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Particulate matter, such as foams, emulsions, and granular materials, attain rigidity in a dense regime: the rigid
phase can yield when a threshold force is applied. The rigidity transition in particulate matter exhibits bona fide
scaling behavior near the transition point. However, a precise determination of exponents describing the rigidity
transition has raised much controversy. Here we pinpoint the causes of the controversies. We then establish a
conceptual framework to quantify the critical nature of the rigidity transition. Our results demonstrate that there
is a spectrum of possible values for the critical exponents for which, without a robust framework, one cannot
distinguish the genuine values of the exponents. Our approach is twofold: (1) a precise determination of the
transition density using rheological measurements and (2) a matching rule that selects the critical exponents and

rules out all other possibilities from the spectrum. This enables us to determine exponents with unprecedented
accuracy and resolve the long-standing controversy over exponents of jamming. The generality of the approach
paves the way to quantify the critical nature of many other types of rheological phase transitions such as those

in oscillatory shearing.
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I. INTRODUCTION

Yield stress materials such as toothpaste, hair gel, mayon-
naise, and cement, are ubiquitous. These materials are used in
pharmaceutical and cosmetics manufacturing, as well as the
oil, concrete, and food industries [1]. Because of their wide
applicability in everyday life, a quantitative description of
their rheological behavior is pivotal. The physical origin of the
yield stress depends on the microscopic details of the system
and can be classified into three main categories: dynamic ar-
rest in Brownian suspensions known as the glass transition [2],
mechanical (meta)stability in athermal systems or jam-
ming [3,4], and attractive interactions [5,6]. Thixotropic yield
stress fluids [1], which exhibit memory effects and a bifurca-
tion in the viscosity, are outside the focus of the current study.

The relation between shear stress o and shear rate y,
known as a flow curve in a yield stress material, can be
described as a Herschel-Bulkley (HB) relation:

o=o0,+Kyp", (1)

where o, is the yield stress and A < 1 is the shear thinning
exponent. In contrast, a simple Newtonian fluid is described
by a single parameter, the shear viscosity n = o/y. As aresult
of the threshold oy, the viscosity of a yield stress material
diverges for y — 0. However, Barnes and Walters [7] demon-
strated that carbopol microgels have finite viscosity at small
shear rates and raised a historical debate over the existence of
the yield stress. Two decades later, Moller ef al. [8] repeated
the same experiment and showed that those measurements at
low shear stresses never reached a stationary state and that the
apparent finite viscosity was an artifact of the measurement.
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A consensus regarding the existence of the yield stress
has emerged. However, the technical difficulties of its mea-
surements remain a challenge. Despite these advances in the
understanding of the yield stress, a description of the nonlin-
ear flow curves in the fluid state remains an open problem.
In the traditional approach, the shear-thinning exponent A is
obtained by a power law fit to o — o, versus y. However,
recent numerical simulations showed that o — oy, versus y ex-
hibits two distinct scaling regimes described by two different
exponents, A and A’, for small and large shear rates [9-11],
respectively. As a result, fitting a HB-type relation to such data
will be prone to pitfalls due to a bias towards larger shear rates,
which in turn will give rise to a misleading quantification of
the flow curves.

The problem becomes even more dramatic for the case
of matter with granularity [12]. Soft particulate matter, such
as gels and emulsions, flow freely in the dilute regime and
attain yield stress above a threshold density ¢ in the dense
regime. This yielding transition exhibits a rich class of scaling
behavior of the flow curves described by critical exponents
(we will give a brief overview about different scaling regimes
of the rigidity transition in the next section). Despite many
efforts by different groups [13-18], a precise determination of
the critical exponents remains disputed.

Here we establish a conceptual framework for the scaling
quantification of the flow curves of a wide range of yield
stress materials. We resolve the long-standing dispute over
exponents of the rigidity transition.

II. RIGIDITY TRANSITION: A BIRD’S EYE VIEW

Depending on the shear rate and packing fraction,
soft frictionless spheres display a rich phenomenology of
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distinct rheological regimes. This makes soft frictionless
spheres Drosophila of particulate matter.

