
PHYSICAL REVIEW E 98, 053002 (2018)

Shear band broadening in simulated glasses
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A model for shear band width as a function of applied strain is proposed that describes shear bands as
pulled fronts which propagate into an unsteady state. The evolving structural state of material ahead of and
behind the front is defined according to effective temperature shear-transformation-zone theory. The model is
compared to another that is based on dimensional analysis and assumes shear band dynamics is governed by
the strain rate within the shear band. These models are evaluated on three material systems: a two-dimensional
binary Lennard-Jones glass, a Cu64Zr36 glass modeled using an embedded atom method potential, and a Si glass
modeled using the Stillinger-Weber potential. Shear bands form in all systems across a variety of quench rates
and appear to either broaden to the system size or saturate to a finite width, remaining contained within the
simulation cell. The dimensional analysis-based model appears to apply only when band growth is uncontained,
indicating the dominance of a single timescale in the early stages of shear band development. The front
propagation model, which reduces to the dimensional analysis model, applies to both contained and uncontained
band growth. This result suggests that competition between the rate of shear-induced configurational disordering
and thermal relaxation sets a maximum width for shear bands in a variety of material systems.
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I. INTRODUCTION

Strain localization, also known as shear banding, is a
deformation mechanism present in a variety of amorphous
systems including gels [1], granular media [2], and metallic
glasses [3]. Despite the ubiquitous nature of shear bands,
their phenomenological origins remain largely unknown [4].
Strain localization is often the precursor to brittle failure in
systems such as metallic glasses, which limits the utilization
of these materials as structural components [4]. In spite of
their brittle nature, metallic glasses often have many desirable
properties such as high strength-to-weight ratios and corro-
sion resistance [5]. By understanding how shear bands form,
we could potentially engineer metallic glasses that avoid strain
localization. Unfortunately, attempts to characterize the nature
of shear bands in experimental systems have been limited by
the small length and short timescales over which they form
[3]. Simulation of shear bands presents an alternative method
of studying this phenomenon.

In this study we propose a model for the time evolu-
tion of the width of a shear band as a function of applied
strain in simulated glassy systems driven at constant strain
rate in simple shear. This model assumes that shear bands
are pulled fronts which propagate into an unsteady state.
Effective temperatures characterize the structural states of
material ahead of and behind the front, and these states
evolve with strain according to effective temperature shear-
transformation-zone (ET-STZ) theory. We refer to this model
as the shear-transformation-zone pulled front (STZ-PF) model
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and compare it to an existing model derived from dimensional
analysis. The second model, originally developed by Jagla
[6], assumes a single material length scale and that the strain
rate within the shear band controls the timescale of material
response. These assumptions result in a shear band width that
is proportional to the square root of strain. We refer to this
model as the shear band strain rate (SBSR) model.

We test the applicability of the SBSR and STZ-PF mod-
els to three simulated systems: a two-dimensional binary
Lennard Jones glass, a three-dimensional embedded atom
method Cu64Zr36 glass and a three-dimensional Stillinger-
Weber Si glass. Three quench durations are used for each
system yielding nine configurations. We generate multiple
replicas of each configuration to reduce sample-to-sample
variation. The geometry of the simulation and applied load
is chosen such that shear bands form in all configurations.
Two phenomena are observed: uncontained growth, where
shear bands eventually envelope the entire simulation cell, or
contained growth, where bands broaden to a fixed width.

A number of alternative frameworks for the deformation of
amorphous solids exist and are able to recreate some aspects
of the elastoplastic response shown in our simulations [6–9].
Some of these models [7,9] bear a number of similarities with
ET-STZ theory, most notably the invocation of a dynamically
varying “fictive temperature.” Where these models differ is in
the particulars of how the structural state is defined and the
resulting details of the dynamical equations.

This paper is arranged as follows. Under Sec. II, we
introduce the concepts of effective temperature and shear
transformation zones. We then detail the derivation of the
linear spreading speed of a moving front propagating into
an unsteady state based on an explicit form of the structural

2470-0045/2018/98(5)/053002(11) 053002-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.053002&domain=pdf&date_stamp=2018-11-27
https://doi.org/10.1103/PhysRevE.98.053002


DARIUS D. ALIX-WILLIAMS AND MICHAEL L. FALK PHYSICAL REVIEW E 98, 053002 (2018)

evolution taken from ET-STZ theory. Under Sec. III, we
outline how model systems were prepared and deformed as
well as the procedure used to determine the width of the
shear band. Under Sec. IV, we fit our models to simulation
data and comment on the fit parameters they generate. Last,
under Sec. V we summarize our work and comment on future
directions.

II. THEORETICAL BACKGROUND

A. The shear band strain rate model

In deformed systems where strain localization dominates
the response, Jagla proposed that a simple geometrical rela-
tionship is observed between the global strain rate, γ̇ , and the
strain rate within the shear band, γ̇b [6],

γ̇b = L

w
γ̇ . (1)

In this expression L is the length of the simulation cell
perpendicular to the direction of the applied load and w is
the width of the shear band.

If one assumes that the strain rate is the dominant timescale
in such simulations, then we can justify the existence of a
simple relationship between the rate of broadening of the
shear band, ẇ, and the strain rate within the shear band:

ẇ = L
2

γ̇b, (2)

where we introduce another length scale L, which dictates the
magnitude of broadening for a given configuration driven at
constant strain rate. We surmise that this is a material length
scale, with some dependence on the internal structure of the
glass. A factor of 1/2 is included in Eq. (2) for convenience.

Taken together, these equations result in a simple analytic
expression for the predicted width of a shear band as a
function of applied strain:

w =
√

w0
2 + LL(γ − γ0), (3)

where w0 and γ0 are the respective band width and strain at
shear band nucleation. We will refer to this model as the SBSR
model. The SBSR model suggests that, at sufficiently large
applied strain, the width of the shear band is proportional to
the square root of the applied strain, w ∝ γ 1/2.

