

One distinguishes two choices. The first is to consider
the temperature in Eq. (2) to be always equal to that of the
associated Maxwellian [e.g., 18,31–33],

fM (v) = n

(
√

πvth )3
exp

(
− v2

v2
th

)
, (3)

which enables to extend the concept of temperature of a κ

distribution in the strict sense of thermodynamics. This choice
naturally implies a distribution that is not only above the
associated Maxwellian at high but also at low speeds, see
“Kappa A” in Fig. 1. The alternative is obtained in the limit
κ → ∞, when the speed � is independent of κ (and equals
the thermal speed vth of Maxwellian limit) allowing for the
modeling of suprathermal wings of a distribution, denoted
“Kappa B” in Fig. 1, on the expense of its core population
[e.g., 13,22,34,35], i.e., without any enhancement at low
speeds relative to the associated Maxwellian. While systems
properly described with Kappa A are usually specifically
set up and consistent with special (isolated) κ values, and
exhibit κ-dependent speeds � = �κ , those obeying Kappa B
have fewer constraints [36] and describe total populations
with temperatures increasing for decreasing κ value. For the
ongoing debate about which choice is correct or, at least,
represents an appropriate description of a given system, see
Refs. [22] and [33].

It must be noted that both choices exhibit unphysical
features. First, in the usual classical (as opposed to a relativis-
tic) treatment the power law (1) extends to infinite speeds,
implying an infinite number of diverging velocity moments.
While this feature has been tried to be explained some while
ago in the context of a finite sample size effect and the
concept of self-organized criticality [e.g., 37], regarding the

κ distributions there is a second unphysical feature, namely
that even formally existing moments are diverging for values
κ � 3/2, see, for example, Eq. (2). In order to remove these
unphysical features Scherer et al. [26] defined the RKD,

fRKD(v) = nA

(
1 + v2

κ�2

)−κ−1

exp

(
−α2 v2

�2

)

≡ n gRKD(v), (4)

by introducing a physically motivated exponential cut-off
controlled via the parameter α. For sufficient low values of
the latter both the low-order velocity moments and the kinetic
properties are virtually the same as for the corresponding
standard κ distributions. While, again in view of a finite
sample size effect, it might be difficult to determine the
value of this cut-off parameter in all cases, examples for such
determination can be found in Ref. [26]. Most importantly, the
RKD allows an analytical calculation of all velocity moments
for all positive κ values. A = A(κ, α,�) is the required
normalization constant.

III. GIBBS ENTROPY

A general definition of entropy S that is valid both for
equilibrium and nonequilibrium systems was given originally
by Boltzmann [38] and Gibbs [39] and specifically for a
plasma constituent more recently, e.g., by Balescu [40,41],
and Cercignani [42]:

S = −kB

∫∫
f [ln(f ) − 1] d3rd3v − kBN ln

(
h3

m3

)
, (5)

where f = f (�r, �v, t ) is the phase-space distribution function
of N particles of the considered species and h is the Planck
constant. This definition of the Gibbs entropy (sometimes
called Boltzmann-Gibbs entropy) not only takes into account
the quantum mechanical lower limit of the phase-space vol-
ume occupied by a single particle but also contains the Gibbs
factor in order to avoid the Gibbs paradoxon [39] that is
related to the indistinguishability of states after interchang-
ing identical particles, it is also valid for nonequilibrium
systems [41,42]. While this definition is useful for the case
of homogeneous plasmas, it is more appropriate to define
an entropy density for spatially inhomogeneous systems, an
example of which we discuss in Sec. V.

In the following, we first briefly review the calculation of
the entropy for a Maxwellian plasma constituent and then
apply the above definition for a plasma constituent obeying
an RKD [26]. For both cases we assume stationary, isolated
plasmas with vanishing spatial gradients, i.e., we assume
spatial homogeneity.