In the dilute regime of particulate materials, flow curves
at small shear rates are given by o o« y” where n = 1 and 2
for Newtonian and Bagnoldian scalings, respectively. Because
soft particles barely deform at small shear rates, o o p”
corresponds to the so-called hard-core limit. The exponent
n has been shown to depend on the Reynolds number of
the system such that for overdamped systems the Newtonian
regime (noninertial) is recovered and for n = 2 the system
must be underdamped (inertial) [19]. The transport coeffi-
cient, which is given by shear viscosity n = o/y", aty — 0,
depends only on the packing fraction ¢ and diverges upon
approaching the jamming density n o< |8¢|~#, where §¢ =
¢ — ¢, is the distance from jamming. The exponent 8 also
characterizes the hard-core limit of the system. Accordingly,
this exponent must be independent from the microscopic
details of the system [20,21]. At ¢ = ¢,, the system exhibits
pure power-law rheology o o y9 with ¢ < 1 as the critical
shear-thinning exponent. In the soft core regime ¢ > ¢, the
system displays threshold rheology and flow curves that may
be described by the HB model given by Eq. (1). In this model,
the shear-thinning exponent A is shown to be related to the
behavior of the system in the hard-core limit at ¢ < ¢, and
thus to the exponent 8 [20]. The yield stress also scales with
the distance from jamming o,  5¢”.

As one can see, upon approaching the jamming point, the
rheology changes dramatically due to the collective behavior
of particles [22]. Consequently, the rheology can no longer be
described by trivial exponents such as n = 1 or 2, and thus
the system becomes shear-thinning with a nontrivial scaling
dimension g < 1. This is a signature of a growing length
scale in the system [9,23,24], which is the hallmark of critical
phenomena. Even though this system is nonequilibrium and
athermal, Olsson and Teitel [25] used renormalization group
formalism [26] of equilibrium phase transitions to capture the
critical nature of this dynamic transition. The jamming point
atd¢p =0,y — 0, T =0, and L — oo is a genuine dynamic
critical point.

Altogether, any of the above scaling limits can be retrieved
by choosing appropriate limits of a scaling function Fy and
an arbitrary length scale b in the following scaling ansatz
(derivation given in Appendix B):

o(p,y, L,w)=b"" Fo(8p b,y b5, L™ b,w b™*),
2)

where Fy is a homogeneous scaling function, L is the system
size, and w is an auxiliary variable. This scaling ansatz is tra-
ditionally used to find relations between different exponents.
Inserting b = y~'/% for L — oo in Eq. (2), we arrive at

o= y’%( 5 ) 3)

yq/.v

where g = y/(zv). Here we assume proximity of the critical
point where the auxiliary variable w can be neglected.

The immediate outcome of Eq. (3) is that all the data
must collapse into a master curve when plotted o/y? versus
8¢/y?/Y, providing that three free parameters, ¢, y, and ¢,
are fine-tuned. Notably, in the early stage of this topic, this
method, i.e., collapse of the data, has been extensively used
by many authors to estimate ¢, y, and ¢; [13,15,16,25,27].

TABLE 1. Critical exponents reported by different authors. As
the data get closer to the critical point, exponents systematically
change (for a comprehensive discussion see Ref. [18]).

Authors y q w/z
Otsuki and Hayakawa (theory) [14] 1 2/5 —
Hatano [13] 1.2 0.63 —
Hatano [15] 1.5 0.6 —
Otsuki and Hayakawa (simulation) [16]  1.09 0.46 —
DeGiuli et al. [17] 1 0.3 0.3

Vagberg et al. [18]

1.15(5) 0.38(5) 0.35(7)
Goodrich et al. [28] 1

A summary of the existing predictions for these exponents is
given in Table I. These reports were not conclusive because
of the large range of reported exponents and critical densities.
The reason for this was because the quality of the collapses
was judged based on the visual appeal of the plots. Later
Olsson and Teitel used a quantitative method to compute
the quality of the collapses. The method was based on (1)
exponential parametrization of the scaling function F;(x) =
exp (2;51:0 a,x") and (2) going into unprecedented small
shear rates down to 10~% in the dimensionless scale [9,18].
However, the expansion of F|(x) may be prevented because,
as x — 0, Fj(x) may not be analytic. Also, for reasons that
we describe in the next paragraph, going into shear rates as
small as y &~ 1078 contaminates the scaling behavior.