In the SBSR model the physics of the evolving glass is
expressed using a single empirically determined parameter L.
This limits our ability to intuit response for a variety of glassy
systems (metallic, covalent, etc.) or to draw connections be-
tween the response and the internal structure of a particular
glass. To overcome these limitations, we seek an alternative
expression for shear band broadening which incorporates the
physics of ET-STZ theory, where a strong connection is drawn
between material structure and response.

B. The shear-transformation-zone pulled front model derivation

We propose an alternative framework where band broaden-
ing is modeled as a pair of moving interfaces which separate
jammed and flowing material inside and outside of the shear
band. We assume that the leading edge of each interface, or
front, moves outward at the linear spreading velocity v∗. This

velocity can be determined by linearizing the dynamical equa-
tions describing the state of material ahead of the front about
the unsteady state. Our approach was adapted from a review
of front propagation dynamics by W. van Saarloos [10].

In his review, van Saarloos defines pulled fronts as the class
of interfaces whose propagation speed is exactly v∗ in steady
state. The speed of a growing and spreading perturbation,
u(x, t ), can be characterized by constructing a level set line
through this curve at some fixed, arbitrary value u(x, t ) = C.
The time-rate-of-change of the position of the intersection
point of the line and the curve, dxc(t )/dt , is expected to reach
an asymptotic velocity, v∗ as t → ∞. This velocity can be
calculated by linearizing the dynamical equations describing
the structural state of the material ahead of the front and using
a saddle-point approximation.

The details of this procedure are discussed extensively
in Ref. [10]. In this subsection we first introduce effective
temperature and shear transformation zones. These concepts
are then combined in a dynamical model that describes the
evolution of the structural state of our glassy systems. We
linearize this model about a spatiotemporal perturbation to ob-
tain a dispersion relation. The dispersion relation is analyzed
at the saddle-point to find the linear spreading velocity, which
is taken to determine the rate of band broadening. Finally,
we find an analytic expression for the shear band width as
a function of strain using this rate.

The concept of an effective temperature stems from the
idea that nonequilibrium systems can be thought of as con-
sisting of two, weakly coupled subsystems [4,11]. The first
subsystem is what we traditionally imagine when referring to
temperature and encompasses the fast kinetic or vibrational
degrees of freedom that quickly come into equilibrium with
the surroundings, while the second subsystem refers to the
slow configurational degrees of freedom in the system. If one
imagines a vitreous system surrounded by a reservoir that
is quickly cooled from a high temperature above its melting
point down to a temperature far below its glass transition
temperature, at some point the slow subsystem and reservoir
will fall out of equilibrium with each other, leaving the slow
subsystem in a configuration on the potential energy land-
scape drawn from an ensemble typical of the glass transition
temperature [12], often referred to as the fictive temperature.
If we repeat this procedure at a slower cooling rate, then the
system and reservoir remain in thermal equilibrium with each
other for longer and fall out of equilibrium at a lower tem-
perature. The slow subsystem of this second glass will have
a configuration drawn from this lower temperature ensemble
and will thus have a higher degree of structural order and a
lower effective temperature.

In the ET-STZ theory it is proposed that when one does
plastic work on such a glassy system nanoscopic defects
called STZs undergo shear-induced structural rearrangements
dissipating energy. A typical STZ contains ∼100 atoms [13].
A simple model of STZs assumes that they have two states
and, once rearranged, cease further transformation unless the
direction of shear is reversed. For systems driven at constant
strain rate, new STZs must be created via the dissipated plastic
work to sustain the flow.

ET-STZ theory has undergone numerous changes and ap-
peared in various forms since its introduction [11,14,15].
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Our simulations are performed at finite temperature, there-
fore we desire a dynamical equation for the dimension-
less effective temperature, χ , which includes the effects of
shear-induced rejuvenation and thermal relaxation. We con-
sider the shear banded system as spatially invariant in all
but the y dimension, reducing shear band broadening to a
spatially one-dimensional problem. At lower strain, shear
bands can be spatially heterogeneous as evinced by various
topological features and potential energy fluctuations. Shear
bands become increasing homogeneous at higher strain, sug-
gesting that effective temperature transport occurs in driven
glassy systems. The dynamical equation for the evolution of
the structural state should include a diffusive term to account
for this effect.

We combine elements of STZ equations from two sources
to achieve an expression for the evolution of the structural
state of a deformed glassy system that incorporates changes
due to both mechanical deformation and thermal relaxation.
The effects of shear-induced disordering are sourced from an
athermal study performed by Manning et al. [16]. A term for
the thermal contribution is detailed by Langer [11]. A full
derivation of our expression can be found in Appendix A. The
dynamical equation for the evolution of the structural state is

χ̇ = ε0χ

c̃0τ0

{
2

ε0s0
sf (s)e−1/χ

[
1− χ

χ̂

]
+ κρ(T )e−β/χ

[
1− χ

θ

]}

+ l2 2

τ0
f (s)e−1/χ ∂2χ

∂y2
. (4)

The first term in braces accounts for structural disordering due
to mechanical work. Parameters χ and θ are the dimensionless
effective and bath temperatures, respectively. It is assumed
that the structural state of the shear-deformed system evolves
towards an upper-limiting value χ̂ . The parameter c̃0 is a
dimensionless specific heat; τ0 is an internal timescale compa-
rable to the phonon frequency, and ε0 is a strain increment of
order unity. STZ transitions occur when the deviatoric stress s

surpasses the minimum flow stress s0 at a rate proportional to
f (s). We hold off explicit definition of f (s) until later in our
derivation.