A. Maxwellian plasma

The (nondrifting) Maxwellian distribution is given by
Eq. (3). With the above assumptions neither n nor T are a
function of the location �r . Using this distribution in Eq. (5)
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leads to

SM = −kB

∫∫
fM [ln(fM ) − 1] d3rd3v − kBN ln

(
h3

m3

)

= −kB ln

[
n

(
√

πvth )3

] ∫∫
fM d3rd3v

+ kB

v2
th

∫∫
fMv2 d3rd3v

+ kB

∫∫
fM d3rd3v − kBN ln

(
h3

m3

)
. (6)

With the usual definition of the zeroth- and second-order
moments,

N =
∫

n d3r =
∫∫

fM d3vd3r, (7)

T = m

3kBn

∫
fMv2d3v, (8)

the Maxwellian entropy can be written as

SM = −kBN ln

[
nh3

(2πmkBT )3/2

]
+ 5

2
kBN, (9)

which, on introducing the so-called thermal de Broglie wave-
length λ = h/

√
2πmkBT [e.g., 43], reads

SM = kBN

[
ln

(
1

nλ3

)
+ 5

2

]
. (10)

As long as the above assumption of constant number density
n holds, SM is proportional to the total number of particles N

and, thus, it is an extensive quantity.

B. RKD plasma

The (nondrifting) RKD [26] is given in Eq. (4). As before,
all quantities are assumed to be independent of location. Note
that the phase-space distribution fRKD is normalized to n

while the velocity distribution gRKD is normalized to unity.
Using the RKD in Eq. (5) leads to

SRKD = −kB

∫∫
fRKD [ln(fRKD) − 1]

× d3rd3v − kBN ln

(
h3

m3

)

= −kB ln(nA)
∫∫

fRKD d3rd3v

− kB

∫∫
fRKD ln

(
1 + v2

κ�2

)−κ−1

d3rd3v

+ kB

α2

�2

∫∫
fRKDv2 d3rd3v

+ kB

∫∫
fRKD d3rd3v − kBN ln

(
h3

m3

)
. (11)

The normalization constant A is chosen such that

N =
∫

n d3r =
∫∫

fRKD d3vd3r (12)

still holds, so that

SRKD = −kBN ln

(
nAh3

m3

)

− kBN

∫
gRKD ln

(
1 + v2

κ�2

)−κ−1

d3v

+ kBN
α2

�2

∫
gRKDv2 d3v + kBN. (13)

The two remaning integrals are (i) independent of location,
(ii) finite functions of the parameters α and κ > 0, and (iii)
independent of particle number N . This allows to express the
entropy for the RKD as:

SRKD = kBN

[
ln

(
1

nλ3
RKD

)
+ I1(κ, α,�) + 1

+ I2(κ, α,�)

]
, (14)

where we have defined a generalized thermal de Broglie
wavelength λRKD = h/(mA1/3) and the two functions

I1(κ, α,�) = (κ + 1)
∫

gRKD ln

(
1 + v2

κ�2

)
d3v, (15)

I2(κ, α,�) = α2

�2

∫
gRKDv2 d3v. (16)

This is the main result: Since all quantities in the square
bracket in Eq. (14) are independent of particle number N

the entropy SRKD is proportional to N and, thus, an extensive
quantity.

Obviously, the Maxwellian case is obtained in the limit
κ → ∞ with α = 0. Then one has

λRKD → λ, (17)

I1(κ → ∞, 0,�) → 3/2, (18)

I2(κ → ∞, 0,�) = 0, (19)

so that SRKD correcty reduces to SM .
Note that, interestingly, this finding may not apply to the

standard κ distribution, which is obtained from Eq. (4) with
α = 0 for κ > 3/2. This is because in the case α = 0 the num-
ber of nondiverging velocity moments is finite and, thus, the
entropy definition (5) may not apply [41]. Consequently, this
“incompleteness” maybe the reason for the nonextensitivity of
entropy for the standard κ distribution.

IV. ISOLATED, HOMOGENEOUS PLASMAS

To further elucidate the entropy formula for the RKD let
us consider the case of two plasma volumes V1 and V2 filled
with N1 and N2 particles of the same species, see the left
box in Fig. 2. The two plasmas are in equilibrium with each
other, i.e., have the same temperature and pressure, and, thus,
also the same number density n = N1/V1 = N2/V2. These
plasmas are then mixing and, eventually, fill the total volume
V = V1 + V2 with N = N1 + N2 particles, see the right box
in Fig. 2. As before, we first briefly recapitulate the case of
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FIG. 2. Two at first separated plasmas (left box) are eventually occupying the same total volume (right box). Adapted from Ref. [43].

two Maxwellian plasmas and, afterwards, that of two RKD
plasmas. In both cases we consider thermal equilibrium, i.e.,
plasmas of the same temperature.