It is well known that in the jammed state a sheared particu-
late system exhibits shear localizations, also known as shear-
transformation zones [29,30]. These stress anomalies relax
through long-range system-wide avalanches. Each avalanche
can trigger other active zones that will in turn result in a
domino of plastic events and relaxations. At very small shear
rates, these avalanches are globally correlated and poise the
system into an effective critical state [31,32]. This results in
scale-free distributions of avalanches with exponents that are
generally smaller than 2 [33,34]. To obtain a flow curve o (y),
one should perform time averaging for shear stress over the
time series. However, due to the scale-free distribution of
avalanches with the aforementioned range of exponents, the
first and second moments of the shear stress cannot be well
defined. Consequently, the time-averaged shear stress at very
small shear rates possesses error bars that are as large as the
average values.

To avoid the above problems, we describe a general frame-
work that requires neither data collapse nor expansion of the
scaling function. Additionally, measurements are performed
outside the avalanche region, i.e., not at very small shear
rates. These simplify the problem dramatically and enable us
to resolve the controversy over exponents. Our approach is
twofold: first, in Sec. III, we describe how we nail down the
critical density. Second, in Sec. IV, we present our matching
rule that selects critical exponents from a wide spectrum of
possible values.

III. HUNT FOR ¢,

Precise determination of the critical exponents strongly
depends on whether the critical density ¢, is accurately
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determined. In this section, we explain how we nail down the
transition density ¢, using rheological data. To achieve this
goal, we define successive slopes of the flow curves m as

dlno

m= ,

dlny
where d stands for the derivative. This can be easily calculated
from Eq. (3):

“4)

!
m=g- 120 7 )
y yar Fi(x)
where x = 8¢/y1/”, F|(x) = dFi(x)/dx.

Equation (5) provides an immediate prediction: if one plots
m versus y for different packing fractions, exactly at jamming
density §¢ = 0, the successive slope for all shear rates will
be equal to the critical shear-thinning exponent m = ¢g. For
8¢ > 0, the successive slope converges to m = g at large
shear rates and deviates from that value for y — 0 according
to y~9/7. Similar behavior is expected for 8¢ < 0 with an
opposite curvature.

This provides a simple recipe to compute ¢;: the critical
density is given by a horizontal line of the m — y depen-
dence that distinguishes off-critical densities with opposite
curvatures. However, it is practically impossible to recover a
straight horizontal line for m at ¢; in the critical region of
y — 0. This is due to elasto-plastic critical fluctuations near
the critical point, which we mentioned in Sec. II.

The remedy for this problem is to stay away from the
region where the successive slope displays huge fluctuations.
In such a regime, correction-to-scaling must be taken into
account. From Eq. (2), the leading correction-to-scaling term
at ¢ = ¢, reads

o =y(ci + crp”l), (6)

where c¢; and ¢, are constants and w/z is the leading
correction-to-scaling exponent (see Appendix B for deriva-
tion). For off-critical densities ¢ # ¢,, an extra term propor-
tional to 8¢ must be added to Eq. (6). This term again has an
inverse algebraic dependence on y similar to that in Eq. (5).
One can easily calculate the corresponding successive slope
of Eq. (6) as

m=q + ky®*, 7

where ¢ is the asymptotic exponent and k is a constant. This
shows the behavior of the successive slopes at ¢;, which
distinguishes that of off-critical densities with opposite cur-
vatures.

Now let us calculate the asymptotic values of the suc-
cessive slopes for different densities at y — 0. For ¢ < 0,
o o p", which results in m = n. At 6¢ =0, o « y9, then
m = q. For 8¢ > 0, the yield stress emerges, which amounts
to a dependence o< y° and thus m = 0. In summary,

n ¢ <oy
limm=1q ¢=¢. ®)
i’ 0 ¢>¢,

We summarize the behavior of the successive slope of
flow curves in a schematic diagram in Fig. 1. This diagram
demonstrates the simplicity behind our framework to find

¢ >9,

0 >

0 ¥

FIG. 1. Schematic depiction of the successive slope vs shear
rate in a semilog scale. According to Eq. (5), curves at sub- and
supercritical densities have opposite curvatures. In the asymptotic
limit y — 0, all curves converge to the asymptotic exponents given
by Eq. (8). The curve corresponding to ¢; is the only curve that
does not bend upward or downward and whose offset is equal to the
nontrivial critical exponent g.

