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Physical mechanisms of the oscillatory 2λ-O mode in directional solidification
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The 2λ-O oscillatory mode of cellular solidification patterns is studied in thin samples of a succinonitrile-
acrylonitrile transparent alloy. The origin and the nature of oscillations are revisited and discussed by combining
experiment with three-dimensional phase-field numerical simulations. The existence domain of 2λ-O oscillations
and the evolution of their period with growth velocity are determined and compared. Simulations evidence
transversal solute fluxes between neighboring cells as an essential feature of cell dynamics. A solute balance
model in which transversal fluxes are crucial for oscillations recovers the emergence of a 2λ-O mode and its
period-velocity relationship. It thus confirms the fundamental role of transversal fluxes and provides a complete
coherent description of the physical mechanisms of 2λ-O oscillations. Parametric excitations are used to force
2λ-O oscillations beyond their stability domain and highlight the nature of the underlying oscillator, especially
its nonlinearity responsible for intermittent oscillations and complex behavior in the resonance band.
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I. INTRODUCTION

In physical, chemical, or even biological systems, a canon-
ical mechanism for the emergence of oscillatory patterns
stands in the destabilization of a fixed point into a limit cycle
[1,2]. In directional solidification, spectacular examples of
such oscillatory growth modes are provided in the isotropic
phase of a cholesteric liquid crystal [3], eutectic alloys [4–6],
or diluted binary alloys [7–10].

In the latter case, 2λ-O oscillations have been observed
in thin samples of a diluted succinonitrile-based alloy [7].
Adjacent cells were found to form pairs (spacing 2λ) that
oscillate (O) in phase opposition while remaining left-right
symmetric. The stability of cellular arrays with respect to
various modes including 2λ-O oscillations has been deter-
mined by a Floquet-Bloch analysis and found to critically
depend on surface tension [11]. Related vacillating-breathing
modes have also been observed in numerical studies based on
amplitude equations [12,13] or on a phase-field model [14].

In the above experiment [7], a large scan of velocity and
cell spacing provided 2λ-O oscillations on a bounded velocity
range 1.0 < V/Vc < 4.5 close to the critical velocity Vc. As
several instabilities compete in this velocity domain [11,15],
saturated oscillations lasting ten or more periods were seldom
observed. In particular, the large cell deformations displayed
during an oscillation period offered the solidification front the
opportunity to evolve toward asymmetric structures such as
doublons [16]. Meanwhile, both the spatial and the temporal
symmetries broke since the system turned from an oscillatory
to a stationary growth mode [7]. This corresponds to a rare
experimental example of such a doubly broken symmetry.
Following this destabilization to doublons, the 2λ-O mode
is usually impermanent in practice, so observing it requires
some patience, both in experiments and in simulations. In this
context, combining both experiment and numerical simulation
could therefore provide valuable insights into its mechanism.

More recently, experiments were performed under mi-
crogravity conditions in extended samples of a different
succinonitrile-based alloy. They provided globally disordered
arrays of oscillating cells displaying locally correlated oscilla-
tions with a π phase shift in the case of local square ordering
or a 2π/3 phase shift in the case of local hexagonal order-
ing [8–10]. Here too these spatiotemporal patterns refer to
generic modes [2]. On the other hand, numerical simulations
were performed in extended systems, first by using amplitude
equations [17] and later by using the two-sided phase-field
model for a model system [18]. Parametrizing the one-sided
phase-field model with the actual physical parameters of
microgravity experiments, π and 2π/3 oscillatory modes
were recently recovered with oscillation periods comparable
to the experimental ones [8–10]. This strongly suggests that
quantitative numerical results could also be obtained for the
2λ-O oscillating mode.

For thin samples, a pioneering study using the one-sided
phase-field model [19] reported the onset of an oscillatory
single structure in an intermediate domain of spacings, but
no simulations were performed to specifically study the 2λ-O
mode. We report here on experimental results and numerical
simulations relying on a phase-field code designed to incor-
porate the most salient experimental characteristics. A very
similar code was recently validated [20] by means of quanti-
tative comparisons with the orientational response of inclined
solidification structures growing in comparable experimental
systems [21–23]. The good agreement found there motivates
us to adopt here a similar strategy for studying the 2λ-O mode
by combining experiments with numerical simulations.

Altogether, the experimental and numerical studies per-
formed here provide insights into both the existence domain
of 2λ-O oscillations and the relation between the oscillation
period T and the pushing velocity V . In addition, a parametric
excitation of the 2λ-O mode, performed in both experiment
and simulation, reveals an intermittent occurrence of 2λ-O

2470-0045/2018/98(5)/052802(18) 052802-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052802&domain=pdf&date_stamp=2018-11-16
https://doi.org/10.1103/PhysRevE.98.052802


GHMADH, DEBIERRE, GEORGELIN, GUÉRIN, AND POCHEAU PHYSICAL REVIEW E 98, 052802 (2018)

oscillations in the resonance band which emphasizes the
intrinsic nonlinearity of this mode. On the other hand, an
analysis of the dynamics of the concentration field revealed
by simulation points out the importance of transversal fluxes
between cells. On this basis, a simple model of cell dynamics
based on concentration balance results in the 2λ-O oscilla-
tions being recovered. Its underlying physical mechanisms
emphasize the role of cell coupling by transversal fluxes in
the emergence of oscillations of a cell pair.

This paper is organized as follows. Section II describes the
experimental procedure and the 2λ-O mode, while Sec. III
reports the basic ingredients of the phase-field code used
in the simulations. Section IV is devoted to the stability
diagram and to the period-velocity relation. The data extracted
from the concentration field are analyzed in Sec. V and the
essential role of transversal fluxes between cells is identified.
Their implication is analyzed in Sec. VI within a model of
concentration balance and of cell evolution which succeeds
in recovering 2λ-O oscillations. Section VII reports the para-
metric excitation of the 2λ-O mode worked out in experiment
and simulation and emphasizes the role of nonlinearity in the
intermittent occurrence of 2λ-O oscillations. We discuss our
main conclusions and provide a summary in Sec. VIII.

II. EXPERIMENT

The experimental setup is designed to achieve directional
solidification of a layer of cells or dendrites in homogeneous
and controlled conditions capable of allowing the real-time
visualization of microstructures dynamics. Details of the clas-
sical directional solidification setup are described elsewhere
[22,24]. A thin sample filled with the solidifying material
is pushed in a controlled uniform thermal gradient toward
the cold zone at a given velocity V . The growing liquid-
solid interface is then observed through an appropriate optical
stage. The sample is made of two parallel glass plates glued
on their sides to define a 45 mm × 100 mm × 100 μm thin
cavity. Sample thickness is selected by using mylar sheets as
calibrated spacers, thin enough to avoid the emergence of a
second layer and thick enough to ensure a three-dimensional
(3D) behavior of microstructures as opposed to the 2D rib-
bonlike behavior displayed for excessive squeezing [19]. A
thermal gradient of 110K cm−1 is provided by two heaters and
two coolers which sandwich the sample, all being electron-
ically regulated with an accuracy better than 0.1 ◦C. When
addressing the periods of the 2λ-O mode, it has also been
extended to 140K cm−1. The material used in experiments
and modeled in numerical simulations is a transparent plastic
crystal, succinonitrile, with a small amount of acrylonitrile as
dilute solute. Care has been taken to obtain a single crystal
without grain boundaries in the whole sample, the selected
orientation involving a [001] direction perpendicular to the
sample plane and a [100] direction parallel to the thermal
gradient (and thus normal to isothermal lines and planar
fronts). Physical and control parameters of experiments and
simulations are given in Table I.

On a given sample, the solidification velocity is increased
up to a constant value V at which observations are performed.
The velocity growth rate influences the mean cell spacing,
narrow spacings being displayed at large rates and wide

TABLE I. Physical parameters of the succinonitrile-acrylonitrile
alloy of interest and control parameters imposed in the experiments
and the numerical simulations. In the first entry, m is the liquidus
slope (negative here) and c∞ is the acrylonitrile concentration.

Physical parameter Symbol Magnitude Unit

liquidus temperature drop −mc∞ 2.0 K
solute diffusion coefficient (liquid) D 1350 μm2/s
capillary length d0 0.01296 μm
partition coefficient k 0.286
anisotropy strength ε4 0.011

Control parameter Symbol Magnitude Unit

thermal gradient G 0.011 K/μm
pushing velocity V 3.0–13.5 μm/s
critical velocity Vc 2.97 μm/s

spacing at small ones. In any case, sufficient time is given
to spacing inhomogeneities to relax by diffusion, thereby
providing a quasihomogeneous spacing over the observation
window which typically spans over a dozen of cells. In-
stabilities, such as the 2λ-O instability studied here, occur
naturally by development of fluctuations usually on steady
patterns but sometimes also on dynamical ones, following the
perturbations induced by a previous instability.

Figure 1 displays a typical sequence of oscillation evi-
denced on a cycle of the 2λ-O mode at V = 8 μm s−1. (See
the corresponding movie in [25] as well as the movie for G =
140 K cm−1 with a larger number of cells.) The spatial period
of oscillation extends over two cell spacings with neighboring
cells in phase opposition. This actually corresponds to a 2λ

instability. Oscillations involve both the cell shape and the
cell position (or undercooling). As displayed in Fig. 1(a),
when cell positions are the same, the shape differences are the
largest. This means that their oscillations are nearly in phase
quadrature. Typical values of the oscillation periods are 1 or
2 min. This stands as an unusually long characteristic time for
cellular instabilities since, for instance, dendritic oscillations
only last a few seconds [24].

