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Effect of predeformation on the propagation of vector solitons in flexible mechanical metamaterials
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We investigate the effects of large predeformation on the propagation of planar solitary waves in flexible
mechanical metamaterials comprising an array of hinged rotating squares. The predictive framework of our
theoretical analysis shows that the predeformation can be exploited to control the characteristics of the supported
elastic vector solitons via the tuning of the metamaterial dispersive and nonlinear properties. Together with
numerical tests, our study provides a better understanding of the tunable dynamic response of flexible nonlinear
mechanical metamaterials and explores more advanced configurations and effects that could open avenues for
the design of systems with enhanced tunability.
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I. INTRODUCTION

Artificially structured materials designed to achieve me-
chanical properties and functionalities that surpass those of
the constituent materials (also referred to as mechanical meta-
materials) are opening new avenues to manipulate motions,
stresses, and mechanical energy [1–3]. Such systems are also
enabling control of the propagation of mechanical waves
in unprecedented ways [4,5], facilitating a wide range of
applications such as wave guiding [6,7], cloaking [8], noise
reduction [9–11], and vibration control [12,13]. However,
most of mechanical metamaterials proposed to date focus on
small-amplitude elastic waves and are characterized by a pas-
sive response (i.e., they operate in fixed ranges of frequencies
that are impractical to tune and control after the assembly)
[4,5,14–18].

Recent studies indicate that elastic instabilities and large
deformations provide an opportunity to alter in situ the dy-
namic response of mechanical metamaterials. Specifically,
they have shown that the width and position of their spectral
gaps in frequency can be tuned and even switched on and off
by varying the amount of applied deformation [19–25]. While
these initial efforts have focused on linear stress waves, more
recently it has also been shown that mechanical metamaterials
comprising arrays of rigid units connected by thin and highly
deformable ligaments support the propagation of elastic vec-
tor solitons with two components—one translational and one
rotational—that are coupled together and copropagate without
dispersion [26,27].

Here we focus on a metamaterial comprising an array
of counter-rotating hinged squares [26,28–31] that expands
infinitely in the transverse direction and investigate via a com-
bination of theoretical analysis and numerical simulations the
effect of large predeformation on nonlinear planar waves that
propagate along one of its principal directions of symmetry
(i.e., one of the two directions of periodicity of the struc-
ture). Our results indicate that large deformations and elastic
instability can be exploited to effectively tune the width and

velocity of the propagating solitary waves and even control
the type of solitons supported by the system. The analyses
performed in this study offer a better understanding of the
dynamic response of nonlinear mechanical metamaterials and
provide guidelines for the design of structures with optimized
properties and enhanced tunability.

II. GEOMETRY

In this study we focus on a flexible mechanical metamate-
rial comprising an array of identical squares with diagonal 2l

connected at their vertices via thin ligaments of width t (here
we consider t/(2l) ∈ [0.005, 0.2]), which act as hinges [see
Fig. 1(a)]. Two different initial configurations are considered:
(i) one in which the diagonals of all the squares are aligned
(without loss of generality, here we assume that they are
aligned along the vertical or horizontal direction) and define
square holes [see Fig. 1(a)] and (ii) another one in which
the neighboring squares are alternatively rotated by θ0 in
the clockwise and counterclockwise directions and define an
array of diamond holes with angles π/2 ± 2θ0 [see Fig. 1(b)].
While for the metamaterial with all diagonals aligned (for
which θ0 = 0) the energy cost to rotate any square in the
clockwise and counterclockwise directions is identical, the
case θ0 �= 0 introduces a disparity between the two directions
of rotation. For a square rotated by θ0 in the clockwise
direction it is energetically more favorable to rotate in the
clockwise direction under compressive loadings and in the
counterclockwise direction when the system is stretched.

III. GOVERNING EQUATIONS

Since for this metamaterial the deformation localizes at
the thin ligaments [26,31], we consider the squares to be
rigid. Moreover, since in this study we focus on planar waves
propagating in the x direction (so that we do not expect
any motion in transverse direction), we assign two degrees
of freedom to each rigid unit: the displacement in the x
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FIG. 1. Schematics of the mechanical metamaterial considered
in this study. (a) Configuration characterized by θ0 = 0. (b) Config-
uration characterized by θ0 �= 0. The details of the hinge geometry
are shown in the zoom-in. (c) Discrete model based on rigid units
connected at their vertices by springs.

direction, u, and the rotation around the z axis, θ . Moreover,
to facilitate the analysis, we define the positive direction of
rotation alternatively for neighboring squares. Specifically, for
each square we assume the energetically favorable direction
of rotation under compression to be the positive one. As such,
for the [i, j ]th unit [which is rotated by θ0 in the clockwise
direction—see Fig. 1(c)] a clockwise rotation is positive [see
blue arrow in Fig. 1(c)], while for the [i − 1, j ]th, [i +
1, j ]th, [i, j − 1]th, and [i, j + 1]th ones [which are ro-
tated by θ0 in the counterclockwise direction—see Fig. 1(c)],
counterclockwise rotations are considered positive [see purple
arrow in Fig. 1(c)].

As for the hinges, we model them using a combination of
three linear springs: (i) Their longitudinal response is captured
by a spring with stiffness kl ; (ii) their shearing is governed by
a spring with stiffness ks ; and (iii) their bending is captured
by a torsional spring with stiffness kθ . To determine kl , ks ,
and kθ we simulate via finite element analyses the response
of two squares connected by one ligament under three sets of
boundary conditions (see Appendix for details) [31]. We find
that for a structure made of an elastic material with Poisson’s
ratio ν = 0.3 the dimensionless stiffness Ks = ks/kl remains
almost constant over the entire range of considered ligament
widths (Ks ≈ 0.5; see blue markers in Fig. 2). Differently,
the normalized stiffness Kθ = kθ/(kll

2) is more sensitive to
the ligament width and monotonically decreases as t/(2l)
increases (see magenta markers in Fig. 2). Moreover, our
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FIG. 2. Evolution of the dimensionless stiffnesses Ks (blue
markers) and Kθ (magenta markers) as a function of the normalized
hinge width t/(2l).

analyses also indicate that the effect of θ0 on the spring
stiffness is negligible. While the results reported in Fig. 2 are
for a structure with θ0 = 0, almost identical values are found
for θ0 ∈ [0, 0.25]. Finally, we note that all results reported
in this paper are for a structure with hinges characterized by
t/(2l) = 0.05, for which Ks = 0.53, Kθ = 0.0041. However,
qualitatively identical dynamic response is found for the entire
range of considered ligament widths.

