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Liquid redistribution in sheared wet granular media
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Shearing wet granular systems causes a redistribution of the interstitial liquid, which can affect the material’s
bulk behavior. Using the discrete-element method, we study the early rapid transients, the intermediate states,
and the slow long-term evolution of liquid redistribution for various material parameters and different initial
wetting conditions in an inhomogeneous split-bottom ring-shear cell featuring a wide shear band away from the
system walls. In our model, liquid exists in two states, either in liquid bridges between particles or in liquid
films on the particle surfaces. Under deformations like shear, the liquid is redistributed due to the rupture of
existing and formation of new liquid bridges. Since we assume the immediate redistribution limit as a new
model parameter, a liquid bridge limit volume is imposed to avoid extensive clustering of liquid. Studying the
effect of the local shear rate on the liquid redistribution, two distinct effects are observed: For small amounts of
shear, i.e., small strain amplitude, the interstitial liquid is randomly redistributed locally, and for larger amounts
of shear, liquid is transported away from the shear zone. The local redistribution quickly results in a characteristic
probability distribution of liquid bridge volumes, independent of the initial wetting conditions, but the mean and
the shape of the distribution are dependent on the limit volume. Although the shear-driven diffusion-like liquid
transport is active from the beginning, it dominates the transport in the long term, when the liquid moves out
of the shear band, making the shear band dry. Ongoing theoretical analysis suggests a competition of drift and
diffusive mechanisms in a different set of coordinates that can explain all our observations by defining a local
Péclet number that quantifies the relative strength of the two transport mechanisms.
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I. INTRODUCTION

The microstructure of confined granular media is typically
inhomogeneous, anisotropic, and disordered [1,2]. Under ex-
ternal loading, these systems exhibit a nonequilibrium jam-
ming transition from a solidlike to a liquidlike state [3–5]
when the applied shear stress or energy exceeds the shear
resistance or interparticle energy and materials start to flow.
The microstructure is disturbed and rearranged completely
during this process. Thus, the internal structure of the granular
medium changes continuously when subjected to shear. This
internal structure is influenced by polydispersity, related struc-
tural features, and frictional properties of the granular parti-
cles, which thus play a crucial role in determining their flow
dynamics [6–11]. For example, shear tests of both drained
and undrained sand show a state transformation, depending
on the initial packing density, before it reaches a critical
state [12–14]. This state transformation corresponds to a local
maximum in the evolution of the coordination number. In
a typical consolidated-drained condition, the pore water can
drain out of the soil easily, causing volumetric strains in the
soil and reaching the same critical state irrespective of the
initial configuration.
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Wet granular media are collections of grains containing un-
saturated interstitial fluid, with athermal interactions through
cohesive capillary, repulsive elastic, and dissipative contact
forces. These capillary interactions are dependent on intrinsic
properties of the contact force model, namely, the maximum
capillary force and the maximum interaction distance [15].
External forces lead to granular flow if the applied shear stress
exceeds the yield stress, eventually leading to a lower critical-
state shear stress after finite shear strain [16–18]. A simple
constitutive relation for the critical-state shear stress is consti-
tuted by the bulk cohesion and the macro friction coefficient
[15,19,20]. The bulk cohesion is correlated with the Bond
number or adhesion index, measured as the squared ratio of
stress to wetting timescales [15,21]. This bulk cohesion was
analyzed in terms of the force and fabric anisotropies [21] for
wet granular materials. In our previous studies, a generalized
rheology shows that the steady-state shear stress is factorized
into a product of functions of different dimensionless numbers
[18,22], if a simplistic situation is assumed where all contacts
have an equal liquid bridge volume. The liquid in the system is
then not treated as a separate entity; rather the contact model
takes into account the effect of liquid capillary bridges.

Recent results by Mani et al. [23–25] show from experi-
ments and simulations that the liquid content decreases within
wet shear bands. This is a diffusion-driven phenomenon oc-
curring at larger amount of shear, which causes the liquid
to be transported away from the shear band. However, much
remains unexplored of the initial redistribution of the liq-
uid, which happens within a smaller shear strain scale and
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is the major focus of our discussion. Within small shear
strain, the liquid volume is conserved within the shear band,
while the liquid is locally redistributed. This prompts us to
look for a liquid migration model in our discrete element
method (DEM) simulations where liquid moves between con-
tacts due to shear-driven liquid bridge formation and rupture.
Note that liquid transport fluxes are also driven by Laplace
pressure changes [24,26–28], either through the vapor phase
or through the wetting layers on the beads [29]. However, this
mode of liquid transport is excluded from the discussion in
this paper.

Understanding the role of shear on the redistribution of liq-
uid in wet granular materials is of considerable technological
importance for applications in many fields, such as civil engi-
neering, pharmaceutical research, and agronomy, especially in
process equipments subjected to inhomogeneous shear. One
important application is the flow in industrial mixers and
granulators. Note that the initial liquid distribution can vary
significantly: The initial homogeneous liquid bridge volume
in all contacts is observed if the initial wet sample is prepared
by allowing equilibration by suction before shear. Conversely,
another extreme situation is observed if all liquids are present
in the form of liquid films and the initial sample is given a
minimum equilibration time before shear [23]. We study here
the transients of liquid redistribution upon shear, considering
these two extremes of initial conditions. The question that
comes to our mind is whether the liquid distribution reaches
a steady or critical state which is independent of the initial
configuration. In order to check this, we are investigating here
the transient of liquid redistribution for wet granular media,
after both small and large shear strains.