Figure 2 displays a cycle provided by oscillating cells over
many periods. To enhance the signal, the difference between
the tip positions δzt (t ) and the cell widths δλ(t ) of two
adjacent cells is considered. On these oscillating cells, the
cell widths are measured at the position of their tip curvature
center.

At a given V , a scan of the 40-mm-wide front displays
both steady and oscillating cells. As the cell spacing is quite
uniform even over such a large distance, it appears that at the
same values of V and λ, steady and oscillating cells can co-
exist [7]. This makes a difference with other cell instabilities
such as cell elimination, tip splitting, or dendritic emission
which develop as soon as the required conditions in (V, λ) are
satisfied. Here the coexistence of steady and oscillating cells
suggests a subcritical nature of the 2λ-O instability. This is
supported by the response to a sudden velocity pulse which
makes previously steady cells develop 2λ-O oscillations.

In practice, the fact that some cells remain steady whereas
other similar cells have undergone the instability means that
the former have not yet encountered the perturbations that
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FIG. 1. Experimental evidence of a 2λ-O mode. From (a) to (f),
six successive snapshots of the same front are shown at time intervals
of 20 s over a cycle. The pushing velocity is V = 8 μm/s, the image
width is 280 μm, the oscillation period is 100 s, and the thermal
gradient G = 110 K/cm. Snapshots (a) and (f) thus refer to the same
phase of the cycle. Oscillations of tip position are tiny, but those
of cell width and of tip curvature are noticeable. Nearest-neighbor
cells are in phase opposition and arrows in snapshot (a) indicate the
direction of cell velocities in the frame of the thermal gradient.

made the latter become unstable. The reason is that the pertur-
bations yielding the instability are rare, for instance because
they are intense or spatially coherent. Intense fluctuations are
actually required in subcritical instabilities to leave the basin
of attraction of a stable fixed point. They then involve a thresh-
old in intensity that makes their probability of occurrence
low. Here, in addition, one may suspect that some level of
spatial coherence over a couple of cells is required to make
oscillations develop. In particular, no oscillation of a single
cell has ever been observed and the model of Sec. VI will find
them damped. Accordingly, one may guess that fluctuations
involving a characteristic length of 2λ are required, with a
positive perturbation on a cell and a negative one on its
neighbors. Here again, this specificity reduces the probability
of occurrence.

In this context, two kinds of procedure have been used to
document the 2λ-O mode. The first one consists in applying a
slow ramp or small increments of velocities and in observing
a given domain of a dozen of cells over a long time to detect
and follow the birth and the development of the oscillations.
As this is time and sample consuming, this cannot be used
systematically. The second procedure consists in scanning the
whole front at a given velocity V so as to detect yet developed

FIG. 2. Limit cycle of oscillating cells obtained from the differ-
ences of cell tip positions δzt and cell widths δλ between two neigh-
boring cells, with V = 13 μm s−1, λ = 45 μm, and G = 140 K/cm.

oscillations. It has been used to fill in the existence diagram
in the (V, λ) space (Sec. IV), the spacing λ being determined
from the distance between the cell axes. Both procedures have
their own merit: The first one enables the detection of 2λ-O
oscillations from their birth to their long-term development;
the second one enables the determination of the existence
diagram in a reasonable time.

For velocities close to the upper limit of the existence
domain, oscillations succeed in keeping the same amplitude
over about ten periods (Fig. 2). However, for velocities below,
i.e., in most of the existence domain, 2λ oscillations display an
increasing amplitude which yields one of the oscillating cells
to either tip split or get eliminated depending on whether its
initial spacing is large or small. In both cases, neighboring
cells relax toward an asymmetric state corresponding to a
so-called doublon that is stable with respect to the 2λ-O
mode [7]. In this respect, the 2λ-O instability stands as a
mediator for the formation of doublons. This emphasizes its
long-term role in the cellular pattern dynamics.

III. PHASE FIELD

The thin interface phase-field model (TIPM) was intro-
duced by Karma and Rappel to simulate the solidification of a
pure substance [26,27]. This model was extended later to the
case of a dilute binary alloy [28,29]. Recently, direct compar-
isons of the TIPM with 3D experiments of alloy solidification
performed in confined samples [19,20] and in extended ones
[8–10] became feasible and quantitative agreement was found
in each case.

Here, as in a number of recent studies [8–10,20,30,31],
we replace the usual phase field ϕ ∈ [−1, 1] by the precon-
ditioned phase field

ψ =
√

2 tanh−1(ϕ), (1)

which is a signed distance from the interface. For a given
numerical accuracy, this transformation allows one to use
coarser numerical grids, which significantly reduces the nu-
merical effort [32]. GPU parallel programming is used to
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further increase the code efficiency [8–10,33]. We only give
the main lines of the model here. For more details, we refer the
reader to our recent study of inclined solidification structures
under very similar experimental conditions [20]. Numerical
simulations are performed in a thin parallelepipedic domain,
with x lying along the sample width, y along the sample
thickness, and z along the temperature gradient.

A. Evolution equations

In the TIPM, the solid-liquid interface is given a thin but
finite width W0 which is used as the unit length here [26,27].
For rough materials such as succinonitrile, attachment kinetics
can be neglected. We thus impose a zero kinetic coefficient
here by setting the characteristic time of the phase-field model
to τ0 = a0W

3
0 /Dd0, where d0 is the capillary length, D is the

solute diffusion constant in the liquid phase, and a0 � 0.5539
[26,27]. In order to obtain a nondimensional version of the
evolution equation for ψ , we follow the usual convention
where lengths and times are divided by W0 and τ0, respec-
tively. The resulting equation is

(1−βkz
∗)a2

s

∂ψ

∂t
=

√
2[ϕ − C(1 − ϕ2)(U + z∗)]

+ a2
s [∇2ψ−

√
2ϕ(∇ψ )2] + 2as∇as · ∇ψ

+
√

2

(1 − ϕ2)
∇ · A, (2)

with βk = 1 − k and k the partition coefficient. Here the
nondimensional concentration field U is related to the physi-
cal concentration field c by

c = c∞
k

(1 + βkU )

(
αk − βkϕ

2

)
, (3)

where αk = 1 + k, c∞ is the nominal solute concentration,
and the additional term βkz

∗ on the left-hand side of Eq. (2)
is introduced to reduce higher-order corrections that appear
in the asymptotic expansion of the phase-field equations [29].
The nondimensional variable z∗ is defined as

z∗ = [z + zs (t ) − V t]/lT , (4)

where

lT = mc∞(k − 1)/kG (5)

is the thermal length. The quantity V t − zs is a small vertical
offset that becomes constant (up to one mesh size) at large
times. It is the difference between the physical pushing veloc-
ity term V t and the numerical term zs (t ) which adds up the
vertical shifts performed during the simulation (as explained
in Sec. III B). For our rough material, the constant that couples
the nondimensional concentration field U to the phase field is
C = 75D∗/47, with D∗ = Dτ0/W 2

0 [27].
Both as and A depend on the crystal anisotropy. In the

present case, the anisotropy is cubic and the crystal axes [100]
and [001] are oriented as in the experiment (see Sec. II). The
corresponding anisotropy function reads then [34]

as = (1 − 3ε4) + 4ε4
(
n4

x + n4
y + n4

z

)
, (6)

where nx , ny , and nz are the components of the unit vector
n along the normal to the solid-liquid interface and ε4 is the

anisotropy strength. Moreover, the three components of the
anisotropy vector A are given by

Aμ = 16ε4
1 − ϕ2

√
2

|∇ψ |as nμ

[(
n4

x + n4
y + n4

z

) − n2
μ

]
, (7)

with μ = x, y, z.
We use here the one-sided model that neglects solute

diffusion in the solid. Following Refs. [28,29], a corrective
solute current

jat = W0

2
√

2

c∞
k

βkγ n (8)

is used to avoid artificial solute trapping and other spurious
corrections due to the finite interface thickness W0. Here

γ = 1 − ϕ2

√
2

(1 + βkU )
∂ψ

∂t
. (9)

The evolution equation for the nondimensional concentration
field U is then [28,29]

(αk − βkϕ)
∂U

∂t
= (1 − ϕ)D∗∇2U

− (1 − ϕ2)√
2

D∗∇ψ · ∇U

− 1√
2

n · ∇γ + γ

(
1 − ∇ · n√

2

)
. (10)

B. Parameters and conditions imposed

Along the y direction (sample thickness), no-flux boundary
conditions are imposed on U while a contact angle θc is
prescribed by imposing ∂ψ/∂y at both boundaries (see, for
instance, [35] for a detailed description of such limit con-
ditions). We use here the same value as in [20], ∂ψ/∂y =
±0.8333, the positive (negative) value corresponding to the
front (rear) boundary, so θc � 33.5◦. We verified that for
such small contact angles the actual value of θc has a weak
influence on the simulation results [36]. Periodic boundary
conditions are preferred for the x direction (sample width).
Along the z direction (thermal gradient), the boundary condi-
tions are no flux at the bottom of the domain and U = −1.0
at its top. In addition, the fields ψ and U are shifted when
needed to keep the interface roughly at the same vertical lo-
cation in the simulation domain. In the stationary regime, the
cumulated shift zs (t ) = V t + z0, where z0 is a constant offset
due to the fact that the growth velocity varies during the initial
transient. The initial conditions used here are either a ran-
domly perturbed flat interface or a 2λ-O mode obtained from
a previous simulation on which a dilation or a contraction of
space is applied in order to vary the spacing λ. Both lead to
the same features for the developed steady or oscillating state.
The convergence parameter ξ = W0/d0 has been tested on
steady cells until reaching constant cell features. It has also
been taken sufficiently small that no spurious sidebranching
occurs on the cells and that the oscillation period T remains
constant within a few percent if ξ is further decreased by about
10%. Altogether, a satisfactory convergence is obtained for
ξ = 90.0.
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TABLE II. Numerical parameters used in the simulations.