A. Two Maxwellian plasmas

For the entropies of the individual plasmas, it is in shown
in standard textbooks, e.g., [43] that one has with formula (7)
and n = N/V the relation

SM,1 + SM,2 = SM,1+2

= kB (N1 + N2)

{
ln

[
V1 + V2

(N1 + N2)λ3

]
+ 5

2

}
.

(20)

This is valid, because with the given constraints, one also has

N2

V2
= N1

V1
= (N1/V1)(V1 + V2)

V1 + V2

= (N1/V1)V1 + (N2/V2)V2)

V1 + V2
= N1 + N2

V1 + V2
. (21)

Under these assumptions, in (local) equilibrium the sum of
the entropy of two Maxwellian plasma systems with identical
particles in separate volumes is equal to the entropy of the
mixed plasma filling the total volume.

B. Two RKD plasmas

First, it is important to note the fact that equal temper-
ature TRKD and equal pressure pRKD for two plasmas de-
scribed with RKDs implies that the two distributions have
the same κ as well as α values. Second, given that TRKD =
pRKD/(nkB ) [26], they also have the same number density,
implying that Eq. (21) also holds for two RKD plasmas under
the given constraints.

Then, on introducing the abbreviation F (κ, α,�) =
I1(κ, α,�) + 1 + I2(κ, α,�) in Eq. (14), one has

SRKD,1 = kBN1

[
ln

(
V1

N1λ
3
RKD

)
+ F (κ, α,�)

]
, (22)

SRKD,2 = kBN2

[
ln

(
V2

N2λ
3
RKD

)
+ F (κ, α,�)

]
. (23)

The same formula yields for the situation when the plasmas
have merged:

SRKD,1+2 = kB (N1 + N2)

×
{

ln

[
V1 + V2

(N1 + N2)λ3
RKD

]
+ F (κ, α,�)

}
. (24)

Exploiting Eq. (21) again results in the finding

SRKD,1 + SRKD,2 = kBN1

[
ln

(
V1

N1λ
3
RKD

)
+ F (κ, α,�)

]

+ kBN2

[
ln

(
V2

N2λ
3
RKD

)
+ F (κ, α,�)

]

= kB (N1 + N2)

{
ln

[
V1 + V2

(N1 + N2)λ3
RKD

]

+F (κ, α,�)

}

= SRKD,1+2. (25)

Consequently, entirely analogous to the case of two
Maxwellian plasmas, one finds that the RKD entropy is an
extensive quantity. Again, as noted in Sec. III, this is not
necessarily including the case α = 0, i.e., the standard κ

distribution, for which nonextensitivity of entropy has been
shown [e.g., 20,44].

V. SPATIALLY INHOMOGENEOUS PLASMAS

We consider an example from space plasma physics, which
is not only the origin of κ distributions but also an area of their
frequent application. The subsonic solar wind in the so-called
inner heliosheath, i.e., the region between the shock transition
that terminates the supersonic expansion of the solar wind and
the heliopause that separates the solar from the interstellar
plasma, is a spatially inhomogeneous plasma. While, due to
the subsonic flow, incompressibilty is nearly fulfilled [45]
and, thus, the density is constant, both the hydrodynamic bulk
velocity and the kinetic velocity distributions of suprathermal
particles are functions of the spatial coordinates. The corre-
sponding proton and electron constituents have recently been
treated on the basis of standard κ distributions [9,10,35]. The
evolution of the proton distribution function was described
by deriving a hydrodynamical differential equation for the
parameter κ as a function of position.