¢;. In a semilog plot of m versus y, all of the sub- and
supercritical densities curve in opposite directions, except
at¢y.

In our strategy to find ¢,, we first obtain flow curves for
an intermediate system size. We mark the range of densities
where the curvature of the successive slopes changes. We then
zoom into the region by simulating a larger system size and
nail down ¢;. Finally, we check whether our estimated ¢; is
robust against finite-size effects.

We perform extensive large-scale two-dimensional molec-
ular dynamics simulations of frictionless disks in a simple
shear flow. In our simulations, we dissipate the normal com-
ponent of the relative velocity of colliding particles. This dis-
sipation law leads to Bagnoldian scaling in the dilute regime.
The Newtonian regime is recovered when the transverse com-
ponent of the relative velocity is dissipated [21]. This regime
is not explored in this work. Further details of the simulations
are given in Appendix A. In Fig. 2 we display the successive
slope m versus shear rate y for different packing fractions ¢
for a system of intermediate size L = 100. The curvature of
the curves changes in the range between ¢ = 0.843 and 0.844.
This determines the window for ¢;. We will zoom into this
region to determine ¢; with a higher resolution and larger sys-
tem sizes. All of the curves corresponding to different packing
fractions show a tendency to converge at large shear rates.
This is in accord with the predictions by Eq. (5). One can see
that upon decreasing the shear rate, the far-top curves show
a tendency to converge towards the value of the asymptotic
exponent n = 2 and the far-bottom curves to 0. This is again
in accord with the prediction by Eq. (8). A dashed line shows
an estimation for the value of g = 0.6. We note that this line
tends towards smaller values upon increasing L. For L > 200,
the estimated value of ¢ does not change. We note that for
¥ < 1079, the successive slope in the critical range of den-
sities displays giant fluctuations reminiscent of critical fluc-
tuations. We observe these fluctuations for systems of larger
spatial extents for y < 107°. Therefore, in the rest of the
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FIG. 2. Successive slope m vs shear rate y for different ¢. The
value of each ¢ is given in the legend. The number of particles varies
from N = 7183 to 7742 for ¢ = 0.835 and 0.90, respectively. The
spatial extent of the system is L = 100. The curvature of the curves
changes in the range of ¢ = 0.843 and 0.844. This marks the critical
window for ¢; and the range for refined measurements with a much
larger resolution on ¢ for substantially larger system sizes.

paper, we do not consider data with y < 107° in our analysis.
To summarize the results for L = 100, the crude estimation
for the transition density is ¢; ~ 0.84335 £ 0.00035. The
naive estimation for the critical exponent is ¢ &~ 0.6. Next,
we will zoom into the critical region with substantially larger
system sizes to find ¢;.

According to elasticity theory, shear stress and pressure are
both components of a single entity known as the stress tensor.
Different components of the stress tensor provide information
about momentum transfer in different directions into or along
imaginary surfaces in the system [35]. However, whether the
shear stress and pressure scale equivalently with shear rate
is not at all an obvious fact. According to Peynneau and
Roux [36] and more recently by Baity ef al. [37] a finite stress
anisotropy, 6p & pxx — Pyy, gives rise to a small rotation of
principal axes of of the stress tensor from those given by the
strain tensor. This gives rise to distinct scaling of the shear
stress and pressure when there is a stress anisotropy in the
system; this usually happens at high shear rates. However,
the stress anisotropy is negligible at small shear rates near
jamming [38]. This is also confirmed by our results. Thus, it is
a widely accepted fact that the asymptotic scaling of the shear
stress and pressure are equivalent. This assumption has been
adopted by many recent studies; see Ref. [18]. More recently,
Suzuki and Hayakawa provided a rigorous derivation of this
based on a u-J rheology [39]. We will use this assumption in
the next section to nail down the critical exponent g.