Under the assumptions listed above, the equations of mo-
tion for the [i, j ]th square are given by

m[i, j ]ü[i, j ] =
4∑

p=1

Fx [i, j ]
p ,

(1)

J [i, j ]θ̈ [i, j ] =
4∑

p=1

M [i, j ]
p ,

where m[i, j ] and J [i, j ] are the mass and moment of inertia
of the [i, j ]th rigid unit, respectively. Moreover, F

x [i, j ]
p is

the force in the x direction generated at the pth vertex of
the [i, j ]th unit by the springs and M

[i, j ]
p represents the

corresponding moment. Considering the most general case
of a square initially rotated by an angle θ0, these forces and
moments are given by

Fx [i, j ]
p = kp · �l[i, j ]

p · ex,

M [i, j ]
p = −kθ�θ [i, j ]

p − ∥∥r[i, j ]
p (θ [i, j ] ) × (

kp · �lp [i, j ]
)∥∥,

(2)

with

kp =
[
kl 0
0 ks

]
, for p = 1, 3, (3)

and

kp =
[
ks 0
0 kl

]
, for p = 2, 4. (4)

Furthermore, �θ
[i, j ]
p is the change in angle experienced by the

rotational spring connected to the pth vertex of the [i, j ]th
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rigid unit

�θ
[i, j ]
1 = θ [i, j ] + θ [i, j+1],

�θ
[i, j ]
2 = θ [i, j ] + θ [i+1, j ],

(5)
�θ

[i, j ]
3 = θ [i, j ] + θ [i, j−1],

�θ
[i, j ]
4 = θ [i, j ] + θ [i−1, j ],

and r[i, j ]
p denotes the vector that connects the center of the

[i, j ]th rigid unit to its pth vertex [see Fig. 1(c)]

r[i, j ]
1 (θ [i, j ] ) = l[C(θ [i, j ] ), (−1)i+jS (θ [i, j ] )],

r[i, j ]
2 (θ [i, j ] ) = l[−(−1)i+jS (θ [i, j ] ), C(θ [i, j ] )],

(6)
r[i, j ]

3 (θ [i, j ] ) = −l[C(θ [i, j ] ), (−1)i+jS (θ [i, j ] )],

r[i, j ]
4 (θ [i, j ] ) = l[(−1)i+jS (θ [i, j ] ), −C(θ [i, j ] )],

with

C(θ [i, j ] ) = cos(θ [i, j ] + θ0), S (θ [i, j ] ) = sin(θ [i, j ] + θ0).
(7)

Finally, �l[i, j ]
p is a vector whose entries provide the change

in length along the x and y directions of the linear springs
connected to the pth vertex,

�l[i, j ]
1 = (u[i, j+1] − u[i, j ] )ex + �r[i, j+1]

3 − �r[i, j ]
1 ,

�l[i, j ]
2 = �r[i+1, j ]

4 − �r[i, j ]
2 ,

(8)
�l[i, j ]

3 = (u[i, j−1] − u[i, j ] )ex + �r[i, j−1]
1 − �r[i, j ]

3 ,

�l[i, j ]
4 = �r[i−1, j ]

2 − �r[i, j ]
4 ,

with

�r[i, j ]
p = r[i, j ]

p (θ [i, j ] ) − r[i, j ]
p (0). (9)

Note that in deriving Eqs. (8) we assume that

u[i, j ] = u[i+1, j ] and θ [i, j ] = θ [i+1, j ] ∀i, j (10)

since for planar waves propagating along the x direction (as
those considered in this study) we expect the deformation to
be homogeneous along the y direction.

Next, we introduce the normalized displacements
U [i, j ] = u[i, j ]/(2l cos θ0), time T = t

√
k/m, stiffnesses

Kθ = kθ/(kll
2), and Ks = ks/kl and inertia α = l

√
m/J and

rewrite Eqs. (1) in dimensionless form as

∂2U [i, j ]

∂T 2
=

4∑
p=1

Kp · �L[i, j ]
p · ex

∂2θ [i, j ]

∂T 2
= −α2

4∑
p=1

[
4 cos2 θ0

∥∥R[i, j ]
p × (Kp · �Lp

[i, j ] )
∥∥

+Kθ�θ [i, j ]
p

]
, (11)

where R[i, j ]
p =r[i, j ]

p /(2l cos θ0), �L[i, j ]
p =�l[i, j ]

p /(2l cos θ0),
and

Kp =
[

1 0
0 Ks

]
, for p = 1, 3, (12)

and

Kp =
[
Ks 0
0 1

]
, for p = 2, 4. (13)

In the following sections we first study in detail the re-
sponse of a system subjected to quasistatic unidirectional
deformation in the x direction and then investigate the propa-
gation of nonlinear planar waves along the same direction in
the statically predeformed structure.

IV. STATIC BEHAVIOR

We start by investigating the static response of the consid-
ered metamaterial when subjected to an homogeneous strain
εxx

st in the x direction, while preventing deformation in the y

direction. For such loading condition
(i) the inertia terms can be neglected,

∂2U [i, j ]

∂T 2
= ∂2θ [i, j ]

∂T 2
= 0, ∀ i, j ; (14)

(ii) the deformation is homogeneous,

U [i, j+1] − U [i, j ] = εxx
st ,

θ [i, j ] = θst, ∀ i, j, (15)

where θst is the angle by which all squares rotate (with
neighboring units rotating in the opposite direction) due to the
applied static deformation.

By substituting Eqs. (14) and (15) into Eqs. (11), we find
that the only nonvanishing equation is

−8Kθθst − sin �
[
4εxx

st cos θ0 + 8(cos θ0 − cos �)
] = 0,

(16)
with � = θ0 + θst (note that in our system contact between
neighboring squares imposes |�| < π/4). Since Eq. (16) does
not admit an analytical solution, we solve it numerically to
obtain the relation between the applied strain εxx

st and the
resulting rotation of the squares θst. We find that for the case
θ0 = 0 Eq. (16) possesses two solutions and a bifurcation
point at εxx

cr [see green lines in Fig. 3(a)]. When loaded starting
from the undeformed configuration (i.e., from εxx

cr = 0 and
θst = 0), the squares initially only translate and do not rotate
(i.e., θst = 0). However, for large-enough applied compressive
strains the solution bifurcates, and the initial branch θst = 0
becomes unstable, so that the squares move to the second
branch and start to rotate. Note that a given unit has equal
probability to rotate in the clockwise or counterclockwise
direction, but its direction of rotation determines that of all the
other squares (since neighboring units rotate in the opposite
direction). As for the critical strain εxx

st,cr, it can be determined
from Eq. (16) by setting θ0 = 0 and assuming θst � 1, so that
sin θst ≈ θst and cos θst ≈ 1 − θ2

st/2. Under these assumptions
Eq. (16) reduces to

θ3
st + (

εxx
st + 2Kθ

)
θst = 0, (17)

from which we obtain

εxx
st,cr = −2Kθ, (18)

since only for εxx
st < −2Kθ Eq. (17) admits a solution differ-

ent from θst = 0.
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FIG. 3. (a) Rotation-strain bifurcation diagram for metamateri-
als with θ0 = 0 (green lines), θ0 = 0.01 (red lines), and θ0 = 0.25
(blue lines). Solid and dashed lines represent stable and unstable
branches, respectively. The vertical dashed line indicates the critical
strain εxx

st,cr = −2Kθ (b) Evolution of the normalized stress �xx
st as a

function of the applied strain εxx
st . Note that both stress and strain are

defined negative for compression and positive for tension.