Parameter Expression Value

convergence W0/d0 90.0
grid spacing δs/W0 1.2
noise amplitude F 0.05

A spatiotemporal noise of small amplitude F

[8–10,20,31,37] is introduced during the early stages of
the simulations (t � 100 s). Afterward, noise is turned off
(F = 0) so that only the intrinsic numerical noise remains;
all the results presented here exclusively correspond to
this F = 0 regime. Although the growth time of the 2λ-O
oscillations may depend on the details of the initial noise,
the features of the developed oscillating states do not. In
contrast, the simulations of parametric oscillations considered
in Sec. VII are always performed without spatiotemporal
noise from the beginning (F = 0) to avoid introducing a bias
in the forcing.

The numerical parameters used in the simulations are
gathered in Table II. Based on our previous study [20], we
use ε4 = 0.011 [38] for the crystal anisotropy and 35 μm for
the sample thickness. For this thickness, the cell tip has a
curvature radius of the order of 10 μm in the yz plane perpen-
dicular to the sample (Fig. 3). This strongly curved interface
suggests a truly 3D behavior. A very different behavior is
expected for the 2D ribbon-shaped interface that is obtained
in thinner samples [19]. To evaluate the differences between
the two cases, we also performed fully 2D simulations [36].
They showed that comparable oscillations also appear in two
dimensions but their amplitude is weaker, they rapidly damp
out, and the scaling exponent of relation (11) is about −3/4
instead of −3/2.

FIG. 3. Side view of the numerical domain (35 μm in thickness)
showing one of the two oscillating fingers intersected by the yz plane
that passes through its tip. The tip radius of curvature is roughly equal
to 11.5 μm here.

FIG. 4. Existence diagram of the 2λ-O mode obtained at G =
110 K/cm. Different symbols correspond to the occurrences found
experimentally (closed circles) and numerically (open triangles).

IV. EXISTENCE DIAGRAM AND OSCILLATION PERIOD

Varying both the pushing velocity V and the spacing λ

in the simulations allowed us to observe a number of oc-
currences of the 2λ-O mode. (See the movie in [25] for an
example of oscillations simulated at V = 9.0 μm s−1 and λ =
77.5 μm.) All the occurrences of the 2λ-O mode are reported
in the existence diagram of Fig. 4, together with experimental
points. Whereas excellent agreement is obtained regarding the
velocity range, the experimental modes span over a wider
range of spacing with, in the central part of this range, a gap
in which only stable cells are observed.

To better compare experiments and numerics, we stress
that numerics provide, for a given set of physical parameters,
values of λ smaller than in experiment, as previously noticed
in [8] or in [20]. This corresponds in Fig. 4 to an overall shift
of the numerical data to the left following which the numerical
domain appears as a shift of the large spacing experimental
domain. However, no similar shift of the experimental domain
for small spacing is displayed for the numerical data of Fig. 4.
This may be traced back to the impossibility of simulat-
ing small spacings owing to the much shallower grooves in
numerics than in experiment (compare Figs. 7 and 8 with
Fig. 1). As studied in detail for the one-sided phase-field
model in [39], this groove feature is found to induce a rapid
cell elimination that preempts any possible emergence of
durable oscillations. Finally, we also notice that, following the
sensitivity of stability bands to crystalline anisotropy [19], its
slight variation between experiment and numerics may yield
a noticeable implication on the stability diagram. Considering
these differences between experiment and simulation, we may
finally view Fig. 4 as providing global agreement between
them regarding the existence domain of the 2λ-O mode.

To provide a reliable measurement of their period, oscilla-
tions must last several cycles with nearly constant amplitude,
no transition to a doublet, and no perturbation from neighbors.
For these reasons, only some of the experimental events dis-
played in Fig. 4 provided data on oscillation periods. Similar
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FIG. 5. A log-log plot of (a) the oscillation period T vs pushing velocity V and (b) T/τD vs Pe, with closed circles for experimental data
and open squares for numerical data. Data are fitted with respect to relation (11) in (a) and to relation (12) in (b). Solid and dotted lines are for
fits to the experimental and numerical data, respectively.

restrictions prevented the measurement of the period of the
numerical occurrence at V = 4 μm/s. In Ref. [7], a large
set of experimental results obtained for temperature gradient
G = 110 or 140 K/cm yielded the relation

T = AV −3/2, (11)

where A is a constant. As this relationship does not de-
pend on the thermal gradient in this short range, we
have addressed its relevance by completing experimen-
tal data with few periods obtained at G = 140 K/cm. As
can be seen in Fig. 5(a), both experimental and numeri-
cal data clearly follow this power-law relationship within
numerical accuracy. Fitting them to Eq. (11), one ob-
tains Aexpt = (2.46 ± 0.08) × 103 μm3/2 s−1/2 and Anum =
(2.73 ± 0.08) × 103 μm3/2 s−1/2.

The scaling law (11) agrees with that provided by
the 1λ-O instability [40] both regarding the exponent
and the prefactor which, for a relative spacing of 1/2,
amounts to A = 2π (2k)1/2(1 + k)−1D/V

1/2
c , i.e., 2.90 ×

103 μm3/2 s−1/2 here. We also note that the same relationship
between period and velocity, with a rather similar value of
coefficient A, was also obtained for 2π/3 oscillation modes
in extended 3D samples, although both the oscillation mode
and the solute were different there [8–10].

To address the dependence of the oscillation period on
the cell spacing λ, we have looked for a relation T (V, λ)
in nondimensional variables based on the following diffusive
characteristic variables: the diffusion time τD = D/V 2, the
diffusion velocity VD = D/λ, and the diffusion length lD =
D/V . With T/τD = b(λ/lD )α (V/VD )β , the relation (11) ex-
tends to

T/τD = b Pe0.5, (12)

Pe denoting the Péclet number Pe = λV/D and b being
a nondimensional prefactor. As can be seen in Fig. 5(b),
experimental data agree with this extended scaling law with
a best-fitting prefactor b = 8.1 ± 0.4, but numerical data do
not extend over a sufficient range of Péclet number to be
conclusive.

time

-1

0

1

ca , zt

zt

ρ

T/8 T/4 3T/8 T/2 3T/4 T7T/85T/80

a b c d e f g h i
label

.

FIG. 6. Time evolution of the fluctuations (denoted by a tilde)
of four different parameters (schematic representation). The fluctua-
tions of a given parameter are defined as its instant value minus its
average value and they are normalized to one here. The parameters
represented are the solute concentration at a fixed distance above the
cell tip c̃a and three geometric parameters of the cell tip: position z̃t ,
velocity ˙̃zt , and radius of curvature ρ̃. The oscillation time period is
denoted by T and labels a–i refer to those used in Figs. 7 and 8.
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FIG. 7. Time evolution of the 2λ-O mode obtained numerically. The pushing velocity is V = 9 μm/s and the image width is 310 μm.
Solid cells appear in black in the lower part of the panels and white arrows indicate the cell tip velocities. In the liquid phase above them,
isosurfaces are drawn for the constitutional undercooling � defined in the text. A complete oscillation period T � 108 s is swept, the frames
corresponding to times (a) 0, (b) T/8, (c) T/4, (d) 3T/8, (e) T/2, (f) 5T/8, (g) 3T/4, (h) 7T/8, and (i) T .

V. CONCENTRATION FIELD

Intuitively, one may expect the 2λ-O mode to result from
a coupling between neighboring cells, but a part of the in-
formation required to elaborate a complete description of the
underlying mechanism is not easy to get from experiment.
The situation is somewhat better in numerics because, in
addition to purely geometric characteristics of the cell tip
such as position zt , velocity żt , and radius of curvature ρ,
phase-field simulations also provide the concentration field
(see Figs. 6–8). Thus, as a complement to the geometrical
information provided by the microstructures, one may expect
the missing information to be gained from the spatiotemporal
evolution of the concentration field.

A concept that proved useful in quantifying the dynamics
of the growth modes is constitutional supercooling [41]. It is
commonly defined as a temperature difference, but may also
be expressed in terms of concentrations

δc(r, t ) = cL(z, t ) − c(r, t ), (13)

where c(r, t ) is the actual concentration at location r and
time t and cL(z, t ) is the liquidus concentration at the
corresponding temperature T (z, t ),

cL(z, t ) = c∞
k

+ G

m
(z + zs − V t ) = c∞

k
+ lT

G

m
z∗, (14)

where z∗ is defined in (4). Using (3) and (5) finally yields the
nondimensional undercooling

� = − k

c∞
δc = βkz

∗ + (1 + βkU )

(
αk − βkϕ

2

)
− 1. (15)

When, for a given velocity, the thermal gradient G is less than
a critical value, the planar front destabilizes and cells form.
A zone of negative undercooling then builds up in the liquid
and � goes through a minimum �a < 0 at some distance �za

ahead of the cell tips, as seen in Fig. 7.
Here and in the following, we want to focus on the physical

limit where the interface becomes very sharp. To do so,
everywhere in the liquid � is obtained by evaluating the
right-hand side of Eq. (15) for the far-field value ϕ = −1.0.
As αk + βk = 2, one then gets (in the liquid)

� = βk (z∗ + U ). (16)

In the solid, we uniformly set the undercooling to an arbitrary
negative constant

� = const < 0. (17)

Figure 7 represents � in the xz plane that intersects the cell
tips. The simulation is performed for a single pair of cells with
periodic boundary conditions along x. The resulting data are
then duplicated along x to ease visual inspection by the reader.
As detailed below, the main characteristics observed in the
experiments (Fig. 1) are recovered here.