The second term in the braces in Eq. (4) represents the
structural relaxation due to thermal fluctuations and consists
of the following parameters: κ is a dimensionless scaling
parameter, ρ(T ) is a thermal rate factor, and β is an activation
term which dictates the susceptibility of STZ transitions to
thermal fluctuations. The explicit form of ρ(T ) will not be
detailed in this analysis. The final term of Eq. (4) allows the
effective temperature to diffuse and contains a length scale l

on the order of an STZ radius.
Prior studies [16] indicate that Eq. (4) is unstable to strain

localization due to a nonlinear instability. However, the ques-
tion we ask now is Once this instability takes place, how does
the resulting band broaden as material adjacent to the band
is induced to flow along with the material in the initially
nucleated band? To answer this question, we refer to the
literature on the propagation of fronts into unstable states [10],
noting that the jammed material outside the band is unstable in
the ET-STZ model. If we assume the propagation is consistent
with a pulled front, then the unstable spreading speed can be
obtained by analyzing the linear stability of the unstable state,

i.e., the material outside the band. To undertake this analysis,
we decompose the structural state of the system far from the
band into a spatially invariant term, χ0(t ), and some small
perturbation u(y, t ), where u � χ0:

χ (y, t ) ≡ χ0(t ) + u(y, t ). (5)

We give the perturbation the form u = u0 exp(iky − iωt ), a
generic plane wave with amplitude u0, wave number k, and
angular frequency ω. Parameters y and t represent position
and time, respectively. The plane-wave equation is complex
with imaginary number i. The evolution of the uniform part
of the solution is

χ̇0 = χ0ε0

c̃0τ0

{
2

s0ε0
sf (s)e−1/χ0

[
1 − χ0

χ̂

]

+ κρ(T )e−β/χ0

[
1 − χ0

θ

]}
. (6)

Since u � χ0, we can make the following approximations:

exp

( −1

χ0 + u

)
≈ exp(−1/χ0)

[
1 + u

χ0
2

]
, (7)

exp

( −β

χ0 + u

)
≈ exp(−β/χ0)

[
1 + βu

χ0
2

]
. (8)

We now solve for the linear solution of u̇, excluding any
terms of order O(χ0

−2) or higher:

u̇ =
{

s

s0
αf (s) − κ̃

}
u

τ0
+ l2 2

τ0
f (s)e−1/χ0

∂2u

∂y2
. (9)

In this expression α and κ̃ are rate factors that determine
the magnitude of perturbation growth due to shear-induced
disordering and structural relaxation, respectively. These rate
factors are explicitly defined below.

The factor α has the following form:

α = 2

c̃0

(
1 + 1

χ0
− 1

χ̂
− 2

χ0

χ̂

)
e−1/χ0 . (10)

Recall that χ0 characterizes the structural state of jammed
material. There is a critical effective temperature χc beneath
which a perturbation is expected to grow, i.e., for χ0 <χc <χ̂ .
When the structural state of the jammed material exceeds
this critical value, χ0 > χc, a perturbation will decay. The
parameter χc represents the crossover from heterogeneous
to homogeneous deformation when thermal relaxation is
ignored.

The rate factor κ̃ is

κ̃ = −κρ(T )
ε0

c̃0

(
1 + β

χ0
− β

θ
− 2

χ0

θ

)
e−β/χ0 . (11)

The term in parenthesis is always negative because θ �χ0�β

while all other terms are positive. A minus sign is introduced
in order to yield a positive rate factor. A sign change also oc-
curs in Eq. (9) and indicates that thermal relaxation dampens
perturbations.

If we further assume that the stress in our systems is equal
to the minimum flow stress, s = s0, then we arrive at the
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following:

u̇ = 1

τ0
(αf (s0) − κ̃ )u + l2 2

τ0
f (s0)e−1/χ0

∂2u

∂y2
. (12)

Recall that u = u0 exp (iky − iωt ). We can obtain the disper-
sion relation:

ω = i

τ0

[
af (s0) − κ̃ − l2 2

τ0
f (s0)e−1/χ0k2

]
, (13)

where the spatial wave number k is complex and can be
expressed as k = kr + iki , where its real and imaginary com-
ponents are denoted using subscripts r and i, respectively.

As discussed at length in Ref. [10], the linear spreading
speed of the interface can be extracted from the dispersion
relation via a saddle-point approximation. The k value of the
saddle-point k∗ and the linear spreading speed v0

∗ are then
given by Eq. (12) of Ref. [10]:

dω

dk

∣∣∣∣
k∗

= ωi (k∗)

ki
∗ , (14)

v0
∗ = ωi (k∗)

ki
∗ . (15)

Equation (14) can be separated into its real and imaginary
components and used to determine the critical wave number:

k∗ = i

√
af (s0) − κ̃

2l2f (s0)e−1/χ0
. (16)

The linear spreading speed is therefore:

v0
∗ = 2

√
2l

f (s0)

τ0

√
ae−1/χ0

√
1 − κ̃

af (s0)
. (17)

We assume that the STZ activation rate is proportional to
the strain rate within the shear band:

f (s0) ∼ τ0

2

V

w
e1/χ̂ , (18)

where V is the constant velocity imposed on the simulation
cell at the boundary and w is the width of the shear band, and
the density of STZs within the shear band is assumed constant
and given by exp (−1/χ̂ ). The rate of band broadening is
therefore:

ẇ = 2v0
∗ = 2

√
2le1/χ̂

√
ae−1/χ0

V

w

√
1 − 2κ̃w

aτ0e1/χ̂V
. (19)

We define the dynamic length scale:

L = 4
√

2le1/χ̂
√

ae−1/χ0 (20)

that governs the initial rate of band broadening at low strain
when w � w∞. This length scale appears in the SBSR model
and is now explicitly defined in terms of the ET-STZ theory.
Its functional form suggests that shear bands that arise within
more disordered initial states broaden faster than bands that
arise within less disordered initial states. Analysis of this
expression is found in Appendix B.

We can also define a band width saturation length scale:

w∞ = 1

2

a

κ̃
τ0V e1/χ̂ . (21)

This length scale determines when the rate of shear band
broadening goes to zero. The dependence of w∞ on rate
factors a and κ̃ suggests that it is set by the competition
between shear-induced rejuvenation and thermally activated
structural relaxation. Further analysis of the behavior of w∞
is found in Appendix C.