Next, we focus on metamaterials characterized by θ0 �= 0.
Also in this case Eq. (16) possesses two distinct solutions, but
there is no bifurcation point since they are disconnected [see
blue and red lines in Fig. 3(a)]. As such, when loaded starting
from the undeformed configuration, the squares immediately

start to rotate and the amount of rotation monotonically
increases with the applied deformation. Note that in this
case the direction of rotation is dictated by the direction by
which the units are rotated in the initial configuration. Squares
rotated by θ0 in the clockwise direction rotate by θst in the
counterclockwise direction if εxx

st > 0 (i.e., θst < 0 if εxx
st > 0)

and in the clockwise direction if εxx
st < 0 (i.e., θst > 0 if εxx

st <

0). Differently, squares rotated by θ0 in the counterclockwise
direction rotate by θst in the clockwise direction if εxx

st > 0 and
in the counterclockwise direction if εxx

st < 0. As for the second
equilibrium branch, it emerges for large-enough values of the
applied compressive strain and it is associated to energetically
unfavorable rotations. However, since it is disconnected from
the main branch, it cannot be reached by simply compressing
the structure from the undeformed configuration.

Finally, the normalized stress �xx
st generated by the applied

deformation εxx
st is given by

�xx
st = F

x [i, j ]
1

kl2l cos θ0
= εxx

st cos θ0 + cos θ0 − cos �.
(19)

As shown in Fig. 3(b), for the metamaterial with θ0 = 0 the
stress-strain curve is bilinear, with a point of discontinuity
at εxx

st,cr = −2Kθ . Differently, the stress-strain curves of the
metamaterials with θ0 �= 0 are continuous and nonlinear.

V. PROPAGATION OF PLANAR NONLINEAR WAVES IN
THE PREDEFORMED METAMATERIAL

Having understood the static behavior of the system, we
now investigate how planar nonlinear waves propagate in the
predeformed metamaterial. In such case the total normalized
displacement and rotation experienced by the [i, j ]th square
can be written as

U [i, j ] = U
[i, j ]
st + U [i, j ]

w ,
(20)

θ [i, j ] = θ
[i, j ]
st + θ [i, j ]

w ,

where U
[i, j ]
st and θ

[i, j ]
st are the displacements and rotation

induced by the static predeformation and U
[i, j ]
w and θ

[i, j ]
w

are those generated by the propagating nonlinear wave. For
quasistatic predeformation considered in this study U

[i, j ]
st and

θ
[i, j ]
st satisfy Eqs. (14) and (15). Moreover, as in Eqs. (10),

since we consider planar waves propagating along the x

direction, we expect that

U [i+1, j ]
w = U [i, j ]

w and θ [i, j ]
w = θ [i+1, j ]

w ∀ i, j. (21)

Substitution of Eqs. (14) and (15) and (20) and (21) into
Eqs. (11) yields

∂2U
[i, j ]
w

∂T 2
= U [i, j+1]

w − 2U [i, j ]
w + U [i, j−1]

w − cos
(
θ

[i, j+1]
w + �

) − cos
(
θ

[i, j−1]
w + �

)
2 cos θ0

,

1

α2

∂2θ
[i, j ]
w

∂T 2
= −Kθ

[
θ [i, j+1]
w + 6θ [i, j ]

w + θ [i, j−1]
w + 8θst

] + Ks cos
(
θ [i, j ]
w + �

)[
sin

(
θ [i, j+1]
w + �

) + sin
(
θ [i, j−1]
w + �

)
− 2 sin

(
θ [i, j ]
w + �

)] − sin
(
θw

[i, j ] + �
)[

2 cos θ0
(
U [i, j+1]

w − U [i, j−1]
w + 2εxx

st

) + 8 cos θ0 − cos
(
θ [i, j+1]
w + �

)
+ − 6 cos

(
θ [i, j ]
w + �

) − cos
(
θ [i, j−1]
w + �

)]
. (22)
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Note that two angles come into play in Eqs. (22): (i) the angle
by which the squares are rotated in the statically deformed
configuration, � = θ0 + θst, and (ii) the rotation induced by
the propagating nonlinear planar wave, θ

[i, j ]
w .

While Eqs. (22) can only be solved numerically, a deeper
insight into the dynamics of the metamaterial can be achieved
by further simplifying them to derive analytical solutions. To
this end, we first introduce two continuous functions U and θ ,
which interpolate the discrete variables U

[i, j ]
w and θ

[i, j ]
w . Since

in Eqs. (22) only the displacements and rotations of squares in
the ith row appear (i.e., of squares located at xj = j 2l cos θ0),
such continuous functions only depend on the normalized
time T and the dimensionless coordinate along the x axis
X = x/(2l cos θ0) and are defined so that

U (X = Xj, T ) = U [i, j ]
w (T ),

(23)
θ (X = Xj, T ) = θ [i, j ]

w (T ),

with

Xj = xj

2l cos θ0
= j 2l cos θ0

2l cos θ0
= j. (24)

Assuming that the width of the propagating waves is much
larger than the unit cell, the displacement U and rotation θ in
correspondence to the [i, j − 1]th and [i, j + 1]th units can
then be expressed using Taylor expansion as

U (Xj−1, T ) ≈ U |Xj , T − ∂U

∂X

∣∣∣∣
Xj , T

+ 1

2

∂2U

∂X2

∣∣∣∣
Xj , T

,

U (Xj+1, T ) ≈ U |Xj , T + ∂U

∂X

∣∣∣∣
Xj , T

+ 1

2

∂2U

∂X2

∣∣∣∣
Xj , T

,

θ (Xj−1, T ) ≈ θ |Xj , T − ∂θ

∂X

∣∣∣∣
Xj , T

+ 1

2

∂2θ

∂X2

∣∣∣∣
Xj , T

,

θ (Xj+1, T ) ≈ θ |Xj , T + ∂θ

∂X

∣∣∣∣
Xj , T

+ 1

2

∂2θ

∂X2

∣∣∣∣
Xj , T

. (25)

Substitution of (23) and (25) into Eqs. (22) yields

∂2U

∂T 2
= ∂2U

∂X2
− 1

cos(θ0)

∂ cos(θ + �)

∂X
,

1

α2

∂2θ

∂T 2
= −Kθ

∂2θ

∂X2
+ Ks cos(θ + �)

∂2 sin(θ + �)

∂X2

+ sin(θ + �)
∂2 cos(θ + �)

∂X2
− 8Kθ (θ + θst )

− 4 sin(θ + �)

[
cos θ0

(
∂U

∂X
+ εxx

st

)

+ 2 cos(θ0) − 2 cos(θ + �)

]
. (26)

Moreover, if we assume that θ ∼ � � 1, sin(� + θ ) and
cos(� + θ ) can be approximated as

sin(� + θ ) ≈ sin � + θ cos � − θ2 sin �

2
− θ3 cos �

6
,

cos(� + θ ) ≈ cos � − θ sin � − θ2 cos �

2
+ θ3 sin �

6
.