The paper is organized as follows. Section II describes the
geometry of the system, details of the contact force models,
the liquid migration model, and the different initial conditions
for our simulations. Section III presents the methodology
for the micro-macro transition in the transient states and for
locating the shear band in the system. Sections IV A and
IV B describe our results, giving an illustration of the small
shear transients of liquid redistribution from different initial
conditions towards an intermediate pseudocritical state of
liquid distribution. Furthermore, we describe the effect of
the different parameters, e.g., the width of the shear band,
saturation, and the maximal liquid bridge volume on the
transient evolution and the intermediate pseudocritical state
in Secs. IV C, IV D, and IV E, respectively. Section IV F
gives an overview of the state beyond the liquid redistribution
transient when the liquid migrates out of the shear band by
a shear-rate-dependent diffusive process on very large shears.
We summarized and draw our conclusions in Sec. V.

II. SYSTEM

A. Geometry

The setup used for simulations consists of a shear cell
with annular geometry and a split in the bottom plate, as
explained in [15,17,18,22,30–34]. The system consists of
an outer cylinder (radius Ro = 110 mm) rotating around a
fixed inner cylinder (radius Ri = 14.7 mm) with a rotation
frequency of � = 0.19 s−1. Note that we use a relatively

fast rotation to save computational time. However, this is
well below the dynamic flow limit. The granular material is
confined by gravity between the two concentric cylinders and
the bottom plate, with a free top surface. The bottom plate is
split at radius Rs = 85 mm into a moving outer part and a
static inner part. Due to the split at the bottom, a shear band is
formed at the bottom at Rs . It moves inward and widens with
increasing height, due to the geometry. This setup features
a wide shear band away from the wall, free from boundary
effects, if an intermediate filling height (H ≈ 40 mm) is
chosen. The focus of our study here is the liquid redistribution
inside the system and the shear band in particular. While
earlier simulations were done with an angular section of 90◦
[16,32–34] or 30◦ [15,18,22], very few simulations are done
using the whole shear cell [35,36].

B. The DEM model

Our approach towards a microscopic understanding of
macroscopic particulate material behavior is the modeling of
particles using the so-called discrete-element method. We use
the open source code MERCURYDPM [37,38] and in the follow-
ing sections describe the particles and the contact model for
our DEM simulations.

1. Particles

The annular space in the split bottom geometry mentioned
above is filled with N = 133 892 polydispersed spherical
glass beads with density ρp = 2000 kg m−3 up to height H ≈
40 mm. The mean particle diameter is rp = 〈r〉 = 1.1 mm and
a homogeneous size distribution with rmin/rmax = 1/2 and
width 1 − 〈r〉2/〈r2〉 ≈ 0.04 is chosen.

2. Contact model for wet particles

We use a phenomenological contact model combining a
linear viscoelastic repulsive force and a hysteretic nonlinear
liquid bridge capillary force proposed by Willet et al. [39]
based on the particle specifications, contact properties, liquid
properties, and liquid saturation in the system [15]. The nor-
mal contact force between particles i and j is characterized
by the linear elastic-repulsive and dissipative forces given by
f

i,j
n = kδ − γ0δ̇ and the adhesive capillary force f

ij
c between

particles i and j is given as

f ij
c =

f max
c

reff
rp

1 + 1.05S̄ + 2.5S̄2
, (1)

where the separation distance is normalized as S̄ = S
√

rp/Vb,
S = max[0, |�ri − �rj | − (ri + rj )] being the separation dis-
tance between two particles i and j , with �ri and �rj the posi-
tion vectors of the two particles, respectively. The maximum
capillary force between the particles when they are in contact
(S = 0) is given by f max

c = 2πrpσcos θ . The effective radius
reff of the two interacting spherical particles can be estimated
as the harmonic mean of the two particle radii ri and rj

according to the Derjaguin approximation [40], yielding the
effective radius

reff = 2rirj

ri + rj

. (2)
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TABLE I. Fixed parameters of the contact model.

Description Quantity

surface tension σ 0.01 N m−1

elastic stiffness k 120 N m−1

contact angle θ 20◦

sliding friction coefficient μp 0.01
viscous damping coefficient γ0 5 × 10−3 kg s−1

The adhesive force of the contact model is determined
by three parameters: surface tension σ , contact angle θ of
the liquid (both of which determine the maximum adhesive
force), and the liquid bridge volume Vb (which determines
how the force depends on the separation distance) [15]. The
fixed parameters of the contact model are given in Table I.
Bridges form when particles come into contact and rupture
when the separation distance exceeds Sc. As proposed by Lian
et al. [41], the critical separation distance Sc at which the
bridge ruptures is given by

Sc =
(

1 + θ

2

)
Vb

1/3. (3)

C. Liquid migration model

In our present study we extend this model to account
for liquid migration [15,18,22]. The methodology is quite
straightforward as proposed by Mani et al. [23,25]: Liquid is
transferred locally whenever contacts are formed or broken.
The particles and the liquid are considered two different enti-
ties in the system. Liquid is associated either with a particle
as a thin liquid film of volume V i

f or with a contact as a liquid

bridge of volume V
ij

b . We describe the liquid migration model
in the following sections.