Substitution of Eqs. (20) and (21) into (19) results in the
following expression for the band broadening rate:

ẇ = LV

2w

√
1 − w

w∞
. (22)

From this expression the aforementioned effects of L and w∞
are apparent. When w � w∞, the rate of band broadening is
proportional to L and inversely proportional to w and narrow
bands are expected to grow faster than wider ones. As the band
width approaches its saturation value, w → w∞, the band
growth rate is reduced to zero, ẇ → 0.

The analytic solution to Eq. (22) is(
2 + w

w∞

)√
1 − w

w∞
−

(
2 + w0

w∞

)√
1 − w0

w∞

= 3

4

LV

w∞2
(t − t0) = 3

4

LL

w∞2
(γ − γ0). (23)

In this expression, w0 and γ0 are the band width and global
strain at shear band nucleation. We refer to this expression as
the STZ-PF model. In the limit where w0 �w∞ and w�w∞,
w2 ≈ w0

2 + LL(γ − γ0), which is the same functional form
as the SBSR model.

III. METHODS

A. System preparation

The shear band broadening models are tested on simulated
glasses generated using LAMMPS [17]. Three systems are
chosen to represent metallic and covalent glasses with pla-
nar geometry and correspond to a two-dimensional binary
Lennard-Jones glass (LJ) [18], a three-dimensional Cu64Zr36

glass (CZ) modeled using an embedded atom method poten-
tial [19] and a three-dimensional silicon glass (Si) modeled
with a Stillinger-Weber potential [20]. We restrict the depth
of the CZ and Si systems in the z dimension such that they
are effectively two dimensional. This simulation box depth
is chosen to be larger than the cutoff of the respective inter-
atomic potentials, as evinced by plotting the radial distribution
functions (not shown) and observing that pair interactions
are uncorrelated at this length. All simulations have a total
of 80,000 atoms, an aspect ratio Lx :Ly of 1:5, and periodic
boundaries in all directions. Shear bands form in all systems
when deformed in simple shear.

The LJ system was introduced by Lançon et al. in a study
of phase stability of simulated quasicrystals [18] and shown
to produce shear bands in previous studies [21]. We modify
this system to include a pairwise interaction cutoff distance
of 2.5 σ . The length of the simulation cell perpendicular to
the loading direction L is 639.5 σ . There are 35,776 large and
44,224 small particles. We prepare three LJ configurations via
a constant volume quench from a well-equilibrated liquid at
0.351 kB/ε to 0.0299 kB/ε over durations of 1000 τ (LJ-1),
10,000 τ (LJ-2), and 100,000 τ (LJ-3). Temperature is
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controlled using a Nose-Hoover thermostat [22]. We prepare
10 replicas for each configuration to minimize sample-to-
sample variation. The internal structures of each LJ configura-
tion are statistically different as indicated by their respective
average potential energies: −2.15 ε (LJ-1), −2.17 ε (LJ-2),
and −2.19 ε (LJ-3).

Preparation of the CZ system follows the work of Ding
et al. [23]. We use an aspect ratio Lx :Ly :Lz of 4:20:1 with
Ly = L = 502.98 Å. Our system is composed of 28,800 Zr
and 51,200 Cu atoms. Three CZ configurations are prepared
through constant pressure quench from 2000 to 300 K at
rates of 1.00 (CZ-1), 0.10 (CZ-2), and 0.01 (CZ-3) K/ps.
Temperature and pressure are controlled using a Nose-Hoover
thermostat and barostat. Five replicas of each configuration
are prepared, with the average atomic energy of Cu atoms of
−3.569 (CZ-1), −3.576 (CZ-2), and −3.589 (CZ-3) eV.

The final system is a silicon glass whose preparation
was first introduced by Fusco et al. [24]. This system has a
4:20:1 aspect ratio with L = 547.81 Å and 80,000 atoms. We
prepared three configurations by quenching from 3500 K to
300 K at constant pressure using the Tersoff potential [25]
and a Nose-Hoover thermostat and barostat. The quench rates
were 0.100 K/ps (Si-1), 0.010 K/ps (Si-2), and 0.001 K/ps
(Si-3). The system is subsequently annealed at 400 K for
100 ps using the Stillinger-Weber potential. Five replicas of
each Si configuration are prepared with average potential
energy values of −4.09 (Si-1), −4.10 (Si-2), and −4.11
(Si-3) eV.

B. Deformation

We deform our systems in simple shear by incrementally
deforming the simulation cell at a constant rate of 0.0001 ps−1

(τ−1, LJ). We integrate the SLLOD equations of motion
[26,27] with fully periodic boundaries and velocity remap-
ping for atoms which cross the periodic boundaries in the y

direction. This shear protocol is consistent with Lees-Edwards
boundary conditions [28]. Strain localization occurs in all
simulations; however, the chosen geometry minimizes stress
concentration allowing us to strain the systems in excess of
1000%. The systems are coupled to a Nose-Hoover thermostat
at 300 K (CZ and Si) and 0.0299 kB/ε (LJ) to remove heat
generated during shear.

Figure 1 shows stress-strain curves for a individual LJ,
CZ, and Si configurations prepared at the slowest quench
rate (duration, LJ). The shear stress has been normalized by
the maximum value. In spite of their different interatomic
potentials and dimensionality, all systems display linear-
elastic behavior at low strain, followed by a transition to in-
homogeneous deformation at their yield stress. A subsequent
stress drop occurs once plastic deformation is accommodated
by a shear band. The geometry of our simulations allow them
to deform in excess of 1000% strain, as shown in the inset.