(27)
By substituting Eqs. (27) into Eqs. (26) and collecting up to
third-order terms we obtain

∂2U

∂T 2
= ∂2U

∂X2
+ 1

cos θ0

[
sin � + θ cos � − θ2 sin �

2

]
∂θ

∂X
,

1

α2

∂2θ

∂T 2
= (Ks − Kθ )

∂2θ

∂X2
− 4 sin � cos θ0

∂U

∂X
− 4

[
cos θ0 cos �

(
2 + ∂U

∂X
+ εxx

st

)
+ 2Kθ − 2 cos(2�)

]
θ

+ 2 sin �

[(
2 + ∂U

∂X
+ εxx

st

)
cos θ0 − 8 cos �

]
θ2 + 2

3

[
cos θ0 cos �

(
2 + ∂U

∂X
+ εxx

st

)
− 8 cos(2�)

]
θ3, (28)

which represent the continuum governing equations of the system. Next, we introduce the traveling wave coordinate ζ = X −
cT , c being the normalized pulse velocity (the physical pulse velocity is c 2l cos θ0

√
kl/m), so that Eqs. (28) become

∂2U

∂ζ 2
= − 1

cos θ0(1 − c2)

[
sin � + θ cos � − θ2 sin �

2

]
∂θ

∂ζ
, (29a)

1

β

∂2θ

∂ζ 2
= 2 sin � cos θ0

∂U

∂ζ
+ 4

[
2Kθ − 2 cos(2�) + cos θ0 cos �

(
2 + ∂U

∂ζ
+ εxx

st

)]
θ

− 2 sin �

[(
2 + ∂U

∂ζ
+ εxx

st

)
cos θ0 − 8 cos �

]
θ2 − 2

3

[
cos θ0 cos �

(
2 + ∂U

∂ζ
+ εxx

st

)
− 8 cos(2�)

]
θ3, (29b)

with

β = α2

α2(Ks − Kθ ) − c2
. (30)

Integration of Eq. (29a) with respect to ζ yields

∂U

∂ζ
= − 1

cos θ0(1 − c2)

[
θ sin � + θ2 cos �

2
− θ3 sin �

6

]
+ C, (31)
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where C is the integration constant. Since in this study we
focus on the propagation of waves with a finite temporal
support and do not consider periodic waves, we require that

∂U

∂ζ

∣∣∣∣
ζ→∞

= 0, (32)

from which we obtain C = 0. Finally, by substituting Eq. (31)
into Eq. (29b) we obtain

d2θ

dζ 2
= C1θ + C2θ

2 + C3θ
3, (33)

where

C1 = −4β

[
sin2 �

1 − c2
+ 2 cos(2�) − 2Kθ

− (
2 + εxx

st

)
cos θ0 cos �

]
,

C2 = −2β sin �

[
(8c2 − 5) cos �

1 − c2
+ (

2 + εxx
st

)
cos θ0

]
,

C3 = −β

3

[
(16c2 − 9) cos(2�) − 1

1 − c2

+ 2
(
2 + εxx

st

)
cos θ0 cos �

]
. (34)

Equation (33) is the Klein-Gordon equation with quadratic
and cubic nonlinearities [32], which, as recently shown for
a mechanical metamaterial comprising an array of cross-
shaped rigid units connected via thin ligaments [27], admits
an analytical solution in the form of

θ = 1

D1 ± D2 cosh(ζ/W )
, (35)

where D1, D2, and W are solution parameters. Equation (35)
defines a solitary wave with characteristic width W and
amplitude

A = θ (ζ = 0) = 1

D1 ± D2
. (36)

Next we determine D1, D2, and W as a function of the
geometry of the system and the pulse velocity c. To this end,
we substitute Eq. (35) into Eq. (33) and find that the latter is
identically satisfied only if

D1 = − C2

3C1
, (37a)

D2 =
√

C2
2

9C2
1

− C3

2C1
, (37b)

W = 1√
C1

, (37c)

where C1, C2, and C3 are defined in Eqs. (34). At this point
it is important to note that the existence of the two solutions
defined by Eq. (35) requires that

(i) W is real valued, yielding

C1 > 0; (38)

(ii) D2 is a real number, yielding

C2
2

9C2
1

− C3

2C1
> 0; (39)

(iii) the denominator in Eq. (35) is different from zero,

D1 ± D2 cosh(ζ/W ) �= 0. (40)

Violation of Eqs. (38)–(40) may result in the formation
of amplitude gaps for the solitary waves (i.e., ranges in am-
plitude where elastic soliton propagation is forbidden) [27].
Moreover, since D2 > 0 [see Eq. (37b)] and cosh(ζ/W ) ∈
[1,∞), Eq. (40) is only satisfied if |D1| < D2. Differently,
for |D1| > D2 only one of the two solitary waves defined
by Eq. (35) exists. Specifically, if the system parameters for
a metamaterial with θ0 � 0 (for which D1 is always smaller
than D2) are such that −D1 > D2, then the solution given by
Eq. (35) reduces to

θ = 1

D1 − D2 cosh(ζ/W )
. (41)

Further, it is important to point out that for D2 = 0 the
solution given by Eq. (35) reduces to a constant (i.e., θ =
1/D1 when D2 = 0). Notably, we find that for D2 = 0 (i.e.,
2C2

2 − 9C1C3 = 0) Eq. (33) can be rewritten as

d2θ

dζ 2
= C3θ

(
θ + C2

3C3

)(
θ + 2C2

3C3

)
, (42)

which admits the nontrivial solution

θ = A

2

[
1 − tanh

(
± ζ

W

)]
, (43)

with

A = −2C2

3C3
, (44a)

W = 2√
C1

. (44b)

Equations (43) and (44) define either a kink [in the case
of + sign in Eq. (43)] or antikink [in the case of − sign in
Eq. (43)], which are typically associated to a phase transition
[33–35]. As discussed in the previous section, this solution
takes the deformed metamaterial from one static equilibrium
position to another one. Note that Eqs. (42) and (43) corre-
spond to some extent to the well-known φ4 model [36], with
an additional topological constraint. Since Eq. (43) defines a
transition between the two existing stable states, in our system
a kink must necessarily be followed by an antikink.

Finally, the solution for the displacement U is found by
integrating Eq. (31)

U =
∫ ∞

ζ

1

cos θ0(1 − c2)

[
θ (ζ ′) sin � + θ (ζ ′)2 cos �

2

− θ (ζ ′)3 sin �

6

]
dζ ′. (45)

with θ given by either Eq. (35) or Eq. (41) or Eq. (43). As
recently found for undeformed structures comprising a net-
work of rigid units connected by thin and highly deformable
ligaments [26,27], Eqs. (35), (41), (43), and (45) indicate that
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FIG. 4. Effect of the applied strain εxx
st on the velocity c and on

the types of solitary waves supported by a metamaterial with θ0 = 0.
The red dashed line indicates the critical strain εxx

st,cr .

also the predeformed system considered in this study supports
the propagation of elastic vector solitons (i.e., solitary waves
with two components—one translational and one rotational—
that are coupled together and copropagate without dispersion).
Moreover, since the solution depends on εxx

st , they show that
the characteristics of such solitary waves can be controlled by
tuning the amount of applied deformation.