We display refined measurements in Fig. 3 for different
system sizes up to L = 300. Figures 3(a) and 3(b) refer to the
successive slopes of the shear stress and pressure, respectively.
One can see that for all densities, there is a strong system
size dependence for L < 200. For L > 200, the successive
slopes are on top of each other for all densities. The curves
at ¢ = 0.843 and 0.844 clearly have opposite curvatures
for all system sizes. We zoom into this region to find the
critical density. Filled squares correspond to ¢ = 0.84335
and L = 300. These data are averaged over seven different
ensembles. The rest of the data are obtained from a single
realization. For L = 300, a closer inspection of data at ¢ =
0.8433 and 0.8434 reveals their opposite curvatures. The ¢ =
0.84345 line is curved down similar to that at ¢ = 0.8434.
Therefore, these are off-critical densities. However, one can
clearly see that ¢ = 0.84335 (filled squares) is the crossover
density where the curvature changes. Therefore, we conclude
¢; = 0.84335 £ 0.00005. Interestingly, our estimated density
within error bars agrees with that of Heussinger ef al. [40]
and Vagberg et al. [18]. A closer inspection of the successive
slope of shear stress o [Fig. 3(a)] and pressure p Fig. 3(b)]
reveals a stronger corrections-to-scaling of the shear stress.
Here stronger corrections-to-scaling means a larger amplitude
of the scaling function of Eq. (7). However, as we have
mentioned in the previous paragraph the asymptotic expo-
nents must be equivalent for both pressure and shear stress.
Interestingly, a stronger corrections-to-scaling of shear stress
has been reported by other authors [9,18].

One can see that ¢; does not have a strong dependence on
the system size. However, the asymptotic exponent changes
continuously from 0.6 to approximately 0.4 by increasing the
system size from L = 50 to 300, respectively. Estimation of g
for L = 300 is not straightforward because of the complexity
of the scaling function for large system sizes, i.e., the depen-
dence of m to y. In the next section, we describe a systematic
method to nail down the critical exponents.

IV. HUNT FOR EXPONENTS

In this section, we describe how we nail down the critical
exponents. The easiest way to find critical exponents is to
obtain them via fitting Eq. (7) to the successive slope curve
at ¢ in Fig. 3 using ¢, k, and w/z as free-fitting parameters.
We call this a blind fitting. Notably a three-parameter fitting
corresponds to the optimization of a residual function in a
3 + 1-dimensional space. This function is rugged and has
many local basins. Each fitting algorithm or software will find
one such local minimum. This will cause a zoo of different
values for the exponents due to the rugged nature of the
residual function.

To avoid fitting artifacts, we hold the correction-to-scaling
exponent w/z fixed and obtain the asymptotic exponent g via
fitting a linear function to m versus y®/%. We vary w/z in a
range between 0.3 and 0.5, and we record the corresponding
q. The contour lines of the fits are given in Fig. 4(a) for both
shear stress and pressure. Each contour line represents all
possible outcomes of ¢ and w/z via a three-parameter blind
fitting. Each point on the contour lines corresponds to one
basin. Now, the crucial question becomes about which point
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FIG. 3. Successive slope vs shear rate for (a) shear stress and (b) pressure. The critical density is found ¢; = 0.84335. We observe a
strong system size dependence for L < 200. For L > 250, different system sizes are on top of each other. In this density, for L = 300,
the system consists of N = 65397 particles. The successive slopes at slightly above and below ¢, bend in opposite directions. A stronger

correction-to-scaling is found for the shear stress o.

on the contour line can be considered the corresponding point
for correct exponents.

As we previously noted, pressure and shear stress can
have different scaling functions; however, asymptotic critical
exponents must strictly be equivalent. This provides a match-
ing rule, which allows us to pick up the correct exponents
based on the crossing point of the contour lines of p and o.
Figure 4(a) demonstrates that such a matching point really
does exist, and we read exponents ¢ = 0.41 and w/z = 0.365
for both p and o. We note that within error bars, the crossing
point gives the same g for L > 200. However, w/z is not
stable. Therefore, we perform the finite-size scaling analysis
for w/z with fixed g(L = oc0) = 0.41 via

a)/z(L).

€))

We fit Eq. (9) and obtain w/z as a function of L. We
plot w/z(L) versus L~" in Fig. 4(b). One can see that w/z

m(L) — (L = 00) o

(a) 0425
0.42

0.415

0.39

0.35 0.4

0.385

0.3 0.45

w/z

levels off at 0.35 for the largest system sizes. This gives
us the asymptotic value of the leading correction-to-scaling
exponent w/z(L = 0co) = 0.35. We summarized the values of
critical exponents in Table II.