C. Measuring shear band width

Figure 2 is a schematic of the procedure used to approx-
imate shear band width. We compute the local atomic strain
using OVITO [29] with the initial, undeformed configuration
as the reference state as shown in Fig. 2(a). A cutoff radius

FIG. 1. Representative stress-strain curves for LJ (solid), CZ
(dashed), and Si (dotted) systems. Shear stress has been normalized
by the maximum stress and presented for strain from 0 to 30% (main)
and 100 to 1000% (inlay). Data taken from a single simulation of the
slowest-quenched configuration for a given system.

of 6 Å (CZ and Si) or 2.2 σ (LJ) is used to establish the
neighborhood of each atom. The neighbor cutoff is chosen as
roughly twice the distance to the highest peak of the radial
distribution function. We interpolate the atomic strain onto
a square grid of length 1 Å (CZ and Si) or 1 σ (LJ) using
a natural method [30], as seen in Fig. 2(b). Next, a binary
mask is applied to the grid which labels any square with an
average atomic strain greater than or equal to 0.25 as one and
all others zero. A feature is defined as a cluster of adjacent

γi 1γ̄i

w

<
γ̄i γc

FIG. 2. Procedure for measuring shear band width. First we
calculate per atom atomic strain γi , where i indexes over all particles
(a). Strain is then averaged in regions of square length to determine γ̄i

(b). A binary mask is applied with cutoff γc = 0.25 and γ̄i < γc → 0
and γ̄i � γc → 1 (c). Contiguous squares are grouped as features
with special attention paid to features which lie on the edges of the
simulation cell. We treat the largest feature as the shear band and
measure its height in the y direction to determine the band width w

as a function of strain (d).
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TABLE I. Simulation details for representative LJ configura-
tions. Ten (10) simulations were performed for each configuration;
however, simulations were excluded from the study if secondary
shear bands formed during deformation.

Quench duration Average Atomic Energy
Config. name (τ ) (ε) N

Lennard-Jones potential
LJ-1 1e4 −2.15 ± .13 6
LJ-2 1e5 −2.17 ± .12 7
LJ-3 1e6 −2.19 ± .12 10

ones and may cross the upper or lower cell bounds in the y

direction. Figure 2(c) shows two clusters. We assume that the
largest feature is the shear band and its width is measured by
the average number of adjacent squares along the y direction,
as in Fig. 2(d).

Shear bands are present in all systems by 20% deformation,
as shown in Fig. 1. For simplicity, we use γ0 = 0.2 as the
global strain at band nucleation and measure the respective
w0. Additional measurements are taken from strain of 100%
onward at 100% strain increments. We limit our study to the
broadening of a single shear band. Simulations are excluded
from subsequent analysis if additional system-spanning fea-
tures are present at any stage of the deformation, which would
indicate the formation of a secondary shear band.

IV. RESULTS

The relative stability of a glass is measured by its average
atomic energy and the likelihood that multiple shear bands
will form increases with decreasing glass stability. Tables I
and II list the average atomic energy and number of sim-
ulations considered for each configuration. For all systems,
the first configuration is the least stable while the third con-
figuration is the most stable due to its lower relative mean
atomic energy. Consider the LJ system where 10 simulations
are performed for each configuration. As LJ configurations
are generated at slower quench rates, the mean atomic energy
decreases and fewer simulations are excluded due to the for-
mation of secondary shear bands. This trend is also observed

TABLE II. Simulation details for representative CZ and Si con-
figurations. Five (5) simulations were performed for each config-
uration; however, simulations are excluded from our analysis if
secondary shear bands form during deformation.

Quench rate Avg. potential energy
Config. name (K · ps) (eV) N

Embedded atom method potential
CZ-1 0.100 −3.57 ± .07 3
CZ-1 0.010 −3.58 ± .07 5
CZ-1 0.001 −3.59 ± .07 5

Stillinger-Weber potential
Si-1 1.00 −4.09 ± .16 4
Si-2 0.10 −4.10 ± .14 5
Si-3 0.01 −4.11 ± .13 5

FIG. 3. High-strain material regions for multiple simulations
when global strain is 20% (top row) and 100% (bottom row).
Material regions with average atomic strain equal to or greater than
25% shown in black. Panel (a) is representative of the ideal case
where a single, horizontal shear band forms. In (b) two shear bands
are present, disqualifying this simulation from our analysis. The
dominant feature in (c) has a porelike structure, with intermixed
low- and high-strain material regions. The high-strain region of
(d) features a large vertical component. Cases (a), (c), and (d) are
included in our analysis.

in the CZ and Si systems, but secondary shear bands are more
infrequent due to the need for instabilities to traverse both the
width and depth of the three-dimensional simulation cell.

The SBSR and STZ-PF models assume that shear bands
have well-defined edges and constant width; however, actual
shear bands have more complex structures. Figure 3 shows
several features for representative CZ [Figs. 3(a) and 3(b)]
and LJ [Figs. 3(c) and 3(d)] simulations in black. These
features correspond to regions where the average atomic strain
is greater than or equal to 25% when the system is deformed
to 20% shear strain (top row) and 100% strain (bottom row).
The shear band shown in the CZ configuration [Fig. 3(a)]
represents the ideal case where a single shear band forms and
remains the dominant feature throughout the study.

In Fig. 3(b) a secondary shear band is present at 20% strain
and broadening occurs in both features. Secondary bands may
form at any stage of deformation and we exclude simulations
from our analysis if they do. The formation of additional
features indicates that in addition to aging, plastic deformation
occurs in material outside the primary shear band. The STZ-
PF model incorporates these effects by including a thermal
relaxation term, κ and a structural rejuvenation term that
depends on the local strain rate γ̇ .

Figures 3(c) and 3(d) shows shear bands with poorly
defined edges due to intermixed regions of low strain. These
porelike features occur most often in the two-dimensional LJ
simulations at early stages of shear band formation (γ ≈ 20%)
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TABLE III. Mean and standard deviation for SBSR and STZ-PF model parameters and R2 values. Values are computed using fit data
from Ns simulations where shear bands saturate to finite width w∞. Dimensionless lengths are reported by normalizing values by the system
height L.