A. Metamaterials with θ0 = 0

To better understand the effect of the applied deformation
on the propagation of solitary waves, we start focusing on a
metamaterial with θ0 = 0 (i.e., a metamaterial in which the
diagonals of all the squares are aligned). In Fig. 4 we show the
solitary waves supported by the structure as a function of the
applied predeformation εxx

st . We find that three different sce-
narios are possible: (i) D2 > 0, so that the supported solitons
are defined by Eq. (35) (pink region in Fig. 4); (ii) D2 = 0,
so that the supported solitons are defined by Eq. (43) (blue
region in Fig. 4); (iii) at least one of the condition defined by
Eqs. (38)–(40) is violated, so that no physical solution exists
(gray region in Fig. 4). Those findings indicate that εxx

st can
be exploited to switch between the different types of solitary
waves supported by the structure. While in the prebuckling
regime (i.e., for εxx

st > εxx
st,cr) the metamaterial supports the

propagation of vector solitons with rotational component de-
fined by Eq. (35), in the entire postbuckling regime (i.e., for
εxx

st < εxx
st,cr) only those with rotational component defined by

Eq. (43) can propagate.

1. Prebuckling regime: εxx
st > εxx

st,cr

Having determined that prior to buckling the metamaterials
with θ0 = 0 support the propagation of the solitary waves
defined by Eq. (35), we now investigate how their width
W and velocity c are affected by the applied deformation.
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FIG. 5. Effect of the applied strain εxx
st on the velocity c and

width W of the solitons according to Eqs. (48). (a) Evolution of c

as a function of A and εxx
st . (b) Evolution of c as a function of A

and εxx
st . The circular markers indicate the points considered in our

numerical analysis, whose results are presented in Fig. 6.

Since in a metamaterial with θ0 = 0 the squares do not rotate
prior to buckling (i.e., θst = 0 for εxx

st > εxx
st,cr), for εxx

st > εxx
st,cr

Eqs. (34) reduce to

C1 = 4β
[
2Kθ + εxx

st

]
,

C2 = 0, (46)

C3 = −2β

[
2c2 − 1

1 − c2
+ εxx

st

3

]
,

and the general solution given by Eqs. (35) and (45) simplifies
to

θ = A sech

(
ζ

W

)
,

U = A2W

2(1 − c2)

[
1 − tanh

(
ζ

W

)]
. (47)

Moreover, substitution of Eqs. (46) into Eqs. (36) and (37c)
yields

W = 1

2α
√

2Kθ + εxx
st

√
(Ks − Kθ )α2 − 1 + 3

γ + 6
,

c =
√

γ + 3

γ + 6
, (48)

with

γ = 12A2(εxx
st + 2Kθ

) − εxx
st . (49)
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FIG. 6. [(a)–(e)] Numerical (markers) and analytical (lines) re-
sults for a metamaterial characterized by θ0 = 0 (see Supplemen-
tal Movie S1 for animations [37]). Rotation (left) and normalized
displacement (right) profiles at different level of applied predefor-
mation: (a) εxx

st = 0, (b) εxx
st = −0.008, (c) εxx

st = −0.018, (d) εxx
st =

0.008, and (e) εxx
st = 0.012. In each plot we show the profiles at T =

1050, 1550, and 2050. Note that the results for the buckled system

Equations (48) clearly show that both the width and the
velocity of the solitons propagating with a given amplitude A

can be controlled by tuning the applied predeformation εxx
st .

More specifically, Eqs. (48) indicate the following:
(i) When the metamaterial is stretched (i.e., for εxx

st > 0),
the velocity c becomes larger [see Fig. 5(a)] and the width
W becomes smaller [see Fig. 5(b)] as the amount of applied
prestrain εxx

st is increased;
(ii) on compression (i.e., for εxx

st < 0), c progressively
decreases [see Fig. 5(a)], while W increases [see Fig. 5(b)].
It is also important to note that W approaches infinity at the
onset of buckling [i.e., W → ∞ at εxx

st = ε
xx,cr
st = −2Kθ ; see

Fig. 5(b)]. This further confirms that at the onset of buckling
the considered metamaterial cannot no longer support the
propagation of the elastic vector solitons defined by Eqs. (47).

To validate the predictions of our continuum model, we
numerically solve the system of ordinary differential equa-
tions (ODEs) given by Eqs. (22). In our numerical analysis
we consider a chain comprising 1 × 500 squares, implement
periodic boundary conditions in the transverse direction and
apply the theoretical solution given by Eq. (47) to the first
square of the chain (while leaving the other end free). In Fig. 6
we compare analytically (lines) and numerically (markers)
predicted rotations (left) and normalized displacements (right)
profiles at different level of applied deformation εxx

st , assuming
A = 0.30. In general, we observe an excellent agreement
between the numerical results and the predictions of our
continuum model. The numerical simulations confirm that in
the postbuckling regime the considered metamaterial cannot
support the solitons defined by Eq. (47), as the wave is
dispersed during propagation if εxx

st < εxx
st,cr [see results for

εxx
st = −0.018 in Fig. 6(c)]. Moreover, they also indicate that

solitary waves are not supported by the system for large-
enough positive εxx

st [see results for εxx
st = 0.012 in Fig. 6(e)].

This is because for large-enough applied tensile deforma-
tions the width W of the propagating solitons is so small
that the continuum approximation introduced to derive our
analytical solution [Eqs. (25)] is not anymore valid. To better
characterize this effect, in Fig. 6(f) we report the number
of units after which the amplitude of the solitary wave is
reduced by half, N0.5A. The contour plot shows that N0.5A

significantly drops when εxx
st and A are such that W ∼ 2.

Therefore, our numerical results indicate that, although the
considered discrete system does not exhibit amplitude gaps
for elastic vector solitons [27] [since W is real valued for
any amplitude A; see Fig. 5(b)], it still does not support the
propagation of solitary waves if W is small enough (albeit
greater than zero).

2. Postbuckling regime: εxx
st < εxx

st,cr

Next, we turn our attention to the postbuckling regime,
where only vector solitons with rotational component defined

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(i.e., for εxx

st = −0.018) are obtained by applying the solution given
by Eq. (47) with W = 6. Although the choice of W is completely
arbitrary, quantitatively identical results are obtained for any real W .
(f) Number of units after which the amplitude of the solitary wave
is reduced by half, N0.5A, as a function of the applied strain εxx

st and
amplitude A.
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(a) Evolution of W as a function of c and εxx

st . (b) Evolution of A
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st . The gray-shaded areas highlight regions

where no solution exists. The circular markers indicate the points
considered in our numerical analysis, whose results are presented in
Fig. 8.

by Eq. (43) can propagate (see Fig. 4). In Fig. 7 we report the
evolution of the amplitude A and width W of such solitons
[given by Eqs. (44)] as a function of c and εxx

st . We find
that the width W monotonically decreases as the applied
precompression is increased [see Fig. 7(a)]. Hovewer, while in
the subsonic regime (i.e., for c < 1) W remains large enough
[i.e., min(W ) = 6.68 for the considered range of applied
strain] so that we do not expect discrete effects to prevent
the propagation of the solitons, we find that the supersonic
solitons (i.e., solitons with c > 1) are characterized by a very
small width [i.e., min(W ) = 0.05 for the considered range of
applied strain]. As for the amplitude A, the plot in Fig. 7(b)
indicates that it is fully determined by εxx

st and not affected by
c. To further investigate this point, we assume that the static
rotations induced by buckling are small, so that

sin θst ≈ θst, and cos θst ≈ 1 − θ2
st

2
. (50)

Substitution of Eqs. (50) into Eq. (44a) yields

A = −2C2

3C3
≈ −2θst, (51)

which confirms that the amplitude of the propagating solitons
only depends on the amount of applied predeformation. More-
over, Eq. (51) indicates that the solitons take the buckled struc-
ture from one stable configuration (characterized by θst) to the

mirrored one on the same equilibrium branch [characterized
by −θst; see Fig. 3(a)].