The fluctuations of four cell parameters are schemati-
cally represented as functions of time in Fig. 6. The three
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FIG. 8. Time evolution of the field ∂�/∂x for the same parameters as in Fig. 7. The two arrows in (g) indicate the orientations of the
horizontal solute currents, proportional to −∂�/∂x, that converge toward the central cell. At the bottom and the top of the frames, the
zero-current areas represent the solid and the far-field liquid, respectively.

geometrical parameters were introduced above; the fourth, ca ,
is the solute concentration at the altitude �za above the cell
tip where � is minimal. One can follow their evolutions by
focusing attention on the central cell in the successive panels
of Fig. 7. At initial time [Fig. 7(a)], ˙̃zt is maximum, c̃a and z̃t

are zero and increasing, and ρ̃ increases after having reached
its minimum about a picture earlier [Fig. 7(h)]. Taking the tip
velocity fluctuation ˙̃zt as the phase reference, the initial phase
shifts remain constant in time, that is, roughly π/2 for c̃a and
z̃t , and 3π/4 for ρ̃.

At time t = T/2 [Fig. 7(e)] the tip velocity is minimum,
so the vertical solute flux rejected at the tip is lower than
average. As a result, at later times, the solute concentration
ca ahead of the tip decreases, as shown in Figs. 7(f)–7(i),
producing the large black area at a distance �za above the
cell tip [Figs. 7(f) and 7(g)]. As �za � 40 μm, the vertical
diffusion time �z2

a/D � 1.2 s is rather short compared to
the oscillation period T � 108 s. The effects of żt on the
dynamics of ca are thus almost immediate.

The counteracting mechanism that reequilibrates the con-
centration in the dark stripe around altitude �za above the
cell tips comes from horizontal solute diffusion currents. In
the far-field limit of Eqs. (16) and (17), we obtain

∂�

∂x
= βk

∂U

∂x
(in the liquid) (18)

and

∂�

∂x
= 0 (in the solid). (19)

Note that this quantity is simply proportional to the hori-
zontal component of the concentration gradient ∂c(r, t )/∂x

or to the opposite of the horizontal concentration current
jx = −D(∂c/∂x).

Figure 8 represents the time evolution of ∂�/∂x over an
oscillation period. When ca is a minimum [Fig. 8(g)] the hor-
izontal solute currents coming from the two neighboring cells
reach maximum extensions and converge to increase the so-
lute concentration above the tip of the central cell [Fig. 8(g)].
This mechanism definitely supersedes the coupling between
nearest-neighbor cells but, since the central cell is not totally
screened, it still survives for the next period. One can see that
the two converging horizontal currents cooperate to pinch the
tip of the central cell. As a consequence, ρ decreases to reach
a minimum value on the next panel [Fig. 8(h)]. This increases
diffusion currents at the tip and thus its velocity żt . In the
meantime, the situation is the exact opposite for the two cells
neighboring the central one: The tip radius increases and so
the tip velocity decreases. This completes the explanation of
the way the central cell manages to survive.

As compared to the time analysis just detailed that starts
from t = T/2 [Figs. 8(e)–8(i)], the sequence is precisely
reversed half a period earlier, as shown by the panels start-
ing from t = 0 [Figs. 8(a)–8(e)]. Thus a unique mechanism
accounts well for the periodic nature of the 2λ-O mode, with
a doubling of the spacing. The following section is devoted to
modeling it.

VI. EMERGENCE OF OSCILLATIONS

The specific features of the 2λ-O instability are its os-
cillatory character and its wavelength, which is twice the
cell spacing λ. The former feature calls for understanding
why a cell that is on the way to be eliminated succeeds in
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reversing its dynamics to get back to the mean cell position.
The latter feature suggests that the same mechanisms that
render unstable the oscillatory modulations at the scale of a
cell pair leave those at a single-cell scale stable. Our objective
here is to identify the main mechanisms responsible for these
features and to model their interplay so as to uncover the
emergence of oscillatory states.

In terms of temporal eigenvalues of perturbation modes
σ = σr + iσi , this requires one to find the mechanisms
yielding σr (V, λ) to change sign or σi (V, λ) to become
nonzero. The former event deals with stability and the lat-
ter with the occurrence of oscillations (damped or am-
plified). Here we will focus on the latter since our con-
cern points more to the emergence of oscillations than to
stability.

To date, the neutral stability of the 2λ-O mode has been
determined in a symmetric model by Floquet analysis at given
surface tension and anisotropy [11] and a similar instability
called vacillating-breathing instability has been evidenced at
high solidification velocity by simulation of a symmetric
model with constant miscibility gap [12]. However, a the-
oretical modeling of the instability mechanism of the 2λ-O
mode is lacking. This contrasts with the case of oscillations
of individual cells, i.e., with the 1λ-O mode, where various
theoretical [40] or analytical and numerical results [42,43]
have been obtained, with controversial conclusions however.
In comparison, the major difference that will be brought
about by the 2λ-O mode here will be the coupling between
neighboring cells.

In this context, the ambition of our modeling will be more
qualitative than quantitative: identifying the physical mech-
anisms responsible for the oscillations and modeling them
and their interplay so as to uncover cell oscillations and their
main features. Our analysis will rely on the major outcomes
pointed out by simulation: the coupling between cells and
the interplay between cell form and cell position. It will then
aim at expressing them on a rational basis, up to modeling
approximations and thus up to quantitative inaccuracies.

In practice, our model will assume quasisteady states,
Laplacian dynamics close to cell tips, a 2D space, negligible
surface tension, and a given family of cell forms with infi-
nite grooves. It will explicitly consider the transversal fluxes
between cells as the major factor of the 2λ-O instability and
will provide both their expression and their implication on cell
form and cell tip position.

The model will succeed in uncovering the emergence of
oscillations, i.e., of nonzero σi . However, the velocity at which
oscillations occur as well as the stability of the state in which
they emerge will differ from those determined in experiment
or simulation. In particular, oscillations will appear in an
unstable state rather than in a stable one, so their occurrence
will correspond to a transition between 2λ-S and 2λ-O in-
stabilities [11]. Beyond these differences with observations,
the mechanisms that generate nonzero σi and thus oscillations
may be expected to be responsible for those of the 2λ-O
mode. In particular, the eigenvalue σi will yield a relationship
between period and velocity in close agreement with that
evidenced in experiment and simulation.

We now build the model on the following ingredients
revealed by experiment and simulation: (i) two dynamical cell

variables, the cell tip position zt and the cell tip curvature
radius ρ (Figs. 1 and 6), and (ii) a major dynamical factor,
the transversal solute flux between cells. It is correlated to
the nondimensional undercooling � [Eq. (15)] and drives the
modulations of both zt and ρ (Figs. 7 and 8). We label the
interface and the cell tips by the indices I and t , respectively.
We consider a central cell and we index its left and right
neighbors by − and +, respectively. The origin of coordinates
(x, z) is placed in the middle of the central cell and on the
solidus. Time derivation will be denoted by an overdot.

A. Regimes and assumptions

Following the experimental and numerical results, the ve-
locities that will be considered are weak enough to make the
Péclet number Pe = λV/D significantly smaller than unity:
Pe 	 1. For instance, for a cell spacing λ = 80 μm, Pe = 1
is reached at a velocity VD = D/λ ≈ 17 μm/s, well above
the studied range V � 10 μm/s (Fig. 4).

We then consider the tip region defined as the cell domain
closer to the tip than half a cell spacing λ. There, as variations
of solute concentration involve the length scale λ, the low-Pe
condition yields the advection term V · ∇c to be negligible
compared to the diffusion term D∇2c. In steady states, the
dynamics of solute concentration then yields the concentra-
tion field to be quasi-Laplacian λ2∇2c/c∞ = O(Pe) and the
variation of solute concentration over the cell width to be
negligible in comparison to the variation ct − c∞ undergone
over the liquid phase [40].

Regarding the dynamics of the 2λ-O mode, we notice
that its period T is actually large compared to the diffusion
time τD = D/V 2: (T/τD )2 = V/VT with VT = D2/A2 =
0.25 μm/s. As the instability domain starts at V ≈ 4 μm/s
(Fig. 4), this yields T/τD > 4, following which a quasisteady
approximation for the dynamical states may be assumed.
According to it, we may invoke an exponential relaxation
of the concentration field in the z direction over a diffusion
length l̃D = D/VI based on the instantaneous growth velocity
VI = VI · ez = V + żt .

Considering a two-dimensional growth in the plane (x, z),
the above approximations then allow the concentration field
to be approximated as

c(x, z, t ) = c∞ + (ct − c∞) exp[−(z − zt )/l̃D]

+ o(ct − c∞). (20)

For simplicity, we will work within a prescribed family of
forms involving a circular tip of radius ρ, a constant width
� = 2ρ, and infinite grooves (Fig. 9). In the oscillatory state,
the cell form will then drift within this family with variable ρ

or �. This is analogous to the cell evolution considered in the
analysis of the 1λ-O mode [40] except that the family of forms
was that of Saffman-Taylor fingers and no coupling between
cells was in order. In particular, as in [40] and in agreement
with the quasisteady approximation, we will not consider the
effects of the groove modulation implied by the variation of
cell width λ(t ).