Config. Ns L/L R2 L/L w∞/L R2

LJ-1 6 0.018 ± 0.003 0.89 ± 0.08 0.034 ± 0.003 0.41 ± 0.03 0.99 ± 0.01
LJ-2 7 0.0069 ± 0.0008 0.94 ± 0.03 0.012 ± 0.001 0.27 ± 0.02 0.99 ± 0.01
LJ-3 7 0.0031 ± 0.0005 0.83 ± 0.19 0.006 ± 0.001 0.21 ± 0.16 0.97 ± 0.02
CZ-1 3 0.028 ± 0.002 0.98 ± 0.02 0.042 ± 0.005 0.69 ± 0.18 0.994 ± 0.005
CZ-2 4 0.0105 ± 0.0006 0.985 ± 0.004 0.014 ± 0.002 0.49 ± 0.15 0.995 ± 0.003
CZ-3 3 0.0019 ± 0.0003 0.70 ± 0.23 0.0037 ± 0.0004 0.138 ± 0.009 0.96 ± 0.03
Si-1 2 0.0108 ± 0.0007 0.967 ± 0.0004 0.017 ± 0.002 0.56 ± 0.19 0.988 ± 0.006
Si-2 5 0.0060 ± 0.0003 0.984 ± 0.007 0.0083 ± 0.0006 0.41 ± 0.05 0.997 ± 0.002
Si-3 3 0.0033 ± 0.0002 0.970 ± 0.01 0.0048 ± 0.0003 0.31 ± 0.03 0.997 ± 0.001

but are less pronounced at later stages of deformation. The
coexistence of low- and high-strain regions within shear bands
is less prevalent in CZ and Si simulations, which may be
the result of averaging strain over the third dimension. We
include simulations in the study when shear bands have rough
edges (or vertical features), excluding only those in which
additional, system-spanning features are present.

Vertical shear bands may occur at early stages of de-
formation as shown by the tail of the dominant feature in
Fig. 3(d). These features persist in our simulations at 100%
strain and dictate the preferred direction of band broadening.
Vertical banding suggests that due to the symmetry of the
deviatoric stress shear bands can form in both the horizontal
and vertical directions. As the system is driven to higher strain
large strains and the imposed boundary conditions break this
symmetry causing STZ transitions to occur primarily along
the horizontal band. The geometry of our simulation cell was

chosen to minimize these effects as a high aspect ratio favors
horizontal banding.

Two scenarios are possible for simulations where a single
shear band dominates the response: (1) uncontained growth,
where the shear band widens to the extents of the simulation
cell, or (2) shear band saturation, where broadening ceases and
a shear band persists with finite width indefinitely on further
deformation. A fit to the STZ-PF model is unable to determine
a saturation length when w∞ � L, thus we exclude cases
of uncontained growth from our assessment of this model.
Results reported in Table III are for Ns simulations, where
subscript s represents the simulations where a finite saturation
width is recovered.

Figure 4 plots band width as a function of global strain for
the Si-1 configuration. Fits are performed for each simulation
and average model parameter values are used to plot the STZ-
PF (dashed line) and SBSR (dotted line) model results. Of
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w
 / 
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(a)

Si-1-Uncontained
STZ-PF
SBSR
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w
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Si-1-Contained
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FIG. 4. Shear band width normalized by simulation height as a function of global strain for uncontained (a) and contained (b) Si-1
configuration simulations. A shear band is considered contained if the STZ-PF model fit yields a saturation width w∞ that is less than the
height of the simulation cell in the direction perpendicular to the applied strain, L, and uncontained otherwise. Standard deviation bars are
shown. Average model parameters are calculated from fits to individual simulations and used to generate the STZ-PF (dashed) and SBSR
(dotted) curves.
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FIG. 5. Shear band width normalized by simulation height as a
function of strain for LJ-1 configuration. Data averaged over six
simulations where band growth is contained and w∞ < L in the
STZ-PF model. Standard deviation bars shown. Simulations are
independently fitted to STZ-PF and SBSR models and mean fit
parameters are computed. The resultant STZ-PF (dashed) and SBSR
(dotted) fits are plotted.

the five simulations performed, only two result in a persistent
band of finite width, i.e., w∞ < L. Figure 4(a) averages over
the three Si-1 simulations where the STZ-PF model deter-
mines uncontained band growth. In this limit, w∞ approaches
infinity and the STZ-PF model reduces to the SBSR model.
As expected, the SBSR and STZ-PF model fits coincide. In
Fig. 4(b), models are compared for the remaining two Si-1
simulations where shear bands saturate. The STZ-PF model is
far better at capturing the behavior of the Si-1 system at the
low- and high-strain limits.

We use R-squared (R2) as a metric for comparing the
goodness of each model. We exclude simulations where
uncontained growth is determined by the STZ-PF model be-
cause w∞ is undefined. Table III provides average coefficient
data as predicted by each model. These data are averaged over
Ns configurations, where Ns is the number of simulations with
a single, persistent shear band of finite width. In all cases
the STZ-PF model provides marked improvement over the
SBSR model. The SBSR model tends to underapproximate
the dynamic length scale L, which effectively determines the
band width at low strain.

Figure 5 compares both models on the LJ-1 configuration
where all simulations show contained band broadening, i.e.,
N = Ns . The slope of the SBSR curve at early strain is much
smaller than that of the STZ-PF model. This is the result of the
SBSR model having to strike a balance between accounting
for the rapid increase in band width at low strain and the
subsequent decrease and eventual plateau in band width at
high strain. The addition of the saturation length scale in the
STZ-PF model significantly enhances the estimation of band
width and for the LJ-1 configuration the R2 value increases
from 0.89 (SBSR) to 0.99 (STZ-PF).
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FIG. 6. Band width normalized by simulation height as a func-
tion of strain for LJ (a), CZ (b), and Si (c) systems. Data averaged
over simulations where band growth is contained and w∞ < L in
the STZ-PF model. Standard deviation bars shown. Circles represent
fastest quench and triangles the slowest. STZ-PF model fit found by
averaging over L and w∞ values and shown by dashed line.