1. Liquid bridge formation

When two particles come into contact (i.e., overlap), a new
liquid bridge is formed from the liquid contained in the parti-
cle films. Since there can be some liquid volume Vmin trapped
in the roughness of the grains [28,42], to contribute, V i

f must
be larger than or equal to Vmin. Therefore, the available liquid
for bridge formation is V i

f − Vmin. Since, Vmin is fixed and
trapped in the particles, without loss of generality, we assume
Vmin = 0 for our simulations. The volume V

ij

b transferred to
the liquid bridge is therefore

V
ij

b = min
(
V i

f + V
j

f , Vmax
)
, (4)

where Vmax = βr3
p is the maximal liquid bridge volume, im-

posed in our simulations as an additional parameter to avoid
unbounded clustering of liquid by coalescence. This model is
designed for small liquid content and large contact angle with
fast and easy transport of fluid on the surface. Figure 1 shows
a schematic of liquid bridge formation.

The excess volume V i
f + V

j

f − V
ij

b remains as film vol-
ume in the interacting particles, in proportion to the existing
volume per particle. The appropriate value for Vmax can be
estimated by different arguments. An upper bound for β is
due to the maximal pore space available, which implies for

V 2
fV 1

f

V 12
b = V 1

f + V 2
f

V 13
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b
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FIG. 1. Liquid bridge formation (V 12
b < Vmax).

random close packing of monodisperse spheres that β ≈ 0.33,
if all pore space would be filled by liquid. However, we rather
assume poor saturation and localization of liquid at the con-
tacts and thus consider, following the arguments from [42],
that β = 0.058. Thus, liquid bridges remain in the pendular
limit, filling less than 20% of the pore space [43]. Beyond
the pendular regime, a considerably more complex expression
for the liquid bridge force is given for greater volumes and
contact angles [39], however, the difference from our simple
expression is below 20% even for much larger β, so we refrain
from using a too complex expression and stick to Eq. (1).
The local adhesive force, as quantified by the Bond number
Bo, does not change with liquid volume for either capillary
force model and only a few liquid bridges are assumed to
grow really large. Nevertheless, we explore below the effect of
the maximum volume Vmax on the liquid redistribution, using
different β in the range

β ∈ [0.03, 0.08, 0.15, 0.23, 0.45, 0.60]. (5)

2. Liquid bridge rupture

When the distance between two particles i and j with a
liquid bridge in between exceeds the rupture distance of the
liquid bridge, the liquid bridge ruptures and the bridge volume
is distributed to the neighboring contacts

V
mn,new
b = min

(
V

mn,old
b + V

ij

b /2Nm
c , V max

)
, (6)

where n denotes the particles in contact with one of the
two particles m ∈ i, j and Nm

c is the number of neighboring
contacts associated with the particle m. Figure 2 shows a
schematic representation of liquid bridge rupture. If the maxi-
mum volume Vmax is reached, the remaining liquid is added
to the film volumes V i

f and V
j

f . Thus, total liquid volume
conservation is ensured.

D. Initial conditions

We begin our simulations with a no-shear preparation
history, where we allow particles to fall freely into the system
under gravity. At this stage, particles are dry without any
liquid on them. After free falling, the particles are allowed
to relax until they reach a ratio of kinetic to potential energy
below 10−3. After relaxation, the kinetic energy of the system
becomes negligible while there is a finite elastic potential

052906-3



SUDESHNA ROY, STEFAN LUDING, AND THOMAS WEINHART PHYSICAL REVIEW E 98, 052906 (2018)

V 12
b

V 13
b

V 24
b

V 25
b

V 13
b + V 12

b /2

V 24
b + V 12

b /4

V 25
b + V 12

b /4

V 12
bVV

V 13
bVV

V 24
bVV

V 25
bVV

V 13
bVV + V 12

bVV /2

V 24
bVV + V 12

bVV /4

V 25
bVV + V 12

bVV /4

3 13

1

12

2

4 4

4 5

4
4

55555555 5

12 b

2
VVVVbVVVVVVVVV

1

V3

Rupture

FIG. 2. Liquid bridge rupture (V ij,new
b < Vmax, where i ∈ 1, 2 and

j ∈ 3, 4, 5).

energy, which contributes to the total energy of the sample.
After the complete preparation and relaxation of the sample,
we add liquids to the system and start shearing. The potential
energy of the sample is increasing after addition of the liquid,
depending on the saturation, while the kinetic energy remains
small at the commencement of shear.