The last assumption will be to neglect the effect of surface
tension on cell tip undercooling. In particular, in the same
setup, a study of tip position and of tip temperature evidenced
a linear evolution of the tip undercooling � = (ct − c∞)/�c
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FIG. 9. Sketch of the domain used for modeling. Cell geometries
are taken as circular tips of radius ρ = �/2 followed by a constant
width �. The coordinates of a cell interface point are (xI , zI ). The
tips of the nearest-neighbor cells are designed by T− and T+. The
points in the middle of the central cell that stand at the same height
as the neighboring cell tips are called M±. A control volume V of
width λ and height L > lD is defined in which solute evolution is
determined from the solute fluxes across its sides. In addition to the
usual advection and diffusion fluxes, transversal fluxes are induced
here by the shift of tip position between a cell and its neighbors. The
contour of the box is labeled � and its outward normals n. At a finer
scale, the evolution of solute concentration in elementary bands δz

around the cell tip enables the implication of transversal fluxes on
the evolution of tip curvature radius ρ to be determined.

with 1/V , where �c = c∞(1 − k)/k denotes the miscibility
gap [44]. Assuming a zero undercooling at infinite V then
yields a relationship � = Vc/V that is similar to the Bower-
Brody-Flemings (BBF) criterion [45]. On this basis, with
ρ > 20 μm here, the capillary correction (|m|�cd0/ρ < 3 ×
10−3 K) to the drop of melting temperature (|m|ct > 3.5 K)
appears to be of order of 10−3. In addition, as the oscillation
amplitudes of tip curvature radius ρ and of tip position zt are
of the same order, the oscillations of tip temperature induced
by ρ appear to be less than 1.5% of those induced by zt .

These estimates thus legitimize our assumption to neglect
capillary corrections to the cell tip undercooling in both steady
and oscillatory states. Accordingly, the Gibbs-Thomson rela-
tionship at the cell tips reduces to the liquidus relationship

ct = c∞
k

− (zt − zp )
G

|m| , (21)

where zp denotes the position of a steadily growing planar
front. For the sake of simplicity, hereafter the origin of the z

axis will be placed there: zp ≡ 0.

B. Dynamics of tip position

We now consider a box of width λ and height L larger than
lD , extending from the tip of the central cell toward the liquid
phase. We wish to follow the mean solute concentration in it
(Fig. 9). Its evolution is linked by solute conservation to the

concentration fluxes over the box boundary

dC

dt
= d

dt

∫
V

(c − c∞)dx dz = −
∮

�

j · n dl, (22)

where C denotes the net excess of solute in the box beyond
the concentration c∞, V and � are the volume and the contour
of the box, respectively, n is its outward normal, and j is the
concentration flux.

On the contour �, the fluxes to consider are at z = zt + L,
the advective flux j∞ = −c∞VI ez, the diffusion fluxes being
negligible; at z = zt , the advective flux jt and the diffusion
flux jd induced by solute rejection at the interface; and at x =
±λ/2, the lateral horizontal fluxes j− and j+ generated by the
neighboring cells.

As the concentration field is quasi-Laplacian in the tip
region, the divergence theorem may be invoked to express the
integral of the diffusion flux jd = −D∇c on the line z = zt

from that on the interface I where, by solute conservation,
−D∇c · nI = (1 − k)cI VI · nI . One obtains [28]

−
∫

z=zt

jd · n dx = D
G

|m| (λ − �) + (1 − k)ctVI �, (23)

where � denotes the cell width and n = −ez the outward
normal to the contour � at z = zt .

Following the exponential relaxation (20), one may ap-
proximate the excess of solute concentration in the box by
C ≈ λl̃D (ct − c∞). Similarly, the advection flux jt at zt may
be approximated by jt = −ctVI ez at the cell tip and the
integrals of the lateral fluxes over the lateral sides of the box
as l̃D times their value j±(zt ) at zt . These fluxes are driven by
the differences of concentration δc± = cT± − cM± between the
tip of a neighboring cell (point T± in Fig. 9) and the center of
the central cell at the same height zt± (point M± in Fig. 9).
Fluxes may thus be approximated from the resulting mean
concentration gradient δc±/λ as j±(zt ) ≈ ∓Dδc±/λex .

Following the liquidus relationship (21), the cell
tip concentrations cT± equal the liquidus concentration
cL(zt±, t ) at the altitude zt±: cT± = cL(zt±, t ). Evaluating
cM± from (20) then yields, at first order in zt± − zt

and żt , δc± = [ct − c∞ − lD G/|m|](zt± − zt )/lD or
δc± = �c(� − Vc/V )(zt± − zt )/lD .

Accordingly, the concentration differences δc±, and thus
the resulting fluxes j±(zt ), depend on the deviation � −
Vc/V to the BBF criterion which is known to be small
here [44]. Our simulations provide, however, the oppor-
tunity to determine this deviation since, following cT± =
cL(zt±, t ), it appears that δc± = δc(0, zt±, t ) as defined in
(13) or δc± = −�(0, zt±, t )c∞/k according to (15). In par-
ticular, noticing that �(0, zt , t ) = 0 and linearizing � with
respect to the shift zt± − zt of cell tip positions yields δc± =
−(c∞/k)(∂�/∂z)|zt

(zt± − zt ) and finally

j±(zt ) = ±D

λ

c∞
k

∂�

∂z

∣∣∣∣
zt

(zt± − zt ) ex. (24)

Knowing the concentration fluxes, we may now express
the relation (22) as a dynamical equation for the tip position.
Regarding the time derivative of C ≈ λl̃D (ct − c∞),
we note that dct/dt = −żtG/|m| and that dl̃D/dt =
−l̃Dz̈t /VI , so dC/dt = −λl̃DG/|m|(żt [1 + δ]) with
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δ = (ct − c∞)/VI (|m|/G)(z̈t /żt ). The BBF criterion and
the amplitude estimate |z̈t | ≈ |żt |/T then yield |δ| ≈ τD/T .
As in our velocity range |δ| stands below 1/4, we will neglect
its contribution in the following. This ends up neglecting
the variations of the diffusion length l̃D and thus the internal
dynamics of the solute layer. One then obtains from (22)

żt = τ̃−1
D [(1 − �/λ)(lT − zt ) − kzt�/λ] − (1 − �/λ)VI

+ D2

λ2Vc

(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

(zt+ + zt− − 2zt ), (25)

where τ̃D = D/V 2
I . This relation shows the effect on the tip

velocity of both the cell form (i.e., the cell width � or the tip
radius ρ = �/2) and the lateral fluxes induced by a shift zt± −
zt of tip position with respect to neighboring cells. It calls for
completing the dynamical system with a dynamical equation
for the tip curvature radius ρ.

C. Dynamics of cell form

For isolated dendrites growing in a homogeneous melt, a
solvability condition prescribes the tip curvature radius ρ in
steady and quasisteady growth states ρ2V ∝ γ /ct , where γ

denotes surface tension [46]. This relation can be extended to
dendritic arrays provided that dendrites are separated enough
for not being noticeably influenced by their neighbors [47,48].
This restriction requires their spacing λ to be large compared
to the diffusion length lD = D/V and thus their Péclet num-
ber Pe = λV/D to be large Pe � 1.

Here the cellular pattern stands in the opposite regime Pe =
O(1), where cells are close enough to significantly interact by
diffusion. Then their steady form is largely dependent on the
cell spacing λ [49]. It then does not refer to a solvability con-
dition which in particular involves no dependence on λ. For
small Péclet numbers Pe 	 1 and a uniform cellular pattern,
steady cells correspond to Saffman-Taylor fingers [49] whose
relative width �/λ is selected by surface tension [50,51].
However, this kind of form ceases to be valid when lateral
fluxes of solute are induced by neighboring cells. We will
then model the dynamics of form evolution by considering
two factors: (i) the direct effect of transversal fluxes on the
interface position and (ii) the relaxation of perturbed forms
toward the steady form.

(i) Lateral fluxes make the solid phase melt, as modeled
in (25) for the tip position dynamics. However, this melting
may be differential, yielding an evolution of form, i.e., of
ρ. We model this effect by considering the evolution of
concentration on the side of a cell (Fig. 9). As we concentrate
attention on the tip vicinity, fluxes may be taken as constant
and equal to j±(zt ). We then look at an altitude zI for solute
conservation in a band of liquid of height δz and length
λ/2 − |xI |, where xI denotes the interface abscissa. Assuming
a homogeneous solute concentration, we obtain the evolu-
tion of concentration ċI = ∓j±(zt )/(λ/2 − |xI |). Invoking
the liquidus relationship (21) at the interface cI = c∞/k −
zIG/|m| yields the evolution of interface position żI =
±j±(zt )/(λ/2−|xI |)(|m|/G). Using ρ−1 =−∂2zI /∂x2

I |xI =0,
we now deduce from it the evolution of the tip curvature
radius: ρ̇ = ±16(|m|/G)j±(zt )ρ2/λ3.