Shear band saturation is a ubiquitous phenomenon in the
systems studied and occurs in the majority of simulations. In
Fig. 6 we plot shear band width normalized by the height
of the simulation cell as a function of applied strain for the
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LJ (a), CZ (b), and Si (c) systems. Shapes correspond to
configurations of a given system with circles indicating the
fastest quench and triangles the slowest. Averages are taken
over simulations where the STZ-PF model suggests band
saturation with standard deviation bars shown. We assume that
shear bands initiate at 20% strain and find that the initial width
and dynamic length scale of the shear bands increases with
increasing quench rate. The difference in initial band widths
is less pronounced in the Si system where values are identical
to within measured deviation. Saturation length also varies
with quench rate with a larger width predicted for quickly
quenched systems.

V. DISCUSSION

This study compares two models of shear band
broadening—the shear band strain rate (SBSR) model which
assumes that the rate of band broadening is proportional
to the strain rate within the shear band and the STZ-PF
model that describes shear band broadening as a pulled front
propagating into an unsteady state. We test these models
on three systems: a two-dimensional Lennard-Jones glass, a
three-dimensional embedded atom method Cu64Zr36 glass,
and a three-dimensional Stillinger-Weber silicon glass. Shear
bands form in each system and their dynamics are well
captured by the STZ-PF model, even when configurations are
generated at increasingly high cooling rates.

The initial rate of shear band broadening is proportional to
the strain rate within the band at low strain but deviates from
this behavior at high strain as bands approach a saturation
width. The SBSR model is able to capture the dynamics of
shear bands at the onset of strain localization or whenever
band width is uncontained by the simulation cell however,
the SBSR model breaks down as shear bands approach their
limiting width. The STZ-PF model improves on this shortfall
in the SBSR model by introducing a band width saturation
length scale that depends on the internal structure and rate of
thermal relaxation of the glass. The STZ-PF model reduces
to the SBSR model whenever band width is much smaller
than saturation length, such as the case of uncontained band
growth.

Shear band saturation is observed in various simulations
produced with different interatomic potentials, dimensions
and quench schedules. We argue that the saturation length
scale is a ubiquitous feature of sheared amorphous systems.
Glassy configurations are generated by sampling from a
distribution of structures in a potential energy landscape
which results in systems of the same potential, composition
and preparation having a distribution of saturation band
widths. In select simulations, the observed uncontained
growth and the inability of the STZ-PF model to recover this
length scale can be attributed to a simulation size that is less
than the saturation width.

This work represents the first step in an ongoing study of
strain localization in simulated glasses. It demonstrates that
the structural state of sheared glassy systems can be well-
described using an effective temperature and the dynamics of
the state can be described using ET-STZ theory. Our results
suggest that shear bands can be modeled as pulled fronts

which propagates into an unsteady state. The dynamics of
the state on either side of the front can be described as
a competition between increasing structural disorder due to
plastic work and increasing structural order due to thermal
relaxation.

Experimental studies of shear banding in metallic glasses
report widths ranging from 10 to 210 nm [31] while our
STZ-PF model predicts band widths between 6.9 (CZ-3) and
34.7 (CZ-1) nm. Although these results seem promising, we
acknowledge several difficulties when drawing comparisons
between simulated and experimental systems. The simpli-
fied geometry of our simulations allows them to deform to
strains typically unobservable in experimental systems, where
stress concentration often leads to catastrophic failure before
a steady-state flow stress is achieved. Our simulations are
effectively two dimensional and our analysis is done in one
dimension. In contrast, experimental systems have finite depth
and bands must broaden both perpendicular to the loading
direction and along this depth. The length and timescales of
simulations and experiments vary by orders of magnitude.
Experimental systems have length scales of millimeters and
timescales of milliseconds while our simulations are on scales
of nanometers and nanoseconds respectively.

This preliminary study leaves many questions unanswered.
A subsequent investigation will focus on understanding
the role of thermally induced structural relaxation by
shearing LJ glasses at different bath temperatures. We
predict that as the reservoir temperature increases, thermal
relaxation should play a larger role in the material response,
leading to a decrease in saturation length. This study should
provide insight into the functional form of κ . Several model
parameters depend explicitly on the structural state of the
system, which is poorly defined. We also hope to elucidate
the relationship between potential energy and effective
temperature in order to quantify χ and completely define our
systems in terms of ET-STZ theory.
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APPENDIX A: DERIVATION OF
THE EFFECTIVE-TEMPERATURE

DYNAMICAL EQUATION, χ̇

The general structure for the evolution of the effective
temperature proposed by Manning et al. in Ref. [16] equation
(A5) is

χ̇ = 1

CeffTZ

{
Teff

(
dSC

dt

)
mech

[
1 − χ

χ̂

]

+ Teff

(
dSC

dt

)
therm

[
1 − χTZ

T

]}
+ D

∂2χ

∂y2
. (A1)
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In this expression Ceff is a specific heat and TZ = EZ/kB ,
where EZ is the energy required to nucleate a STZ and kB

is the Boltzmann constant.
Heat due to mechanical work done on the system,

Teff (dSC/dt )mech, drives the structural state, χ = Teff/TZ ,
towards the steady-state value χ̂ . The existence of χ̂ has been
demonstrated in a prior study of the LJ system [21] where
a linear relation was assumed between effective temperature
and potential energy and the average potential energy of
material within the shear band was found to converge to a
fixed value. Conversely, heat generated from thermal fluctu-
ations, Teff (dSC/dt )therm, relaxes the structural state towards
the bath temperature T . We introduce a dimensionless bath
temperature θ = T/TZ , analogous to the dimensionless effec-
tive temperature. A final term allows structural disorder to
diffuse. We assume the rate of diffusion is governed by the
plastic strain rate γ̇ yielding a coefficient, D = l2|γ̇ |, where
l is a length scale on the order of a STZ radius. The equation
for the plastic strain rate is

γ̇ = 2

τ0
f (s)e−1/χ . (A2)

The parameter τ0 is an internal timescale comparable to the
phonon frequency and f (s) is a function of the deviatoric
shear stress, s. The plastic strain rate is the product of the rate
of stress induced STZ transitions, 2f (s)/τ0, and an Arrhenius
term that is proportional to the number density of STZs,
exp (−1/χ ). It is assumed that STZ transitions occur only
in the direction of loading. We hold off providing an explicit
definition of f (s) until later in our derivation.