Liquid addition means that each particle is assigned with
an initial liquid film volume V 0

f . If not specified otherwise,
we have V 0

f = 50 nl in our system for standard simulations
discussed in this paper. On shearing, the kinetic energy in-
creases and the elastic potential energy changes slowly until
they reach a steady state with Ek/Ep ≈ 10−6. In order to
understand how liquid redistributes, we simulate the two
extreme cases of initial liquid distribution: (i) 100% liquid
distribution in the form of liquid films (initial condition A) and
(ii) 100% liquid distribution in the form of liquid bridges
(initial condition B). Initial condition A is initialized by dis-
tributing the total amount of liquid volume uniformly among
all the particles as liquid film at the start of the simulation.
This amounts to V 0

f = 50 nl liquid film volume per parti-
cle. However, few liquid bridges are already formed in the
detected contacts at the onset of shear. Initial condition B
is done by distributing the same amount of liquid volume
as in initial condition A, uniformly among all the existing
contacts as liquid bridges. The contacts here include both the
physical contacts and the possible long-distance interactions
between particles that are within the range of rupture distance
of the liquid bridge. It is obvious that when the wet sample
is allowed with long equilibration time, even distant surfaces
could be filled in with liquid bridges due to suction pressure
gradient. Thus, it is a logical assumption to distribute the
liquid into not only the mechanical contacts, but also the
long-range contacts within the range of rupture distance.

Granular materials with interstitial liquid can be classified
as dry bulk, adsorption layers, pendular state, funicular state,
capillary state, or suspension, depending on the level of
saturation [44,45]. In our present work we intend to study
the phenomenology of liquid bridge redistribution between
particles in the pendular state, where well-separated liquid
bridges exist individually, without geometrical overlap. In
order to study the influence of liquid content on the liquid

redistribution, we vary the initial liquid film volume V 0
f on

the particles given as

V 0
f ∈ [10, 20, 50, 80, 100] nl, (7)

corresponding to saturation [43]

S ∈ [2.99%, 5.98%, 14.95%, 23.92%, 29.90%], (8)

corresponding to a measured average porosity of 0.35. While
varying V 0

f , we keep the maximal liquid bridge volume
constant with Vmax = 40 nl (β = 0.03). While varying β

according to Eq. (5), we keep the initial liquid film volume
constant with V 0

f = 50 nl. As a standard simulation in this
paper, we keep the initial liquid film volume V 0

f = 50 nl and
the maximal liquid bridge volume constant with β = 0.03, if
not specified otherwise. The bulk saturation is 14.95% for this
standard case, with a bulk porosity of ε ≈ 0.35 measured from
the simulations.

III. MICRO-MACRO TRANSITION

To extract macroscopic properties from the DEM, we
use the spatial coarse-graining approach. This technique was
used earlier in Refs. [16,33,34]. The averaging is performed
over toroidal volumes, assuming rotational invariance in the
tangential direction over several snapshots of time. The aver-
aging procedure for a three-dimensional system is explained
in [15,17]. The simulation is run for a total time of 22 s
and transient data are obtained by temporal averaging over
every five snapshots with steps of 0.015 s, starting from the
onset of shear. We obtain the local macroscopic quantities
such as shear rate γ̇ , liquid bridge volume Vb, liquid film
volume Vf , and the contact number Cw for further analysis.
We distinguish between the contacts with liquid bridges and
without, which is significant for wet granular materials.

A. Identifying the shear band

We analyze the evolution of the liquid bridge volumes for
initial conditions A and B as explained in Sec. II D. The ob-
jective is to study the transients of liquid redistribution under
shear. Thus, we focus on the region inside the shear band
where dry systems reach a critical state after large enough
shear. We define the shear band region by accumulating all
local points having shear rate higher than a threshold value.
This threshold value varies at every height and is defined as a
fraction α of the maximum shear rate at the center of the shear
band at a given height γ̇max(z). Thus, we consider the shear
band region as all local points having shear rate γ̇ (r, z) �
αγ̇max(z) as shown in Fig. 3. For dry granular systems, the
critical state is achieved at a constant pressure p and local
shear rate condition over regions with shear rate larger than a
certain α (dependent on the duration of shear) corresponding
to the region of system that was sufficiently sheared to be
restructured.

B. Wet shear band phenomenology

While the shear band is well established above this shear
rate for wet granular materials also, our analysis in later
sections shows that the liquid redistribution is averaged over
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γ̇ = αγ̇max

γ̇ = γ̇max
p

z

r

FIG. 3. Schematic diagram of simulation setup showing the
shear band. Red dots indicate local points for our analysis with the
size of the dots given by the local pressure. The gray shaded area
denotes the shear band (γ̇ > αγ̇max) and the bold line shows the shear
band center (γ̇ = γ̇max).

the shear band region corresponding to α = 0.4 at different
heights in the system. Additionally, the relative shear rate
threshold α is varied from 0 to 0.8 to inversely vary the width
of the shear band to see its effect. Thereby, we extract local
data (shown by the red dots) corresponding to the regions as
marked by the shaded area in Fig. 3. We see the evolution of
the macro quantities such as the mean liquid bridge volume
〈Vb〉 and the contact number Cw corresponding to the region
inside the shear band as a function of local shear γ . We then
analyze the transients for the shear band evolution to obtain
the transients for liquid redistribution inside the shear band.