Having obtained both ¢(L = o0) and w/z(L = 00), we
arrive at our final vital benchmark. We now hold ¢ and w/z
fixed to their asymptotic L = oo values and fit Eq. (7) to
the data to obtain the amplitude k. The resulting curves are
shown as solid lines in both Figs. 3(a) and 3(b). We obtain
k = 3.7 and 1.36 for shear stress and pressure, respectively.
Since k is the amplitude of the leading correction-to-scaling
term, which is supposed to be a small term, £k must be O(1).
This dramatically depends on the window of y . If this window
is far from the critical region, then the next terms in the
correction-to-scaling must be considered. Moreover, for such
cases where the window of y is far from the critical region
and only the leading correction-to-scaling is considered, the

(b) T e
Xy
0.4 p —H—
0.3
N
S 02} E
0.1 | :
0 | \ — | T
0 0.005 0.01 0.015 0.02
L—l

FIG. 4. (a) Contour lines of ¢ and w/z for p and o. The matching rule selects critical exponents where the contour lines of p and o
intersect. (b) We hold fixed ¢g(L = 0o) = 0.41 and obtain correction-to-scaling exponent w/z via fitting through Eq. (7). The obtained value
of w/z(L) is plotted against L~'. One can see that w/z saturates for large system sizes to w/z(L = 00) = 0.35.
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TABLE II. Numerical values of critical exponents.

Exponent q w/z

o,p 0.410(5) 0.35(5)

obtained value of k becomes too small or too large. Here we
see that we arrive at conclusive values of k ~ O(1) for both
o and p. This consistency check is crucial for the analysis
and must be carried out to examine the preassumptions for the
correction-to-scaling terms.

As a final note, the exponent y describes how the yield
stress o, scales with distance to jamming §¢. This exponent
can be measured by simulations of pure isotropic compres-
sion, and no shearing is required. It is well known that
y >~ 1[41].

V. DISCUSSION AND CONCLUSION

Soft spheres flow freely in a dilute regime and become
amorphous solid in a dense regime. This accounts for a large
range of phenomena such as jamming and glass transition.
Determinations of both the transition density and exponents
describing scaling near the transition point are subjects of
intense research. However, because of a lack of a general
framework, no consensus has yet emerged. Here we close this
debate by presenting a framework to precisely compute the
exponents of the rigidity transition in soft spheres based on an
accurate determination of the transition density. Furthermore,
we demonstrate that even though the transition density can
be uniquely determined, there is a spectrum of different
numerical values for critical exponents. Thanks to isotropic
asymptotic scaling of the components of the stress tensor,
we introduce a matching rule that selects critical exponents
and rules out other possibilities. The matching rule considers
the intersection of contour lines of exponents of pressure and
shear stress. This allowed us to unambiguously determine the
asymptotic critical exponent of the shear stress and pressure.
Having determined the asymptotic exponent ¢, we use finite-
size scaling to determine the asymptotic value of exponent
of the leading correction-to-scaling term w/z. We demon-
strate that w/z for both shear stress and pressure converges
to the same value within the numerical uncertainty at the
limit of large system sizes. Two mean-field type calculations
for the exponents of the rigidity transition are proposed by
Otsuki-Hayakawa [27] and DeGiuli ef al. [17]. Our results for
exponents are closer to the predictions by the former.

Noticeably, we recover inertial-Bagnold scaling p, o o< 32
at y — 0 below jamming. This is a direct result of the fact
that our dissipation rule damps out the normal component of
the relative velocity with respect to the contact point of two
colliding particles. However, since in a shear flow the main
contribution to the kinetic energy of particles comes from
the tangential relative velocities of particles, after a collision
particles maintain their motion due to the apparent inertia.
This fact was first noted in Refs. [17,21].

Even though the critical density is not strongly influenced
by finite-size effects in our analysis, we observe a strong
dependence of the critical exponents on the system size. This

is a crucial point that has been overlooked in many recent
studies about glass transition and jamming. In these studies,
extremely small system sizes, in the order of 10° particles, are
considered. Our results indicate that such small system sizes
are strongly influenced by finite-size effects.