(ii) The basic stability of the cellular form in the absence
of transversal fluxes goes together with a natural relaxation.
As this relaxation is driven by diffusion, it involves a dif-
fusive timescale τρ driven by the relevant length scale, the
steady-state curvature radius ρ̄: τρ ∝ ρ̄2/D. For simplicity,
we will assume that the relaxation timescale reduces to the
diffusive timescale, thus yielding the following contribution to
the tip curvature radius dynamics: ρ̇ = −D/ρ̄2(ρ − ρ̄ ). Using
(24), the two above contributions together yield the evolution
equation for the tip curvature radius

ρ̇ = 16
D2

λ2Vc

ρ2

λ2
(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

(zt± − zt ) − D

ρ̄2
(ρ − ρ̄ ).

(26)

D. Coupled dynamics and 2λ-O oscillations

Together the relations (25) and (26) provide, with � = 2ρ,
a coupled dynamical system for zt and ρ. Labeling by a tilde
the fluctuations z̃t = zt − z̄t and ρ̃ = ρ − ρ̄, where z̄t and
ρ̄ denote average values, their linearized dynamics may be
straightforwardly derived (see the Appendix). It reads

˙̃zt = az̃t + bρ̃, (27)

˙̃ρ = cz̃t + dρ̃, (28)

where, in the case of phase opposition between a cell and its
neighbors, z̃t± = −z̃t and

a = (λ/�̄ + k − 1)

(
V ′2 − V 2

D

)
, (29)

b = −2k
(λ/�̄)2

λ/�̄ + k − 1

V

λ

(
V

Vc

− 1

)
, (30)

c = −32
D2

λ2Vc

ρ̄2

λ2
(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

, (31)

d = − D

ρ̄2
, (32)

with

V ′2 = −4
λ/�̄

λ/�̄ + k − 1

D3

λ2Vc

(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

. (33)

Transverse fluxes strengthen the V ′2 term and the parameter
c. We stress that, as ∂�/∂z(zt ) is negative (Fig. 7), both of
them are intrinsically positive. On the other hand, a is positive
for V < V ′ and negative above, while b is negative above the
onset V > Vc and d is always negative.

The eigenvalues σ1 and σ2 of the linear system (27)
and (28) are monitored by the trace � = a + d = σ1 + σ2,
the determinant � = ad − bc = σ1σ2 of the corresponding
Jacobian matrix, and the discriminant D = �2 − 4� = (a −
d )2 + 4bc of its characteristic polynomial. In particular, the
emergence of oscillations corresponds to D turning negative.
Here D(V ) is positive at Vc since b(Vc ) = 0. It then decreases
with V as a(V ) and b(V ) do and eventually turns negative at
some velocity VO at which an oscillatory dynamics emerges.

Figure 10 displays the evolution with V of eigenvalues
for the specific values of parameters corresponding to
the simulation displayed in Figs. 7 and 8: λ = 77.5 μm,
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FIG. 10. Evolution of the eigenvalue spectrum with V for modu-
lations at two cell spacings. Dashed lines denote real eigenvalues σ±
with σ− < σ+ and solid lines complex eigenvalues with σr and σi the
real and imaginary parts, respectively. As V increases, a transition
from 2λ-S to 2λ-O instability is encountered at VO = 18 μm s−1. At
larger velocity, the 2λ-O instability restabilizes as the real part σr

turns negative.

ρ̄ = 27 μm, �̄ = 2ρ̄, ∂�/∂z(zt ) = −3.75 × 10−3 μm−1,
which we assume independently of V , and V ′ = 75.6 μm/s.
It shows the occurrence of a nonzero imaginary part of
eigenvalues for V > VO . Below VO , eigenvalues are real with
one of them positive, so the cellular state is unstable with
respect to the 2λ-S instability [11]. This mode, which drives
an elimination of one cell over two, is reminiscent of the
spatial period-doubling instability of dendrites [47,52].

The facts that the cellular pattern on which the oscilla-
tory instability develops is actually stable and that VO =
18.0 μm/s is large compared to observations, indicate that the
modeling is too crude to grasp the correct behavior of the real
part of eigenvalues. Fixing this caveat stands beyond the scope
of this study. This would require a more refined model that
better addresses cell geometry, cell undercooling, transversal
fluxes, and the pulsation of the boundary layer implied by cell
oscillations. In particular, the latter is an important ingredient
of the 1λ-O instability [40] that has been overlooked here by
neglecting the factor δ in the derivation of (25). On the other
hand, determining more accurately the relaxation timescale τρ

and its dependence on velocity would be important for dealing
with stability. Finally, as stressed by Kessler and Levine for
the 1λ-O mode [42], the interaction between tail and tip,
which is overlooked here, might be relevant to cell stability.
Beyond these shortcomings, the occurrence of complex eigen-
values (σi �= 0) in the actual modeling succeeds in pointing
out how transversal solute fluxes driven by differential cell
positions can trigger oscillations.

It is worth highlighting the essential role of cell coupling
by transversal fluxes on both oscillation and stability. Re-
garding oscillations, these fluxes sustain the parameter c that
is essential for having negative D and hence oscillations. In
particular, with no fluxes, c would vanish and yield positive
D and thus real eigenvalues. This situation refers in particular
to 1λ modes where, as all cells undergo the same evolution
(zt± = zt ), transversal fluxes vanish by symmetry. The model
is thus unable to capture 1λ-O oscillations, presumably be-

cause of its neglect of the boundary layer pulsation. Regarding
stability, fluxes provide a positive contribution to parameter
a from V ′2, which supports instability. In particular, we note
that, for a single oscillating cell surrounded by steady neigh-
bors, i.e., for z̃t± = 0, the flux amplitudes would be divided by
2. Then the same modeling would turn unstable oscillations
into damped oscillations.

From a more physical point of view, the mechanisms yield-
ing oscillations may be described this way. Consider a positive
modulation of curvature radius at the same tip positions ρ̃ > 0
and z̃t = 0 [Fig. 7(e)]. As the flatter the tip, the weaker the
diffusion flux around it, the resulting depletion of diffusion
on the central cell yields a negative tip velocity modulation
˙̃zt < 0, z̃t < 0, and ρ̃ > 0 [Fig. 7(f)]. The difference of tip
position between the cell and its neighbors then drives lateral
fluxes which make the cell melt at its tip and on its sides.
Tip melting raises the strength of the negative modulation of
velocity ˙̃zt < 0, possibly yielding cell elimination by the 2λ-S
instability. Sides melting results in the tip radius decreasing,
in addition to its natural tendency to relax toward its mean
value. When this effect has enough time to develop, it may
yield the modulation of curvature radius to reverse sign ρ̃ < 0
and z̃t < 0 [Fig. 7(g)]. Meanwhile, due to a resulting stronger
diffusion at the cell tip, the tip velocity increases. When this
effect is stronger than that induced by tip melting, it may even
reverse the velocity modulation ˙̃zt > 0, z̃t < 0, and ρ̃ < 0
[Fig. 7(h)] and result in the cell recovering the neutral position
but with a positive velocity and a thin curvature radius z̃t = 0,
˙̃zt > 0, and ρ̃ < 0 [Fig. 7(i)]. The remaining half cycle may
then resume and complete the oscillation.

Accordingly, transversal fluxes between cells generate both
tip melting and side melting. Whereas cell elimination is
induced by tip melting, oscillations result from side melting,
which can lead to the recovery of a cell drifting down the
grooves. The dynamical competition between both these ef-
fects yields the 2λ-S instability, the 2λ-O instability, or cell
stability (Fig. 10).

On quantitative grounds, the period Ti of oscillations
is provided by the imaginary part σi of eigenvalues Ti =
2π/|σi |. Its evolution with V at λ = 77.5 μm is com-
pared in Fig. 11 to the relationship (11) found in ex-
periment and simulation. Apart from a sudden decrease
at the onset of oscillations VO , the combination TiV

3/2

quickly reaches a nearly constant value of about A ≈ 0.4 ×
103 μm3/2 s−1/2, of the same order as the values found in
experiment (Aexpt = 2.46 × 103 μm3/2 s−1/2) or simulation
(Anum = 2.73 × 103 μm3/2 s−1/2). This agreement on both
the type of power law and the order of magnitude of its
prefactor gives additional credence to the relevance of our
model regarding oscillations.

VII. PARAMETRIC EXCITATION

The 2λ-O instability corresponds to a spontaneous desta-
bilization of the cellular state toward a limit cycle and thus
to the natural emergence of an oscillating pattern by a Hopf
bifurcation. A canonical way to explore the vicinity of this
bifurcation and reveal the main features of the underlying
oscillator consists in forcing oscillations by an external, reso-
nant, mean. Below we use this mean to explore some features
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FIG. 11. Evolution with the pushing velocity V of the period
Ti = 2π/|σi | of the 2λ-O mode at λ = 77.5 μm, following the
imaginary part of the eigenvalue σi provided by the system (27) and
(28). To compare with the experimental and numerical trend (11),
the period Ti is multiplied by V 3/2. The nearly constant value reached
shortly after the occurrence of oscillations at VO = 18 μm s−1 agrees
with the observed relationship (11). The inset shows data in log-
log coordinates and a comparison with the trend Ti ∝ V −3/2 of
relation (11).

of the 2λ-O oscillator by addressing, both experimentally and
numerically, its response to a parametric excitation.

Extrinsic excitations are induced here by modulations of
the pushing velocity. This corresponds to uniform modulation
whose spatial signature thus differs from that of the 2λ-O
mode. It may yield an additive or a multiplicative forcing
depending on whether the modulation affects the absolute or
the relative value of the main variable, here the solute concen-
tration. We show below that solute advection by this velocity
forcing yields a multiplicative forcing which is known to
possibly excite oscillatory modes when parametric resonance
is in order.