IV. RESULTS

The main objective of our work is to understand the liquid
bridge volume redistribution process under shear. We show
in Secs. IV A and IV B that different initial conditions of
liquid bridge volume lead to the same redistribution of liquid
bridge volumes when sheared to an intermediate state. This
intermediate state, when the liquid bridge volume becomes
independent of the initial conditions, is termed the pseudocrit-
ical state. Furthermore, we describe the effect of the different
parameters, e.g., the width of the shear band, saturation, and
the maximal liquid bridge volume, on the transient evolution
and the intermediate pseudocritical state in Secs. IV C, IV D,
and IV E, respectively. Section IV F gives an overview of the
state beyond the liquid redistribution transient when the liquid
migrates out of the shear band by a shear-rate-dependent
diffusive process on very large shears.

A. Transients for liquid redistribution

In this section we describe the transients for liquid redis-
tribution for unsaturated granular materials subjected to shear
with different initial conditions for initial conditions A and B
as explained earlier. For our analysis of the redistribution of
the liquid bridges, we obtain the histogram distribution of the
liquid bridge volume at different times with 100 bins of the
histograms. We show the overlay of the histograms of liquid
bridge volume distribution at different times with lines instead
of the bars as shown in Fig. 4.

We obtain the global shear γg = 2πRo��t/(Ro − Ri ) by
scaling the distance traversed by a particle on the outer wall
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FIG. 4. Overlaying of the histogram of the liquid bridge volume
distribution with lines for γ̇ (r, z) � 0.4γ̇max(z) after 6.03 s (γg =
8.23) for initial condition A.

2πRo��t in time �t by the distance between the annular
space Ro − Ri . We use that scaling factor as this is very
simple and dependent on the geometry of the system. There
can be other length scales, such as the width of shear band,
which is about half this geometry-dependent scale Ro − Ri ,
or the particle diameter 2rp, which is about 40 times smaller.
Figure 5(a) shows the evolution of liquid bridge volume dis-
tribution over global shear γg for initial condition A. Initially,
the mean distribution of liquid bridge volume is lower than the
intermediate pseudocritical-state distribution of liquid bridge
volume. We start from an initial condition of all particles hav-
ing a liquid film of volume V 0

f = 50 nl. Then liquid bridges
are formed, even at no shear condition, wherever contacts are
detected, in random sequence. Hence, the initial liquid bridge
distribution number is lower than the intermediate pseudo-
critical state. The initial liquid volume distribution (γg = 0)
shows spikes at volumes of 40, 30, 20, 10, and 0 nl. Those
spikes are a numerical artifact of having a uniform initial
liquid film volumes V 0

f = 50 nl and setting a fixed maximum
allowable liquid bridge volume of Vmax = 40 nl. Thus, those
spikes are expected to vanish for slow redistribution of liquid
bridges, for less homogeneous initial distributions, or by also
not restricting the maximum allowable liquid bridge volume.
The smaller liquid bridge volumes have a higher count than
the larger liquid bridge volumes, but an accumulation in
number of the maximal liquid bridge volumes (Vb = Vmax) is
found. With increasing shear, liquid of the maximal bridges
is redistributed to the smaller liquid bridges and the overall
liquid volume is conserved inside the shear band in this small
shear strain.

Figure 5(b) shows the liquid bridge volume redistribution
over global shear for initial condition B. Initially, the distri-
bution of liquid bridge volume is nonuniform, with a high
count of the intermediate liquid bridge volumes between 10
and 20 nl (higher than the intermediate pseudocritical state),
the initial liquid bridge volume being V 0

b ≈ 11 nl. Other
liquid bridges have lower count (lower than the intermediate
pseudocritical state) at the initial state. With increasing global
shear, liquid from the intermediate volume of liquid bridges
is redistributed to other liquid bridges and the overall liquid
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FIG. 5. Liquid bridge volume distribution for different initial
conditions of (a) 100% liquid film (initial condition A) and (b) 100%
liquid bridge (initial condition B) for γ̇ (r, z) � 0.4γ̇max(z).

volume is conserved inside the shear band in this small shear
strain. Comparing Figs. 5(a) and 5(b), it is observed that initial
condition A reaches the equilibrium state faster than initial
condition B. Note that the local shear γ inside the shear band
center and near the split position of the shear cell is of the
same order and approximately 2 times the value of the global
shear γg . Thus, the legends shown in Figs. 5(a) and 5(b) in
terms of global shear are not the quantitative representation
of the local shear inside the shear band. The evolutions of
the two limits [that fall outside the range of Figs. 5(a) and
5(b)], the number of liquid bridges with Vb = 0 (given by
the red and blue ◦) and Vb = Vmax (given by the red and
blue �), are shown in Fig. 6. Irrespective of the different
transients’ behavior, both the number of dry contacts and the
maximal liquid bridge contacts reach the same value given by
the plateau in the intermediate pseudocritical state.