Depending on the absence or presence of sources or sinks
of energy, one can distinguish an isentropic and a nonisen-
tropic case, respectively. Starting with the former, we consider
the first law of thermodynamics

T dS = dU + pdV, (26)

where the new quantities U and p denote the internal energy
and pressure of the plasma component and V is the volume of
a plasma parcel. If the flow is isentropic and isothermal along
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a flowline with coordinate s, i.e., dS/ds = 0 and dT /ds =
0, then the work done by the pressure at the expansion of a
moving plasma volume �V is the only reason to change its
internal energy U . Consequently, one has

d

ds
(ε · �V ) + d

ds
(p�V ) = 0, (27)

where we have introduced the energy density ε = �U/�V =
3p/(4π ), and the second equality follows from its moment
definition. This reduces to

d

ds
(p�V ) = 0. (28)

Using p = nkBT , Eq. (2) and incompressibility, i.e., dn/ds =
0 one obtains

d

ds

[
�2 κ

κ − 3/2
�V

]
= 0 (29)

and, thus,

�2 κ

κ − 3/2
�V = const. (30)

Particle conservation implies nusw�V = const along a given
streamline (where usw is the solar wind plasma convection
speed), which for constant n reduces to usw�V = const so
that

u−1
sw �2 κ

κ − 3/2
= const. (31)

For � = const this reproduces the results obtained in Ref. [9]
for the case of no sources or sinks and vanishing velocity
diffusion: a constant convection speed usw along a stream-
line implies constant κ and an increasing (decreasing) speed
results in an increasing (decreasing) κ . While constant κ

yields, via Eq. (2), both constant temperature T and constant
reference speed �, increasing (decreasing) κ would translate
into decreasing (increasing) temperature [46]. This, however,
is excluded here by the above assumption of T = const, so
that � cannot be considered constant. The latter combination
is equivalent to Kappa A as discussed in Sec. II. Given that the
heliosheath is not isothermal [47], however, it is more likely
that Kappa B is the appropriate choice.

In case the flow along the streamlines developes nonisen-
tropically due to presence of energy sources and sinks, i.e., if
the entropy of the fluid changes with the flow line element s,
one has to consider the following relation for the entropy per
volume Ŝ = nS,

dŜ

ds
= 1

T

dQ̂

ds
= 1

UT

dQ̂

dt
, (32)

which follows from dS = dQ/T with Q̂ = nQ and the in-
compressibility condition n = const. The newly introduced
quantity dQ describes changes of the internal energy of a
comoving volume element dV . As discussed in Ref. [9],
these changes are due to (i) velocity diffusion with a diffusion
coefficient proportional to v2 and (ii) the so-called magnetic
cooling. The related changes are, as calculated in Ref. [9] for

standard κ distributions, proportional to the thermal pressure:

dQ

dt
= 10D0p(s) − 4U (s)

3B(s)

dB

ds
p(s) (33)

with D0 denoting a diffusion constant and B the strength of
the magnetic field. Since the same holds for the temperature
via T = p/(nkB ), the change of entropy density along a
streamline

dŜ

ds
= nkB

Up(s)

dQ

dt
= nkB

[
10D0

U
− 4

3B(s)

dB

ds

]
(34)

is independent of κ . Consequently, one obtains

Ŝ(s) = Ŝ(s0) + nkB

s∫
s0

[
10D0

U
− 4

3B(s)

dB

ds

]
ds

= Ŝ(s0) + nkB

⎧⎨
⎩10D0

s∫
s0

1

U
ds − 4

3
ln

[
B(s)

B0

]⎫⎬
⎭,

(35)

which describes the change of entropy density along a given
streamline. Note, first, that this expression is via Ŝ(s0) still
depending on κ and, second, that for other velocity diffusion
models and other distribution functions (e.g., the RKD) also
the entropy density change will depend on κ .

VI. SUMMARY AND CONCLUSIONS

Starting from the general (Boltzmann-)Gibbs definition,
we derived, first, a formula for the entropy of a spatially
homogeneous plasma whose constituents can be modelled on
the basis of the regularized κ distribution. Second, we have
demonstrated that for these distribution functions entropy is,
analogous to a Maxwellian plasma, an extensive quantity.
Third, we have discussed the change of entropy (density)
along streamlines in an incompressible, but otherwise inho-
mogeneous, flow.

In conclusion, we state that within the framework of reg-
ularized κ distributions entropy can be defined in such a way
that it maintains—in difference to the case of the standard κ

distributions—its additivity, which appears mandatory in view
of the fundamental laws of thermodynamics.
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