Next, we verify the predictions of our continuum model by
comparing them to numerical results obtained by integrating
the system of ODEs given by Eqs. (22) on a chain comprising
1 × 500 squares and with periodic boundary conditions in
the transverse direction. The results shown in Fig. 8 confirm
that in the postbuckling regime the considered metamaterial
supports the propagation of vector solitons with rotational
component defined by Eq. (43). They also show that for the
subsonic solitons the displacement U is negative and has
a positive gradient [see Figs. 8(a) and 8(b)]. As such, the
solitons with c < 1 stretch the structure in the longitudinal
direction during propagation. Note that in Fig. 8(c) we show
the propagation of a sequence of three kinks and antikinks,
corresponding to the plus and minus sign solutions of Eq. (43).
Differently from Sine-Gordon systems comprising an infinite
number of stable states and consequently supporting arbitrary
sequences of kinks or antikinks [36], our system has only
two stable states. Consequently, a kink must necessarily be
followed by an antikink. Since for both solutions the dis-
placement U is negative and has a positive gradient, the
train of kinks and antikinks leads to a cumulated stairlike
displacement along the chain. As for the rotation, the square
jumps back and forth between the two stable angles. Finally,
in Figs. 8(d) and 8(e) we focus on the supersonic kink
solitons. We find that they compress the metamaterial during
propagation [see Figs. 8(d) and 8(e)]. However, since their
width is very small, they are supported by the discrete systems
only when the applied deformation is very close to the critical
strain [see Figs. 8(d) and 8(e)].

B. Metamaterials with θ0 �= 0

While in the previous section we have focused on the
dynamic response of metamaterials with θ0 = 0, we now
turn our attention to structures in which the squares are
initially rotated (i.e., metamaterials with θ0 �= 0). We start by
investigating the characteristics of the solitons supported by
these metamaterials as a function of the applied deformation.
As shown in Fig. 9, three different scenarios are possible:
(i) |D1| < D2, so that the supported solitons are defined by
Eq. (35) (pink region in Fig. 9); (ii) |D1| > D2, so that the
supported solitons are defined by Eq. (41) (yellow region
in Fig. 9); (iii) at least one of the condition defined by
Eqs. (38)–(40) is violated, so that no physical solution exists
(gray region in Fig. 9). Furthermore, the results shown in
Figs. 9(a) and 9(b) for structures with θ0 = 0.01 and 0.25
also indicate that θ0 strongly affects the dynamic response of
the system. The structure with θ0 = 0.01 supports subsonic
vector solitons with rotational component defined by Eq. (35)
for all considered values of εxx

st and supersonic solitons with
θ defined by Eq. (41) only for large-enough values of applied
precompression. Differently, in the structure with θ0 = 0.25
both types of solitary waves are supported for the entire range
of applied predeformation and also subsonic solitons with
rotational component defined by Eq. (41) can propagate for
large-enough values of applied precompression. To further
understand the effect of θ0 on the propagation of solitary
waves, in Fig. 10(c) we focus on εxx

st = 0 and investigate the
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FIG. 8. Numerical (markers) and analytical (lines) results for
a buckled metamaterial characterized by θ0 = 0 (see Supplemen-
tal Movie S1 for animations [37]). Rotation (left) and normalized
displacement (right) profiles for: (a) εxx

st = −0.01 and c = 0.4 at
T = 480, 800, and 1280; (b) εxx

st = −0.02 and c = 0.4 at T = 480,
800, and 1280; (c) εxx

st = −0.02 and c = 0.4 when excited with a
sequence of kinks and antikinks; (d) εxx

st = −0.0085 and c = 1.2 at
T = 220, 400, and 580; (e) εxx

st = −0.009 and c = 1.2 at T = 460,
580, and 700.
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types of solitons supported by our metamaterials as a function
of θ0 (note that qualitatively identical behavior is found for
any considered value of εxx

st ). As suggested by the results
reported in Figs. 9(a) and 9(b), we find that θ0 strongly affects
the presence of the vector solitons with θ defined by Eq. (41),
since they are supported by the system only for large-enough
values of initial rotation of the squares.

Next we focus on the metamaterial with θ0 = 0.01 and
investigate how the velocity c and width W of the supported
solitons are affected by εxx

st . Specifically, in Figs. 10(a) and
10(b) we report the evolution of c and W as a function of
A and εxx

st [note that these plots are obtained by combining
Eqs. (36) and (37c), which provide the A-c and W -c relations,
respectively]. Similarly to the structure with θ0 = 0, we find
that also for this metamaterial the velocity and width of the
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FIG. 11. Numerical (markers) and analytical (lines) results for a
metamaterial characterized by θ0 = 0.01 (see Supplemental Movie
S1 for animations [37]). Rotation (left) and normalized displacement
(right) profiles for (a) εxx

st = −0.01 and A = ±0.30 at T = 250, 450,
and 650; (b) εxx

st = −0.01 and A = −0.24 at T = 260, 440, and 620;
(c) εxx

st = −0.02 and A = −0.19 at T = 200, 300, and 400.

vector solitons with rotational component defined by Eq. (35)
become larger and smaller, respectively, as εxx

st increases [see
Figs. 10(a) and 10(b)]. However, while in the case θ0 = 0
the characteristics of the propagating solitons are not affected
by the direction of the rotations that they induce (so that in
Fig. 5 we only plot the solution for A > 0), in the system with
θ0 = 0.01 there is a disparity between the two directions of
rotations. A solitary wave that induces energetically favorable
rotations (i.e., for which A > 0) travels slower than the cor-
responding one inducing energetically unfavorable rotations
[i.e., for which A < 0; see Fig. 11(a)]. Furthermore, the
metamaterial with θ0 = 0.01 has an amplitude gap for solitons
(see gray region in Fig. 10), inside which Eq. (33) has no
physical solution. As shown by the numerical results reported
in Fig. 11(b), if a soliton with amplitude inside the gap is
excited, it cannot propagate through the system. It is important
to note that such gap is highly asymmetric and only affects
the solitons that induce energetically unfavorable rotations
(i.e., the upper bound of the gap is A = 0, so that all solitons
that induce energetically favorable rotations at the squares
can propagate, regardless of their amplitude). Our results also
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FIG. 12. Effect of the applied strain εxx
st and amplitude A on

(a) the velocity c and (b) the width W of the solitons supported
by a metamaterial with θ0 = 0.25. The gray region highlights the
amplitude gap as predicted by the continuum model.

indicate that the gap becomes more pronounced as the amount
of applied precompression is increased. This is because the
applied compressive strain further increases the rotation of the
squares, making the asymmetry of the structure even stronger.
To further explore the effect of εxx

st on the width of the gap, in
Fig. 10(c) we report the evolution of its lower limit, Alower, as
a function of the applied strain εxx

st and the hinge width t/(2l)
(note that for a metamaterial with θ0 = 0.01 the upper limit
of the gap is always 0). We find that the gap almost vanishes
as the thickness of the hinges increases and that the influence
of εxx

st on Alower is more pronounced for the structures with
thinner hinges. Finally, we note that the supersonic vector
solitons with θ defined Eq. (41) emerges as a small island
inside the gap [see Figs. 10(a) and 10(b)]. However, these
solitons have very small width [i.e., max(W ) = 0.68], so that
they are not supported by the discrete system [Fig. 11(c)].