Our framework provides grounds for several immediate in-
vestigations that will deepen our understanding of amorphous
materials using rheology as the main tool:

(i) Critical exponents of a phase transition can be in-
fluenced by fluctuations and thus the dimensionality of the
system. However, these exponents do not significantly change
above a critical dimension, known as the upper critical di-
mension dyc. Below this dimension, fluctuations are impor-
tant. Above dyc, fluctuations are washed out, and critical
exponents are equal to the mean-field exponents. The exact
determination of dy¢ for the jamming transition has been a
challenge: the absence of a mean field theory and the lack of a
framework for the precise measurement of critical exponents
can be considered as the main reasons. Many authors have
suggested that dy¢ = 2 and that logarithmic corrections-to-
scaling are involved [28,41-44]. The main reason for this
is that critical exponents appear to be the same for d = 2
and 3. Collapse of the data has been used widely in these
studies to measure critical exponents. Our general approach
can be easily applied in accurately measuring critical ex-
ponents in three dimensions. Then a comparison of critical
exponents at d = 2 and 3 can resolve the controversy over
the upper critical dimension for jamming. This will be a
great step ahead in understanding the nature of the jamming
transition.

(i) Amorphous solids possess a complex free-energy
landscape [45]. As one increases density, an amorphous solid
undergoes a sequence of transitions: glass transition, Gardner
transition, and jamming. Annealing has been the essential
method to investigate these transitions. Standard rheologi-
cal techniques have been shown to be powerful tools to
investigate complex properties of this energy landscape of
amorphous materials [46]. We expect the generalization of our
approach to shed light on and help formulate a general for-
malism to investigate other types of transitions in amorphous
materials using rheology.

(iii) An investigation of periodically driven colloidal sus-
pensions provided remarkable insights into the nature of rhe-
ological phase transitions. In a dilute regime, these systems
undergo a nonequilibrium phase transition into an absorbing
state where particles self-organize themselves to prevent colli-
sions [47,48]. In the dense regime, a yielding transition, which
describes the onset of plastic deformation, has been shown
to be a nonequilibrium phase transition from reversibility in
an elastic regime into irreversibility in a plastic regime [49].
Nonetheless, the nature of the transition has been disputed, in-
cluding whether it is a first- or second-order transition [50,51],
as well as whether the absorbing state transition belongs to the
universality class of (conserved) directed percolation [49]. In
both the dilute and dense regimes, divergences of time and
length scales have been reported upon approaching a criti-
cal shearing strain. However, a precise determination of the
universality classes of these nonequilibrium phase transitions
has not been conclusive due to the lack of a comprehensive
framework for measuring critical exponents from rheological
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experiments [47-49,52,53]. Our formalism may shed light
on resolving the dispute over the nature of rheological phase
transitions in oscillatory shearing.

Rheological phase transitions are fascinating novel tran-
sitions, and the exploration of their characteristics provides
new insights into the less-explored realm of athermal nonequi-
librium phase transitions [54,55]. Compared to other well-
established equilibrium transitions, rheological phase transi-
tions are in their infancy. We hope that our framework can aid
in a better understanding of their nature.

ACKNOWLEDGMENTS

The authors thank the Korea Institute for Advanced Study
for providing computing resources (KIAS Center for Ad-
vanced Computation—Linux cluster system) for this work, and
especially consultations with Hoyoung Kim. We appreciate
enlightening discussions with Abbas Ali Saberi, Takahiro
Hatano, Peter Olsson, and Hisao Hayakawa. This work is sup-
ported in part by NRF Grant No. 2017R1D1A1B06035497.

APPENDIX A: NUMERICAL SIMULATIONS

We perform constant volume molecular dynamics simu-
lations of two-dimensional frictionless bidisperse disks. In-
teractions between particles are modeled by a linear dashpot
model. Two particles i and j of radii R and R? (wherea, b =
0 and 1 stand for two different radii of bidisperse particles)
at positions r; and r; interact when &;; = R} + R? —rij > 0.
Here &;; is called the mutual compression of particles i and
J» rij = |ri —r;|. The particles interact via a linear dashpot
model, F;; =Y§&; + y%, where Y and y are denoted as
elastic and dissipative constants, respectively. Throughout the
study, we adopt unitary scale Y = 1 and y = 1, respectively.