B. Liquid redistribution towards an intermediate
pseudocritical state

Liquid redistribution in unsaturated granular media is asso-
ciated with the formation of new liquid bridges and the rupture
of existing liquid bridges. Figure 7 shows a comparison of
the distribution of the liquid bridge volumes after 6.01 s for
the two different initial conditions A and B. Evidently, an
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FIG. 6. Number of liquid bridges with Vb = 0 nl (dry contacts)
for initial conditions A and B (red and blue ◦, respectively) and
number of liquid bridges of volume Vb = Vmax for initial conditions
A and B (red and blue �, respectively) as a function of global shear
γg for γ̇ (r, z) � 0.4γ̇max(z).

intermediate state is reached where the rate of liquid bridge
formation is balanced by the rate of liquid bridge rupture and
is attained irrespective of the initial distribution of the liquid
in the system. Here we focus at the whole shear band region
[γ̇ (r, z) > 0.4γ̇max(z)] and confirm that the system reaches
an intermediate state independent of the initial conditions. In
Sec. IV C we focus on the liquid redistribution in the different
regions of the shear band.

Figure 8(a) shows the mean liquid bridge volume per wet
contact 〈Vb〉 as a function of local shear inside the shear band
for initial conditions A and B. For each initial condition, the
data points collapse onto a single curve. Figure 8(b) shows
the wet contacts per particle Cw as a function of local strain
for initial conditions A and B. Again, the data collapse for
each initial condition. Thus, the change in mean liquid bridge

5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Vb [nl]

N
um

be
r

of
L
iq

ui
d

B
ri

dg
es

 

 

Initial condition A
Initial condition B

FIG. 7. Overlay of the liquid bridge volume distribution for
initial condition A (red solid line) and initial condition B (blue
dash-dotted line) for γ̇ (r, z) � αγ̇max(z) and α = 0.4 after 6.03 s
(γg = 8.23).
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FIG. 8. (a) Mean liquid bridge volume per contact 〈Vb〉 as a
function of local strain for initial condition A (�) and initial condition
B (◦) and (b) wet contacts per particle Cw as a function of local strain
for initial condition A (�) and initial condition B (◦) for β = 0.03 nl,
for γ̇ (r, z) � 0.4γ̇max(z). Different colors indicate different heights.

volume per wet contact over shear observed inside the shear
band center for initial conditions A and B is an intrinsic
phenomenon undergone by each local point inside the shear
band before they reach the intermediate pseudocritical state.
Initial condition A shows a decrease in mean liquid bridge
volume per contact with increasing shear. This can be related
to Fig. 5(a) as the maximal liquid bridge volumes (Vmax)
are distributed to a larger number of smaller bridges until
they reach the intermediate pseudocritical value. Starting with
an initial uniform liquid bridge volume distribution of V 0

b ≈
11 nl, initial condition B shows an initial increase in mean
liquid bridge volume per contact with increasing shear until it
reaches a peak mean volume of liquid bridge approximately
V

p
b ≈ 28 nl. Further, the mean liquid volume per contact de-

creases with increasing shear until they reach the intermediate
pseudocritical state V c

b ≈ 17 nl. Both initial conditions A and
B reach the same intermediate state in terms of mean liquid
bridge volume per wet contact. The number of wet contacts
per particle shows an inverse functional behavior as 〈Vb〉, as
the liquid saturation remains constant, but reaches the same
intermediate state too for initial conditions A and B. The
total elastic potential energy of the system also reaches the

same state for the two initial conditions, irrespective of the
different energy they have in the transients, which depends on
the number of dry and wet contacts in the transients.

During the process of redistribution of liquid, the liquid
volume is approximately conserved inside the shear band
within the range of this small shear scale, when diffusion is
less dominating. The liquid bridge volumes are redistributed
during the process of contact breaking and formation. For
initial condition A, as observed in Fig. 6, a significant number
of liquid bridges have the maximal volume. Subsequently,
more smaller liquid bridges are formed at the cost of rup-
ture of these critical volume liquid bridges, resulting in an
increase in the number of wet contacts per particle and a
decrease in the mean liquid bridge volume per wet contact
as shown in Figs. 8(a) and 8(b). For initial condition B, as
observed from Figs. 5(b) and 6, the number of liquid bridges
with higher liquid volume initially increases with time. In
the initial state, all the contacts have an equal liquid bridge
volume V 0

b . When subjected to shear, many contacts break,
resulting in distributing the liquid to the neighboring contacts,
making them grow in liquid bridge volume content. Hence,
here the mean liquid bridge volume increases at the cost of
breaking contacts. Simultaneously, the number of wet contacts
Cw decreases as shown in Fig. 8(b). Thus, in this initial
condition wet contacts are subjected to shear break or rupture
more or less instantaneously, distributing the liquid to the
neighboring existing contacts and resulting in a rapid increase
in mean liquid bridge volume and a decrease in the number of
wet contacts before equilibrating towards the pseudocritical
state.