We thus introduce, in both experiment and simulations, a
sinusoidal modulation of the pushing velocity

Vf (t ) = V0 + V1(t ) = V0 + V1 cos(ωf t ), (34)

where V0 is the average pushing velocity, V1 the excitation
amplitude, ωf the forcing pulsation, and Tf = 2π/ωf the
forcing period. Regarding the experiment, we stress that the
forcing period will be larger than the relaxation time of
the thermal field τ = g2/κ = 50 s, g = 5 mm being the gap
between heaters and coolers and κ = 5 × 105 μm2 s−1 the
thermal diffusivity of the sample plates. Accordingly, we
may consider that the velocity modulation negligibly affects
the thermal field [24]. However, it actually modulates the
advection of solute concentration in the thermal field frame
Vf (t )∂zc with noticeable consequences.

The sinusoidal forcing of solute advection V1(t )∂zc splits
into the advection of the time-independent solute field c

and that of the remaining fluctuating part c̃. The former
term V1(t )∂zc yields an additive sinusoidal modulation to
the dynamics of concentration which simply drives a homo-
geneous oscillation of solute concentration, and thus of the

FIG. 12. Experimental evidence of a parametrically excited 2λ-
O mode over a cycle, with G = 140 K/cm, V0 = 7 μm/s, V1 =
0.5 μm/s, and Tf = 141 s. The snapshots show cell oscillations in
the vicinity of cell tips over an oscillation period T = 282 s that is
twice the forcing period Tf . The delay between them is a quarter
of period. Arrows denote the direction of cell velocities and the
mean cell spacing is 85 μm. Each snapshot shows phase opposition
between neighboring cells. These features correspond to those a
2λ-O mode parametrically excited at a forcing period T/2.

whole cellular pattern, at the same period Tf . The latter term
V1(t )∂zc̃ corresponds to a multiplicative forcing term whose
time dependence depends on that of both ∂zc̃ and V1(t ). It then
drives a parametric excitation of the system from which the
oscillatory 2λ-O mode may emerge, in the case of resonance.

Looking at a cell as an oscillator, damped or amplified,
of angular pulsation ω = 2π/T , T being the period of the
2λ-O mode, it is instructive to determine the modulation
of ω induced by the velocity modulation (34). For this
we notice that Eq. (11) still applies since the modulation
periods Tf that will be considered hereafter are long compared
to the diffusive and advective relaxation times λ2/D < 9 s
and τD = D/V 2 ≈ 28 s. In terms of ω, Eq. (11) then reads
ω2 = BV 3, with B = 4π2/A2 a constant. Plugging the forced
velocity V = Vf [Eq. (34)] in this last relation yields ω(t )2 =
BV 3

0 [1 + ν cos(ωf t )]3, with ν = V1/V0 and, as ν will be
taken much smaller than unity here,

ω(t )2 � ω2[1 + 3ν cos(ωf t )] (35)

up to first order in ν. This clearly evidences, in the framework
of oscillators, the parametric excitation of cells induced by
V1(t ) in terms of a modulation of the pulsation of the 2λ-O
mode.

Given an oscillator of natural period T , the condition for
parametric resonance at the lowest forcing period Tf is Tf ≈
T/2. Applying this to the velocity modulation (34) will first
yield a spatially homogeneous oscillation of both the concen-
tration field and the interface position at the forcing period
Tf , in response to the additive modulation brought about by
concentration advection. Moreover, if parametric resonance
occurs, cell oscillations should appear at period 2Tf ≈ T ,
with phase relationships between cells to be determined.
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FIG. 13. Cell oscillations from tip to tail. The parameters are the
same as in Fig. 12. Snapshots (a) and (b) are distant from a half-
period T/2 = Tf = 141 s. On each of them, cell widths are nearly
the same at the cell tips but significantly different at the cell tails.
On each cell, the modulations of the cell width from tip to tail thus
encode the oscillation of the cell tip over a long time, here about T/3,
before the grooves end. The mean cell spacing is 110 μm.

To better highlight parametric resonance, velocity modu-
lations are induced, both in experiment and in simulation,
on steady states that stand within the stability domain of
the 2λ-O mode but that are close to the instability frontier.
As expected, these modulations are found to induce first
global oscillations of cells at the forcing period Tf and, for

Tf ≈ T/2, cell oscillations similar to those of the 2λ-O mode
with a period close to 2Tf ≈ T and phase opposition between
neighboring cells (Figs. 12–14). While the period doubling
between excitation at Tf and oscillations at 2Tf results from
parametric instability, we notice that the breaking of spatial
uniformity when passing from the homogeneous modulation
to the phase opposition between oscillating cells does not
result from the forcing. It then reveals the spatial nature of
the underlying oscillator, the 2λ-O mode.

Regarding experiment, parametrically induced cell oscilla-
tions are displayed over a cycle in Figs. 12 and 13. Figure 12
shows phase opposition between neighboring cells through
spatial alternation of larger and thinner cells on an isotherm.
Over a cycle, each cell alternates between thin and fat and
upward or downward motion. As oscillation amplitudes are
faint, we complete observations in Fig. 13 which shows a span
of cells over their whole groove. In each snapshot, the cell
widths are almost the same at the cell tips but significantly
differ at the cell tails. They thus encode the oscillation of
cell tips over the grooves, i.e., here, over a time interval of
about T/3.

Regarding simulations, Fig. 14 displays, for a given basic
state and various forcing periods Tf , the oscillations of the
lateral widths of two adjacent cells. At the beginning of the
parametric modulation, one notices, for all forcing periods,
in-phase oscillations of cells at Tf , in response to the additive
forcing induced by the velocity modulation. However, several

FIG. 14. Numerical simulations of parametric excitations with a forcing amplitude V1 = 0.2 μm s−1. The basic state refers to V0 =
7 μm s−1, λ = 65 μm, and the forcing period Tf is (a) 115 s, (b) 110 s, (c) 90 s, and (d) 80 s. The variables λi refer to the cell width
of neighboring cells. Double arrows indicate oscillations at the double period 2Tf , with a phase opposition between neighboring cells. They
correspond to a parametrically forced 2λ-O mode. Panel (a) shows the growth and saturation of a robust parametrically excited mode involving,
as the 2λ-O mode, a period 2Tf for both λi and the phase opposition between them. Panels (b)–(d) show that the parametric mode appears
more and more intermittently as Tf decreases below its value in (a).
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TABLE III. Experimental and numerical parameters for the para-
metric excitation. The fifth entry gives the range [Tf −, Tf +] of
forcing periods for which the 2λ-O mode is parametrically excited
either robustly or intermittently. Here �Tf = Tf + − Tf − provides
the bandwidth of this resonance band and δTf its predicted value for
a linear oscillator.

Parameter Experiments Numerics Unit

λ 100.0 65.5 μm
V0 7.0 7.0 μm/s
V1 0.5 0.2 μm/s
T/2 70.5 100.5 s
[Tf −, Tf +] [50.0, 120.0] [90.0, 125.0] s
�Tf 70 35 s
δTf = 3νT /4 7.6 4.3 s

periods later, oscillations also appear at the double period
2Tf that are in phase opposition between neighboring cells.
These oscillations correspond to a parametrically excited 2λ-
O mode. We signal them by double arrows in Fig. 14.

The occurrence of parametric oscillations is especially
manifest for Tf = 115 s [Fig. 14(a)] where, at t ≈ 2700 s, the
cell signals grow out of phase to reach robust oscillatory states
displaying a clear phase opposition. This evolution gathers
both the temporal feature of a parametric resonance (period
doubling) and the spatial feature inherent to the 2λ-O mode
(phase opposition between adjacent cells). It thus consists of
a mix between parametric resonance and 2λ-O instability. In
phase space, this corresponds to a basic state which, after
destabilization by parametric excitation, restabilizes onto a
limit cycle akin to the 2λ-O oscillatory mode.

On the other hand, at a smaller forcing period Tf = 110 s
[Fig. 14(b)], the maxima of the signals show clear oscillations
at 2Tf , but their minima involve local maxima. This indicates
that oscillations at Tf are still noticeably present. When
these local maxima increase at t ≈ 1400 s, t ≈ 2800 s, and
3800 s < t < 4200 s, they then make the oscillation at Tf

dominant, meaning that global cell oscillations have over-
whelmed the (2λ-O)-like oscillations. Oscillations at 2Tf of
both the maxima and the minima of the signals are then only
noticeable on limited time intervals. Parametric resonance
thus still occurs, but by intermittency.

At still smaller forcing periods Tf = 90 s [Fig. 14(c)] and
Tf = 80 s [Fig. 14(d)], parametric resonance fails to clearly
appear. However, oscillations at 2Tf of the signal maxima are
still noticeable for limited time intervals of several periods in
Fig. 14(c) and of even reduced duration in Fig. 14(d).

Altogether, these dynamics reveal both a robust parametri-
cally excited 2λ-O mode for Tf = 115 s [Fig. 14(a)] and an
intermittent evolution toward this limit cycle, with an inter-
mittent character that grows when Tf decreases [Figs. 14(b)–
14(d)]. The latter feature signals an increased complexity of
the phase space which still includes a destabilized basic state
by parametric excitation and an attracting limit cycle, but also
additional structures responsible for this intermittency.