To prevent crystallization, we use a 1:1 binary mixture of
particles where the ratio of the radii of large and small parti-
cles is set to R'/R" = 1.4. The diameter of small particles is
chosen as the unit of the length 2RY = 1, and the mass of each
particle is equal to its area, m, = 7[R

Lees-Edwards boundary conditions are applied along the
y direction. They create a uniform overall shear rate, y. We
use LAMMPS for our simulations. Thanks to the developer
team of LAMMPS, we were provided with a new version
of LAMMPS that prevents artificial attractive forces arising
from the dashpot model. The version can be accessed via the
mailing list of LAMMPS.

We used several system sizes, the smallest L = 50 and the
largest L = 300. We change the packing fraction by changing
the number of particles N via

LZ

8
N=—-—"
w124+ 1.42

¢, (AL)

where 1 and 1.4 are the diameters of small and large particles,
respectively. For shear rate y in the range 10~* and 107, the
total strain is y = 30L, and the integration time step is dt =
0.1. For the next smaller decade, the integration time step is
dt =0.2.

APPENDIX B: SCALING ANSATZ

Here we explain a formalism for deriving the scaling
ansatz for a rigidity transition. The formalism in principle
can be applied to any transition that is accompanied by a
diverging length scale &£. Upon approaching the dense regime,
the motion of particles becomes coordinated. This signals the
growing length scale, which diverges at the critical density ¢ ;.
This divergence is described by exponent v via

& ocdp". (B1)

In the proximity of a critical point, the only fundamental
length scale b is the correlation length scale, b = £. Equa-
tion (B1) can be cast into a dimensionless number as

M, = 5¢b'/". (B2)

The critical point is at ¢ =0 and y — 0, therefore at
8¢ = 0, the correlation length diverges upon decreasing the
shear rate:

gocy s (B3)

where z is the dynamic exponent. This equation can be
similarly cast into another dimensionless number via

I, = yb°. (B4)
Now, any physical quantity such the shear stress o also

scales with the distance from jamming o o §¢” at y — 0.
Combining this relation with Eq. (B1) gives

ox b, (B5)
which provides the dimensionless number for this quantity
I, =ob’". (B6)
Since o depends on both §¢ and y,
[, =Fo(Ilsy, I1;), (B7)
which results in
ob’” =Fo(8pb"", yb%). (B8)

This is the dimensionless equation of state.

In the renormalization group method, the domain over the
correlated particles is rescaled. After renormalization, the sys-
tem becomes smaller by a factor of b, and therefore &' = & /b.
As a result of this, the system moves away from the critical
point by renormalization. In this process, all observables and
control parameters scale with distance from critical point
b. Equation (B8) describes all such scaling behaviors. Two
approaches, the intermediate asymptotic approach described
by dimensionless numbers and the renormalization group,
arrive at similar results [56].

If we choose the length scale b such that yb* = 1, then

B
o = pYF, <yl‘i) (B9)

which is the leading scaling term. At §¢ =0, o  y?, thus
q/y = 1/zv. This equation describes o infinitesimally close
to the critical point at §¢ = 0 and y = 0.

The jamming point is characterized by two principal direc-
tions given by 8¢ and y. Each direction is accompanied by a
principal exponent: y and g. Near the critical point only these
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relevant quantities affects the dynamics. However, off the
critical point, some irrelevant parameters, w, may affect the
dynamics. Since this quantity is irrelevant, one cannot bring
the system into the critical point by varying such a quantity.
This means that the correlation length does not diverge if
w — 0. However, it may retain a scaling form near the critical
region
£ ocw!/®, (B10)
which results in
M, = wb™®. (B11)
Inserting this dimensionless number into Eq. (B8) results
in

ob" = Fy(8¢b'", yb®, wb™?). (B12)

With yb* = 1, we arrive at

1)
o =R <—y.l‘fw , wy‘w“).

A Taylor expansion of this equation to the first order gives

v/ 8¢ cw ¢
o=y [ﬂ“”(m) +7 “ﬂ”(m)] (B14)

This equation describes the leading correction-to-scaling
term. At ¢ = 0,

(B13)

o =p""er + a2yl (B15)

Equation (B15) can be used for scalings of the flow curve
at¢y.
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