C. Dependence on the relative shear rate threshold

As explained in Sec. III A, we define the shear band region
by accumulating all local points having shear rate higher than
a threshold value. This threshold value varies at every height
and is defined as a fraction α of the maximum shear rate at the
center of the shear band at a given height γ̇max(z). Thus, we
consider the shear band region as all local points having shear
rate γ̇ (r, z) � αγ̇max(z). It is evident that the span of the shear
band region can be varied by varying α. A stable shear band is
observed, with a steady pressure and shear rate, over regions
with shear rate larger than the value αγ̇max(z), α = 0.1. The
local shear rate γ̇ is highest at the shear band center and drops
as a Gaussian function of the distance from the center of the
shear band at a given pressure [30,46]. We vary the width (or
distance from the center) of the shear band by varying α =
0.0–0.8 and thereby see the effect on the liquid redistribution.
Figure 9(a) shows the liquid distribution of wet contacts for
different α, excluding the values for Vb = 0 and Vb = Vmax.
Naturally, the number of contacts increases with decreasing α.
However, while we observe a uniform difference between the
number of contacts between α = 0.4 and 0.8, a nonuniform
difference is observed between α = 0.0 and 0.4. Figure 9(b)
shows the normalized liquid bridge distribution for differ-
ent width of the shear band. Note that here we normalize
the histogram for liquid bridge distribution by scaling with
the total number of liquid bridges in the given histogram. The
normalized distributions collapse for all widths of the shear
band, signifying that the liquid bridge distribution is identical
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FIG. 9. (a) Liquid bridge volume distribution and (b) normalized
liquid bridge volume distribution for initial condition B for γ̇ (r, z) �
αγ̇max(z) and α varied from 0 to 0.8 after 6.03 s (γg = 8.23).

for any width of the shear band region. It is to be noted that
here α = 0 excludes the liquid bridge distribution near the
boundaries.

D. Dependence on the maximal liquid bridge volume

In this section we discuss the effect of increasing the max-
imal value on the overall dynamics of liquid redistribution.
As a model simplification, we do not allow the formation of
liquid clusters via bridge coalescence by using a maximal
Vmax of the bridge volumes which must not be exceeded.
The maximal liquid bridge volume Vmax is varied in different
simulations as explained in Sec. II C, Eq. (5). Figure 10(a)
shows the mean liquid bridge volume 〈Vb〉 as a function of
local strain for different Vmax. Note that with an increase in
Vmax the maximum interaction distance between interacting
particles i and j increases. Thus, the number of initial wet
contacts increases with Vmax. The initial liquid bridge volume
V 0

b ≈ 11 nl is kept the same for all the simulations. The peak
liquid bridge volume Vp and the intermediate liquid bridge
volume Vi also increase with increasing Vmax. Figure 10(b)
shows that the number of wet contacts per particles decreases
with increasing Vmax. Thus, allowing clustering of liquid leads
to higher mean liquid bridge volume per contact and fewer wet
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FIG. 10. (a) Mean liquid bridge volume per contact and (b) frac-
tion of wet contact as a function of local strain for initial condition B
for different maximal liquid bridge volume quantified by β, β = 0.03
(�), β = 0.08 (	), β = 0.15 (�), β = 0.23 (◦), β = 0.45 (�), and
β = 0.60 (�) for α = 0.4 with initial condition B as the initial
condition.

contacts per particle in the intermediate pseudocritical state.
However, for large enough β (β > 0.1), this limit parameter
does not affect the system behavior anymore and the same
steady state is reached irrespective of β. Thus, even for very
large Vmax, the mean liquid bridge volume is well within the
accuracy of the Willet et al. model, i.e., very few liquid bridges
with large volumes are formed. This is significant, as it implies
that it is not necessary to restrict the maximum allowed liquid
bridge volume. Thus, even though Vmax is very large for the
extreme cases, 〈Vb〉 is well within the accuracy of the Willet
et al. model, i.e., very few liquid bridges are formed which are
of large liquid bridge volume. Thus, it is significant to note
that we need not necessarily restrict the maximum allowed
liquid bridge volume and can keep this as a free parameter.

E. Dependence on the liquid saturation

In this section we study the effect of liquid saturation on
the liquid redistribution process. The bulk saturation is varied
by varying the initial liquid film volume on the particles as
mentioned in Sec. II D, Eq. (7). Figure 11(a) shows the mean
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80 nl (�), and V 0
f = 100 nl (	) for α = 0.4 with initial condition B

as the initial condition.

liquid bridge volume for initial condition B as a function of
local strain for different V 0

f . It is evident that the mean liquid
bridge volume 〈Vb〉 increases with increasing saturation, i.e.,
bridges hold larger volumes of liquid with increasing satu-
ration. All the other parameters, like the peak liquid bridge
volume Vp and the intermediate state liquid bridge volume Vi ,
also increase with saturation. Figure 11(b) shows the mean
fraction of wet contacts per particle for initial condition B
as a function of local strain. The number of contacts per
particle remains almost the same, which depends on the initial
packing, irrespective of the local saturation. The number of
wet contacts per particle increases with increasing saturation.
Thus, both the mean liquid bridge volume per contact and
the number of contacts per particle increase with increasing
saturation in the system.

F. Diffusive and drift transport of liquid

There are two relevant processes that cause the spreading
of liquid. First, it is known that in shear flows, particles
undergo a self-diffusive motion and therefore liquid which
is carried by the menisci will also diffuse in space [47,48].
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FIG. 12. (a) Mean liquid bridge volume per contact and (b) wet
contacts per particle as a function of strain for initial condition A (	)
and initial condition B (◦).