Table III sums up the experimental and the numerical
conditions of the observed parametric oscillations. Here one
considers parametric oscillations in a broad sense, i.e., not

FIG. 15. Peak to peak amplitude of the driven 2λ-O mode as
a function of the driving period Tf . The average velocity V0 =
7 μm/s, the velocity amplitude V1 = 0.2 μm/s, and the spacing
2λ = 130 μm. The amplitude is maximum for Tf = 115 s close to
T/2 = 100.5 s. The shift Tf − T/2 refers to damping and anhar-
monicity of the oscillator.

only for robust 2λ-O modes as in Fig. 14(a), but also for those
that show the characteristic features of the 2λ-O mode inter-
mittently [Figs. 14(b)–14(d)]. The upper and lower bounds of
the corresponding forcing periods Tf determine a resonance
band roughly centered around half of the natural period T of
the unforced 2λ-O mode at the same spacing and velocity.

Figure 15 reports the way the oscillation amplitudes vary
with the forcing period Tf in simulations. A scan of Tf has
been performed from 70 to 160 s, but parametric oscillations
have only been found in the range 90–125 s. As the oscilla-
tion amplitudes are tiny, of the order of a few micrometers,
error bars are relatively large. In experiment, the oscillation
amplitudes are of the same order, but the resolution is even
lower, which prevents us from obtaining relevant amplitude
variations.

In both experiments and simulations, parametric oscilla-
tions have displayed a band of resonance [Tf −, Tf +] that
is reported in Table III together with its bandwidth �Tf =
Tf + − Tf − and the resonance bandwidth predicted for a lin-
ear oscillator δTf = 3νT /4 [53]. For both experiments and
numerics, the former is about ten times larger than the latter.
We aim below to relate this discrepancy to the intermittency
noticed on the cell signals and to the expected nonlinear nature
of the 2λ-O oscillator.

To model the parametric excitation of the 2λ-O mode with
minimal complexity, one may overlook its spatial features to
focus attention on a dynamical system involving parametric
modulation around a Hopf bifurcation. The Hopf bifurca-
tion signals that the eigenvalues λ = σ ± iω of the system
linearized around the fixed point (0,0) turn their real part
σ positive at some threshold value of a control parameter,
here the pushing velocity V . This yields the following linear
modeling in the vicinity of the basic state: z̈ − 2σ ż + (σ 2 +
ω2) z = 0. Parametric excitation is introduced as a temporal
modulation ω(t ) of the pulsation ω, following which the linear
dynamical system is then represented by a Mathieu equation.
Its standard analysis shows that parametric resonance occurs
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for forcing pulsations ωf belonging to a band centered on 2ω,
whose width extends over δωf = 3νω when no damping is
in order and on a more restricted and shifted domain other-
wise [53]. This Arnold tongue corresponds to forcing periods
Tf centered on T/2 and extended over a bandwidth δTf =
3νT /4. Accordingly, the linear modeling recovers parametric
resonance but on a bandwidth much smaller than �Tf . It thus
explains the emergence of a robust 2λ-O mode [i.e., Fig. 14(a),
Tf = 115 s] with a shift Tf − T/2 linked to damping and
anharmonicity of the oscillator. However, it fails to uncover
the intermittent occurrences of this mode beyond [Figs. 14(b)–
14(d)]. Nonlinearities must thus be considered to explain
them.

Introducing nonlinearities reveals a far more complicated
behavior involving, for damped oscillations (σ < 0), a para-
metric resonance and, for amplified oscillations (σ > 0), a
combination of parametric resonance and Hopf-induced os-
cillations [54]. In particular, in a kind of Poincaré map, the
phase space shows in the former case a fixed point destabi-
lization toward nontrivial stable fixed points corresponding to
parametric oscillations and, in the latter case, a more complex
structure involving stable and unstable fixed points together
with stable and unstable limit cycles induced by the Hopf
bifurcation [54,55]. These limit cycles then modulate the
parametric oscillations yielding quasiperiodic evolutions.

Here the basic state of parametric forcing was initially
taken in the stable domain of the 2λ-O mode, close to the
stability limit. However, the additive forcing induces oscilla-
tions of the growth velocity that make it enter the unstable
domain on some part of the cycle. For this reason, the damping
coefficient σ is presumably not a small negative constant
but a slightly oscillating parameter which enters the unstable
domain of positive values σ > 0. Therefore, not only robust
parametric oscillations but also quasiperiodic evolutions re-
sulting from a combination of 2λ-O mode oscillations at pe-
riod T and of parametric oscillations at 2Tf may be expected.
In addition, a sensitivity to perturbations may result from the
existence of unstable fixed points and unstable limit cycles in
the Poincaré map of the model.

These dynamical features actually reproduce those found
in numerical simulations for various forcing periods Tf

(Fig. 14). They highlight the difference between the paramet-
ric oscillations in a broad sense that include intermittency and
those in the strict sense observed on the robust oscillations
at Tf = 115 s [Fig. 14(a)]. In particular, the small value of
the bandwidth δTf of a linear oscillator compared to the
observed bandwidths �Tf shows the practical relevance of
nonlinearities for uncovering the intermittent emergence of a
parametric 2λ-O mode.

VIII. CONCLUSION

We have revisited the emergence and the nature of the
2λ-O oscillatory mode of solidification by combining exper-
imental and 3D phase-field numerical studies. Both agree
qualitatively on the behavior of oscillatory cells and on the
possibility of parametrically exciting the 2λ-O mode. They
also both conclude quantitatively in the same bounded range
of velocity for the occurrence of oscillations and on the
same relationship between period and velocity. As phase-field

simulations involved the physical parameters of the exper-
iment, this agreement confirms the capability of actual 3D
phase-field simulations to provide realistic dynamics of so-
lidification interfaces.

Analysis of the concentration fields displayed in simulation
revealed noticeable transversal fluxes of solute concentration
between a cell and its neighbors. To explore whether they
could be an important part of the oscillation mechanism,
we built a simple model of concentration balance in which
transversal fluxes led cell tips to melt with implications on
both tip position and tip curvature radius. These fluxes depend
not only on the temperature difference between cell tips
but also on the deviation of the cell tip undercooling from
the Bower-Brody-Flemings criterion [45]. The emergence of
oscillations was then recovered, the transversal fluxes being
mandatory for them to occur. In addition, the model recovered
the relationship between period and velocity with the appro-
priate order of magnitude, thus giving credibility to its rele-
vance. Analysis of the causal links between the phenomena
involved in the model then provided a complete description of
the mechanism of oscillations. However, several discrepancies
regarding the transition from damped to amplified oscillations
call for extending the model to a more realistic context.

To explore the nature of the oscillator underlying the 2λ-O
instability, we have induced parametric excitations from mod-
ulations of the pushing velocity. This homogeneous forcing
led, in both experiment and simulation, to the emergence of
2λ-O oscillations, thus exhibiting a breaking of homogeneity.
This parametric excitation enabled the 2λ-O instability to be
studied on a broader range extending over its stable domain.
A complex behavior then appeared, mixing 2λ-O oscillations
with global oscillations. Its occurrence has been linked to
the nonlinearity of the underlying oscillator, following which
parametric excitations around the corresponding Hopf bifur-
cation generate a complex phase space and intermittency.

Altogether, these results deepen the actual knowledge of
the 2λ-O mode while attesting to the relevance of 3D phase-
field simulations to accurately uncover cell dynamics. More
fundamentally, the essential role of cell coupling by transver-
sal fluxes offers useful insight into the physical origin of
multicell dynamics and opens the way to further model them
in various instances.
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APPENDIX: LINEARIZED SYSTEM

We seek to linearize the dynamical system (25) and (26)
by expanding it at first order in perturbation amplitudes. We
denote by an overbar v̄ the average values of variables v and
by a tilde ṽ their fluctuating part v − v̄.
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We restrict here the analysis to a 2λ mode for which z̃t± = −z̃t . As z̄t± = z̄t , we obtain, at order zero in fluctuations,

0 = V̄ 2
I

D
[(1 − �̄/λ)(lT − z̄t ) − k z̄t �̄/λ] − (1 − �̄/λ)V̄I , (A1)

which yields the average tip position

z̄t = (λ/�̄ − 1)

(λ/�̄ + k − 1)
(lT − lD ), (A2)

and at first order in fluctuations,

˙̃zt = − V̄ 2
I

D
[(1 − �̄/λ) + k�̄/λ]z̃t − 4

D2

λ2Vc

(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

z̃t − �̃

λ

V̄ 2
I

D
[(lT − z̄t ) + kz̄t ] + �̃

λ
V̄I

+ ṼI

V̄I

{
2
V̄ 2

I

D
[(1 − �̄/λ)(lT − z̄t ) − k z̄t �̄/λ] − (1 − �̄/λ)V̄I

}
(A3)

and

˙̃ρ = −32
D2

λ2Vc

ρ̄2

λ2
(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

z̃t − D

ρ̄2
ρ̃. (A4)

As � = 2ρ, one gets �̄ = 2ρ̄ and �̃ = 2ρ̃. Using (A1) and (A2) in (A3) with V̄I = V and ṼI = ˙̃zt then yields

˙̃zt = −V 2

D
(λ/�̄ + k − 1)z̃t − 4λ/�̄

D2

λ2Vc

(1 − k)−1 ∂�

∂z

∣∣∣∣
zt

z̃t − 2k
(λ/�̄)2

λ/�̄ + k − 1

V

λ

(
V

Vc

− 1

)
ρ̃. (A5)

The relations (A4) and (A5) correspond to the linearized dynamical system (27) and (28) with the coefficients (a, b, c, d )
reported in Sec. VI D.
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