Finally, in Fig. 12 we focus on a structure with θ0 = 0.25.
We find that by increasing the initial rotation of the squares the
amplitude gap widens and becomes more pronounced over the
entire range of applied deformation. As for the vector solitons
with θ defined by Eq. (41), they emerge as two islands inside
the gap. However, also in this case because of their small
width we do not expect them to propagate in the discrete
system.

VI. CONCLUSIONS

In summary, we have focused on a mechanical meta-
material comprising an array of squares connected at their
vertices via thin ligaments and used numerical simulations
and theoretical analysis to investigate the effect of static

(a)

(b)

(c)

FIG. 13. Schematics highlighting the boundary conditions used
in our FE simulations to determine (a) kl , (b) ks , and (c) kθ .

predeformation on planar solitary waves that propagate along
one of its principal directions. Our analyses indicate that
(i) the applied predeformation strongly affect the width and
velocity of the propagating solitons; (ii) depending on the
amount of applied deformation different types of solitons
are supported by the system, of which we systematically
studied the existence and properties; (iii) solitons with small
width (i.e., W < 2) are not supported by the discrete sys-
tem, as disperse during propagation; (iv) the width of the
amplitude gaps can be tuned via the applied deformation.
We believe that the results presented in this paper provide
useful guidelines for the design of structures with enhanced
wave tunability and target nonlinear elastic properties. More-
over, we envision application of the observed kink waves
in the reconfiguration of complex bistable structures, re-
sulting in changes of their mechanical, thermal, acoustical
properties.
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APPENDIX: NUMERICAL SIMULATIONS TO
DETERMINE kl , ks, AND kθ

To determine the spring stiffness kl , ks , and kθ as a function
of the hinges geometry, we conduct finite-element simulations
using the commercial package Abaqus/Standard. In all our
analysis, (i) we consider two half squares (see dark blue region
in Fig. 13); (ii) we assume plane strain conditions; (iii) we
mesh the models using hybrid quadratic triangular elements
(Abaqus element type: CPE8H) and ascertain the accuracy of
the mesh through a mesh refinement study; (iv) we use a linear
material with Young’s modulus E = 1 MPa and Poisson’s
ratio ν = 0.3 to capture the material response; and (v) we do
not account for geometric nonlinearities.

To determine the spring stiffness kl and ks we apply an
horizontal displacement δl and a vertical displacement δs to

the two boundaries of our model, respectively [see Figs. 13(a)
and 13(b)]. The stiffness is then obtained from the measured
reaction force Fl and Fs (given by the sum of all reaction
forces at the nodes located on one of the two boundaries) as

kl = Fl

2δl

, ks = Fs

2δs

. (A1)

As for the stiffness kθ , the two squares are rotated by
applying the displacement distribution δt shown in Fig. 13(c).
The stiffness kθ is then obtained as

kθ = lMt

2 max(δt )
, (A2)

where Mt is calculated by summing up the moment generated
by every nodal force on the boundary.

[1] M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, Rep.
Prog. Phys. 76, 126501 (2013).

[2] J. Christensen, M. Kadic, O. Kraft, and M. Wegener, MRS
Commun. 5, 453 (2015).

[3] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke,
Nat. Rev. Mater. 2, 17066 (2017).

[4] M. Hussein, M. Leamy, and M. Ruzzene, Appl. Mech. Rev. 66,
040802 (2014).

[5] Y. Wu, M. Yang, and P. Sheng, J. Appl. Phys. 123, 090901
(2018).

[6] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and
V. Laude, Appl. Phys. Lett. 84, 4400 (2004).

[7] M. Kafesaki, M. M. Sigalas, and N. Garcia, Phys. Rev. Lett. 85,
4044 (2000).

[8] S. Cummer and D. Schurig, New J. Phys. 9, 45 (2007).
[9] D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C.

Marquardt, and G. Leuchs, Phys. Rev. Lett. 97, 133901 (2006).
[10] T. Elnady, A. Elsabbagh, W. Akl, O. Mohamady, V. M. Garcia-

Chocano, D. Torrent, F. Cervera, and J. Sánchez-Dehesa, Appl.
Phys. Lett. 94, 134104 (2009).

[11] F. Casadei, L. Dozio, M. Ruzzene, and K. Cunefare, J. Sound
Vib. 329, 3632 (2010).

[12] L. Airoldi and M. Ruzzene, New J. Phys. 13, 113010 (2011).
[13] F. Casadei, B. Beck, K. A. Cunefare, and M. Ruzzene, Int. J.

Solids Struct. 23, 1169 (2012).
[14] V. K. Kinra and E. L. Ker, Int. J. Solids Struct. 19, 393 (1983).
[15] M. Kafesaki, M. M. Sigalas, and E. N. Economou, Solid State

Commun. 96, 285 (1995).
[16] X. Zhang, Z. Liu, Y. Liu, and F. Wu, Phys. Lett. A 313, 455

(2003).
[17] S. X. Yang, J. H. Page, Z. Y. Liu, M. L. Cowan, C. T. Chan, and

P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).
[18] R. Sainidou, B. Djafari-Rouhani, Y. Pennec, and J. O. Vasseur,

Phys. Rev. B 73, 024302 (2006).
[19] K. Bertoldi and M. C. Boyce, Phys. Rev. B 77, 052105 (2008).
[20] P. Wang, J. Shim, and K. Bertoldi, Phys. Rev. B 88, 014304

(2013).

[21] D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi,
and A. Vaziri, Phys. Rev. B 92, 104304 (2015).

[22] S. Rudykh and M. C. Boyce, Phys. Rev. Lett. 112, 034301
(2014).

[23] S. Babaee, P. Wang, and K. Bertoldi, J. Appl. Phys. 117, 244903
(2015).

[24] P. Celli, S. Gonella, V. Tajeddini, A. Muliana, S. Ahmed, and Z.
Ounaies, Smart Mater. Struct. 26, 035001 (2017).

[25] P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi,
Phys. Rev. Lett. 113, 014301 (2014).

[26] B. Deng, J. R. Raney, V. Tournat, and K. Bertoldi, Phys. Rev.
Lett. 118, 204102 (2017).

[27] B. Deng, P. Wang, Q. He, V. Tournat, and K. Bertoldi, Nat.
Commun. 9, 3410 (2018).

[28] J. Grima and K. Evans, J. Mat. Sci. Lett. 19, 1563
(2000).

[29] Y. Cho, J.-H. Shin, A. Costa, T. Kim, V. Kunin, J. Li, S. Yeon
Lee, S. Yang, H. Han, I.-S. Choi, and D. Srolovitz, Proc. Natl.
Acad. Sci. USA 111, 17390 (2014).

[30] M. Taylor, L. Francesconi, M. Gerendäs, A. Shanian, C. Carson,
and K. Bertoldi, Adv. Mater. 26, 2365 (2014).

[31] C. Coulais, C. Kettenis, and M. van Hecke, Nat. Phys. 14, 40
(2018).