In Ref. [16], Eq. (A13), Manning et al. provide an expres-
sion for the rate of configurational entropy production due to
mechanical loading:(

dSC

dt

)
mech

= kBvZ

�

ε0

τ0
��(s), (A3)

where vZ is the number of molecules within an STZ, � is the
volume per molecule, ε0 is a strain increment of order unity,
� = exp (−1/χ ) is proportional to the STZ density, and �(s)
is the energy dissipated per STZ.

Equation (A10) of Ref. [16] provides the STZ energy
dissipation term:

�(s) = 2

s0ε0
sf (s), (A4)

where s0 is the minimum flow stress and s is the deviatoric
shear stress.

Combining Eqs. (A3) and (A4),(
dSC

dt

)
mech

= kBvZ

�

ε0

τ0
e−1/χ 2

s0ε0
sf (s). (A5)

Manning et al. analyze strain localization simulations per-
formed at low temperature and assume that the contribution
due to thermal fluctuations is marginal. Consequently, an
expression for (dSc/dt )therm is not provided. We refer instead
to Ref. [11], Eq. (6.2), where Langer suggests the following
form: (

dSC

dt

)
therm

= κ
kBvZ

�

ε0

τ0
ρ(T )e−β/χ . (A6)

In this expression κ is a dimensionless scaling parameter,
ρ(T ) is a thermal factor whose form is beyond the scope of
this derivation, and β is an activation term which dictates the
susceptibility of STZ transitions to thermal fluctuations.

Manning et al. define a dimensionless effective temper-
ature c̃0 = Ceff�/(kBvZ ). Combining Eqs. (A1)–(A6), the
evolution of the structural state is expressed as

χ̇ = χε0

c̃0τ0

{
2

s0ε0
sf (s)e−1/χ

[
1 − χ

χ̂

]
+ κρ(T )e−β/χ

[
1 − χ

θ

]}

+ l2 2

τ0
f (s)e−1/χ ∂2χ

∂y2
. (A7)

APPENDIX B: ANALYSIS OF THE DYNAMIC
LENGTH SCALE L

The dynamic length scale that governs the initial rate of
band broadening and is defined as:

L = 4
√

2le1/χ̂
√

ae−1/χ0 . (B1)

In this expression l is a length scale on the order of an STZ
radius, χ̂ is a steady-state value of the dimensionless disorder
temperature found inside the shear band, and χ0 is the disorder
temperature of material outside the band. The parameter α

is a rate factor that couples shear-induced disordering to
instability growth with the form:

α = 2

c̃0

(
1 + 1

χ0
− 1

χ̂
− 2

χ0

χ̂

)
e−1/χ0 , (B2)

where c̃0 is a dimensionless specific heat on the order of unity.
The dynamic length scale dominates the response when the

shear band width is significantly smaller than its steady-state
value, i.e., when w � w∞. This length scale was introduced
as an empirical parameter in the SBSR model but is now
defined using ET-STZ theory.

We examine the behavior of L as a function of the struc-
tural state of the jammed material, χ0. Combining Eqs. (B1)
and (B2) yields

L = 8l exp

(
1

χ̂
− 1

χ0

)√
1 + 1

χ0
− 1

χ̂
− 2 χ0

χ̂

c̃0
. (B3)

The exponential term is the proportion of STZs within the
jammed material at the maximum allowed disorder due to
amorphous packing and approaches 1 as χ0 → χ̂ . As the
jammed material becomes more disordered, the radical term
decreases, suggesting a reduction in the energy dissipated into
the configurational degrees of freedom. The combined effect
is a dynamic length scale which increases the shear band
growth rate when the state of jammed material is more disor-
dered up to some critical value χ0 → χc. At even higher levels
of disorder the shear band growth rate sharply decreases until
reaching zero at the degree of disordering above which shear
bands never form. The functional form of L thus suggests
that shear bands typically broaden faster in systems with more
disordered states.
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APPENDIX C: ANALYSIS OF THE SHEAR BAND
SATURATION LENGTH SCALE, w∞

Transient shear bands are expected to broaden to a limiting
width, as defined by the saturation length scale:

w∞ = 1

2

a

κ̃
τ0V e1/χ̂ . (C1)

In this expression τ0 is a material timescale on the order of
the Einstein period, V is the rate of deformation imposed on
the system, χ̂ is a steady-state value for the dimensionless
effective temperature, and α and κ are rate factors for instabil-
ity growth due to mechanical work and thermal fluctuations,
respectively.

As the width of the shear band approaches the saturation
length scale the rate of shear band broadening goes to zero.
The saturation width depends both on a and κ̃ , which suggests
it is set by a competition between stress-induced structural
rejuvenation and thermal relaxation.

We expand Eq. (C1), substituting expressions for α

[Eq. (B2)] and κ̃ [Eq. (11)]:

w∞ = τ0V

ε0κρ(T )

(1 + 1
χ0

− 1
χ̂

− 2 χ0

χ̂

2 χ0

θ
+ β

θ
− β

χ0
− 1

)
exp

(
1

χ̂
− 1

χ0
+ β

χ0

)
.

(C2)

The term in the parenthesis decreases as the effective temper-
ature of the jammed state, χ0, increases, once again demon-
strating that thermal relaxation dampens the effects of shear
induced disordering resulting in the reduction of the saturation
length scale. The exponential term, by contrast, represents the
fraction of STZs available to deform, which increases with
effective temperature. The combined effect is a saturation
length scale that is small for less disordered systems with low
effective temperatures but which increases exponentially for
systems whose disorder temperature approaches the steady-
state value.
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