The authors of those works observed that the particle or liquid
diffusivity is proportional to the local shear rate in quasistatic
dense flows. Second, there is a transport of liquid associated
with liquid bridge rupture. The overall liquid migration is a
non-steady-state diffusive process and occurs over a relatively
larger scale of shear. The diffusive liquid transfer is triggered
inside the shear band at the onset of shearing. However, the
molecular diffusion mass transport mechanism is known to be
a slower process. Hence, at the initial shear scale, the liquid
redistribution dominates over the diffusive liquid transport
process. This is shown in Figs. 12(a) and 12(b). The data
shown in Fig. 8 are replotted in Fig. 12, but on a logarithmic
scale and for a larger range of shear values, in order to
show the long-shear-scale behavior of the liquid redistribution
process.

Figure 12(a) shows the mean liquid bridge volume per
wet contact inside the shear band as a function of local
strain for initial conditions A and B. Figure 12(b) shows the
fraction of wet contacts as a function of local strain inside
the shear band for initial conditions A and B. A dramatic
change in the mean liquid bridge volume and the number of
wet contacts is observed during the initial phase of shearing.
This is evidently the phase of liquid redistribution. The system
reaches a pseudocritical state followed by this when both the
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mean liquid bridge volume per contact and the number of wet
contacts per particle reach a temporary steady state. On further
shear, the mean volume of liquid bridge per contact decreases
slightly and the number of wet contacts per particle slowly
decreases. The overall liquid content decreases inside the
shear band in the long term. This is evidently the regime when
diffusive transfer of liquid is dominating. Though we state
this mode of liquid transfer as a diffusive process, this liquid
transfer equation is described as a drift-diffusive process in
a different set of coordinate systems. These mechanisms of
liquid transfer are interesting, but beyond the scope of the
present study.

V. CONCLUSION

The transient behavior of liquid transport and redistribution
are studied for different initial liquid distributions in a split-
bottom ring-shear cell. This inhomogeneous system features a
wide range of strain rates, the largest in the center of the shear
band and practically in the tails, close to the walls. Therefore,
given a certain time t , talking about (local) strain rate γ̇

and talking about strain amplitude γ = γ̇ t are equivalent.
Governed by the rupture of existing and the formation of new
liquid bridges, the initial distribution of liquid in the system
reaches a pseudosteady or critical state within (local) shear
strains of around γ � 2–4, almost independent of the initial
liquid distribution.

While rapid liquid redistribution is dominating at small
shear strains, shear-driven slow liquid transport away from the
shear band is dominating for larger shear strains above γ ≈
10–20. The shear band becomes dry, devoid of wet contacts
in the latter regime. Liquid is transported out (diffusionlike)
towards the tails of the shear band.

Besides the initial conditions, the behavior at small strain
rates is also influenced by the bulk saturation in the system
and the liquid bridge limit volume imposed in our model.
As expected, the mean liquid bridge volume per contact and
the number of wet contacts per particle both increase with
increasing saturation. Further, the mean liquid bridge volume
per contact increases, but the number of wet contacts per
particle decreases with increasing limit volume Vmax, ensuring
conservation of liquid. For very large Vmax, the mean liquid
volume probability distribution reaches a steady-state value
with the majority of the contacts within the validity of the
Willet et al. model and well below the volume needed to fill
the pores; thus the liquid distribution is mostly unaffected by
the limit parameter.

The first transient of liquid redistribution that is explained
in this paper happens on a very short strain scale. During this

phase, liquid is conserved within the shear band because it has
no time to be transported away and only local rearrangement
of the liquid bridges dominates, before a liquid front builds up
and moves outward. The second transient happens at moderate
to large strains and appears almost like a steady state due to
the slowing down of the liquid front in the tails of the shear
band. The third transient happens on an even larger strain
(time) scale and leads to a complete drying of the shear band.
We are now also theoretically studying the liquid transport on
the large strain scale [49], under quasistatic conditions, when
liquid is transported out of the shear band. While the simplest
picture of diffusive transport with a constant diffusivity cannot
explain the dynamics of liquid transport and the drying of
the shear band, a model with a variable strain-rate-dependent
coefficient of diffusion can [23]. However, the nonconstant
diffusion leads to driftlike rather than diffusive features (rapid
buildup and narrowing of the liquid front), making the basic
understanding difficult. By transforming the variables, one
can enforce a diffusion term with constant diffusivity, which
yields a drift term with a variable drift coefficient. By de-
composing the transport equations into drift and diffusion,
the location of the peak liquid concentration can be predicted
analytically, without having to numerically solving the trans-
port equations. In the vicinity of the shear band center, where
the Péclet number Pe 
 1, diffusion dominates drift. Away
from the shear band center, where Pe ≈ 1, drift and diffusion
become comparable.

Our present study on liquid bridge redistribution is limited
to very small saturation of liquid in granular media. This
works in the pendular regime where liquid bridges are present
as distinct entities, connecting two particles. However, ex-
pecting this model to work beyond the pendular regime is
questionable. Also, our results showing the evolution of liquid
redistribution from different initial conditions need experi-
mental validation, for completeness. The liquid bridge redis-
tribution evolution is driven by the shear rate and is dependent
on the local strain conditions. Thus, a generalization of our
studies with varying shear rate is worth doing. Likewise, the
model of liquid redistribution at breakup and forming of liquid
bridges at contact relies on several simplifications that might
not work for all materials and for faster shear rates and thus
has to be tested experimentally.
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