[32] A. Polyanin and V. Zaitsev, Handbook of Nonlinear Partial Dif-
ferential Equations (Chapman and Hall/CRC, London, 2011).

[33] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge
Monographs on Mathematical Physics (Cambridge University
Press, Cambridge, 2004).

[34] J. R. Raney, N. Nadkarni, C. Daraio, D. M. Kochmann, J. A.
Lewis, and K. Bertoldi, Proc. Natl. Acad. Sci. U.S.A. 113, 9722
(2016).

[35] B. G.-g. Chen, N. Upadhyaya, and V. Vitelli, Proc. Natl. Acad.
Sci. U.S.A. 111, 13004 (2014).

[36] T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge
University Press, Cambridge, 2006).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.98.053001 for Supplemental Movie S1.

053001-13

https://doi.org/10.1088/0034-4885/76/12/126501
https://doi.org/10.1088/0034-4885/76/12/126501
https://doi.org/10.1088/0034-4885/76/12/126501
https://doi.org/10.1088/0034-4885/76/12/126501
https://doi.org/10.1557/mrc.2015.51
https://doi.org/10.1557/mrc.2015.51
https://doi.org/10.1557/mrc.2015.51
https://doi.org/10.1557/mrc.2015.51
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1115/1.4026911
https://doi.org/10.1115/1.4026911
https://doi.org/10.1115/1.4026911
https://doi.org/10.1115/1.4026911
https://doi.org/10.1063/1.5007682
https://doi.org/10.1063/1.5007682
https://doi.org/10.1063/1.5007682
https://doi.org/10.1063/1.5007682
https://doi.org/10.1063/1.1757642
https://doi.org/10.1063/1.1757642
https://doi.org/10.1063/1.1757642
https://doi.org/10.1063/1.1757642
https://doi.org/10.1103/PhysRevLett.85.4044
https://doi.org/10.1103/PhysRevLett.85.4044
https://doi.org/10.1103/PhysRevLett.85.4044
https://doi.org/10.1103/PhysRevLett.85.4044
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1103/PhysRevLett.97.133901
https://doi.org/10.1103/PhysRevLett.97.133901
https://doi.org/10.1103/PhysRevLett.97.133901
https://doi.org/10.1103/PhysRevLett.97.133901
https://doi.org/10.1063/1.3111797
https://doi.org/10.1063/1.3111797
https://doi.org/10.1063/1.3111797
https://doi.org/10.1063/1.3111797
https://doi.org/10.1016/j.jsv.2010.04.003
https://doi.org/10.1016/j.jsv.2010.04.003
https://doi.org/10.1016/j.jsv.2010.04.003
https://doi.org/10.1016/j.jsv.2010.04.003
https://doi.org/10.1088/1367-2630/13/11/113010
https://doi.org/10.1088/1367-2630/13/11/113010
https://doi.org/10.1088/1367-2630/13/11/113010
https://doi.org/10.1088/1367-2630/13/11/113010
https://doi.org/10.1177/1045389X12443014
https://doi.org/10.1177/1045389X12443014
https://doi.org/10.1177/1045389X12443014
https://doi.org/10.1177/1045389X12443014
https://doi.org/10.1016/0020-7683(83)90051-3
https://doi.org/10.1016/0020-7683(83)90051-3
https://doi.org/10.1016/0020-7683(83)90051-3
https://doi.org/10.1016/0020-7683(83)90051-3
https://doi.org/10.1016/0038-1098(95)00444-0
https://doi.org/10.1016/0038-1098(95)00444-0
https://doi.org/10.1016/0038-1098(95)00444-0
https://doi.org/10.1016/0038-1098(95)00444-0
https://doi.org/10.1016/S0375-9601(03)00807-7
https://doi.org/10.1016/S0375-9601(03)00807-7
https://doi.org/10.1016/S0375-9601(03)00807-7
https://doi.org/10.1016/S0375-9601(03)00807-7
https://doi.org/10.1103/PhysRevLett.93.024301
https://doi.org/10.1103/PhysRevLett.93.024301
https://doi.org/10.1103/PhysRevLett.93.024301
https://doi.org/10.1103/PhysRevLett.93.024301
https://doi.org/10.1103/PhysRevB.73.024302
https://doi.org/10.1103/PhysRevB.73.024302
https://doi.org/10.1103/PhysRevB.73.024302
https://doi.org/10.1103/PhysRevB.73.024302
https://doi.org/10.1103/PhysRevB.77.052105
https://doi.org/10.1103/PhysRevB.77.052105
https://doi.org/10.1103/PhysRevB.77.052105
https://doi.org/10.1103/PhysRevB.77.052105
https://doi.org/10.1103/PhysRevB.88.014304
https://doi.org/10.1103/PhysRevB.88.014304
https://doi.org/10.1103/PhysRevB.88.014304
https://doi.org/10.1103/PhysRevB.88.014304
https://doi.org/10.1103/PhysRevB.92.104304
https://doi.org/10.1103/PhysRevB.92.104304
https://doi.org/10.1103/PhysRevB.92.104304
https://doi.org/10.1103/PhysRevB.92.104304
https://doi.org/10.1103/PhysRevLett.112.034301
https://doi.org/10.1103/PhysRevLett.112.034301
https://doi.org/10.1103/PhysRevLett.112.034301
https://doi.org/10.1103/PhysRevLett.112.034301
https://doi.org/10.1063/1.4923032
https://doi.org/10.1063/1.4923032
https://doi.org/10.1063/1.4923032
https://doi.org/10.1063/1.4923032
https://doi.org/10.1088/1361-665X/aa59ea
https://doi.org/10.1088/1361-665X/aa59ea
https://doi.org/10.1088/1361-665X/aa59ea
https://doi.org/10.1088/1361-665X/aa59ea
https://doi.org/10.1103/PhysRevLett.113.014301
https://doi.org/10.1103/PhysRevLett.113.014301
https://doi.org/10.1103/PhysRevLett.113.014301
https://doi.org/10.1103/PhysRevLett.113.014301
https://doi.org/10.1103/PhysRevLett.118.204102
https://doi.org/10.1103/PhysRevLett.118.204102
https://doi.org/10.1103/PhysRevLett.118.204102
https://doi.org/10.1103/PhysRevLett.118.204102
https://doi.org/10.1038/s41467-018-05908-9
https://doi.org/10.1038/s41467-018-05908-9
https://doi.org/10.1038/s41467-018-05908-9
https://doi.org/10.1038/s41467-018-05908-9
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1073/pnas.1417276111
https://doi.org/10.1073/pnas.1417276111
https://doi.org/10.1073/pnas.1417276111
https://doi.org/10.1073/pnas.1417276111
https://doi.org/10.1002/adma.201304464
https://doi.org/10.1002/adma.201304464
https://doi.org/10.1002/adma.201304464
https://doi.org/10.1002/adma.201304464
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nphys4269
https://doi.org/10.1073/pnas.1604838113
https://doi.org/10.1073/pnas.1604838113
https://doi.org/10.1073/pnas.1604838113
https://doi.org/10.1073/pnas.1604838113
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
http://link.aps.org/supplemental/10.1103/PhysRevE.98.053001



