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Distributional fixed-point equations for island nucleation in one dimension: The inverse problem
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The self-consistency of the distributional fixed-point equation (DFPE) approach to understanding the statisti-
cal properties of island nucleation and growth during submonolayer deposition is explored. We perform kinetic
Monte Carlo simulations, in which point islands nucleate on a one-dimensional lattice during submonolyer
deposition with critical island size i, and we examine the evolution of the inter-island gaps as they are fragmented
by new island nucleation. The DFPE couples the fragmentation probability distribution within the gaps to the
consequent gap size distribution (GSD), and we find a good fit between the DFPE solutions and the observed
GSDs for i = 0, 1, 2, and 3. Furthermore, we develop numerical methods to address the inverse problem,
namely the problem of obtaining the gap fragmentation probability from the observed GSD, and again find good
self-consistency in the approach. This has consequences for its application to experimental situations where only
the GSD is observed and where the growth rules embodied in the fragmentation process must be deduced.
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I. INTRODUCTION

Island nucleation and growth during submonolayer deposi-
tion is a topic of continuing research, with ongoing develop-
ment of theoretical models to describe the scaling properties
of the island sizes and spatial distribution [1]. Over the past
two decades, the focus has tended to move from the problem
of obtaining the correct form of the island size distribution to
finding the capture zone distribution (CZD) [2–6]. An island’s
capture zone is defined as the region on the substrate closer
to that island than to any other. It represents the growth rate
of the island, since the deposited monomers that are inside the
capture zone are most likely to be trapped by the parent island;
the CZD is therefore a consequence of the spatial arrangement
of the islands.

One common theoretical approach utilizes rate equations,
with capture numbers reflecting the capture zones [2–4,7,8],
although often this requires some empirically determined pa-
rameter(s). An alternative approach, of the type we adopt here,
treats the process using fragmentation equations. An island
nucleation means the creation of a new capture zone and the
size reduction of the zones that were previously occupying
that region of the substrate; so the parent capture zones are
fragmented to create the daughter capture zone [5,6,9–13].

Aside from these analytical models, when looking only at
the functional form of a simulated or experimentally obtained
CZD in the scaling regime, the semiempirical Gamma distri-
bution function has been used frequently as a fitting model,
both in two dimensions [6,14–17] and in one dimension [18].
Similarly, Pimpinelli and Einstein proposed a generalized
Wigner surmise [19] as a model function for the CZD, relating
it back to a fragmentation process. An advantage is that
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functional form can be used to deduce the island nucleation
mechanism from a measured CZD [20], through the critical
island size i for nucleation (the critical size is defined as the
size above which an island will not dissociate into monomers).
This distribution has also been applied to some experimental
data [17,21,22]; however, there are also some controversies
about the validity of this model [5,23,24].

In the present work, we adopt and explore a nucleation
model on a one-dimensional substrate (modeling nucleation
along a step edge, for example) in which island nucleation is
seen as a fragmentation of an inter-island gap. The evolution
of the gap size distribution (GSD) and the CZD is tracked
by considering the parent gaps (capture zones) that were
fragmented by a new island’s nucleation.

In previous work it was proposed that the GSD and the
CZD can be modeled with distributional fixed-point equa-
tions (DFPEs) on one-dimensional substrates [25]. The model
equation for the GSD consists entirely of physical, easily
measurable quantities, so in this paper we focus solely on the
gaps.

The DFPE for the GSD reads

x � a(1 + x), (1)

where x is a gap size scaled to the average at a given time
(coverage) and a is a position in the gap where a new island
nucleates, scaled to the size of the gap (a ∈ [0, 1]). The
symbol � means that the left and the right hand side of the
equation have the same distribution.

Equation (1) then says that the distribution of scaled gap
sizes x is equal to the distribution of gap sizes that are created
when a larger, parent gap of size x + y (and, by employing
the mean-field assumption, we have set the scaled size y = 1)
fragments into two gaps, of proportions a and 1 − a. DFPE
(1) has an integral equation form:

φ(x) =
∫ min(x,1)

0
φ

(
x

a
− 1

)
f (a)

a
da, (2)
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where φ(x) is the probability distribution function for scaled
gap sizes x and f (a) is the probability of breaking a gap into
proportions a and (1 − a). A version of the DFPE (1) that
does not involve a mean-field approximation can also be found
in Ref. [25]; however, its corresponding integral equation does
not offer the possibility of calculating f (a) from a known
φ(x), so we will not use it in the present work.

Blackman and Mulheran [9] proposed an analytical form
for f (a):

f (a) = (2α + 1)!

(α!)2
aα (1 − a)α. (3)

Here α reflects the mechanism of island nucleation: for α = i

nucleation is deposition driven and for α = i + 1 it is diffu-
sion driven [10]. In a diffusion-driven nucleation event, an
island is formed by the coming together of (i + 1) diffusing
monomers and we assume that they all independently follow
the steady-state monomer density distribution within the gap,
yielding α = i + 1. In a deposition-driven nucleation event,
a smaller, unstable cluster of i monomers (each following
the steady-state monomer distribution) is increased by the
arrival of a newly nearby deposited monomer; the latter event
is uniformly distributed across the gap, yielding α = i. We
assume that the real (experimental) nucleation process can be
modelled as a combination of these two idealized cases. We
also note the distinction of the deposition-driven nucleation
mechanism from attachment-limited events; in our work we
assume the attachment is irreversible.

Equation (3) is derived from the monomer density so-
lutions n1(x) of a long-time (steady-state; dn1(x)/dt � 0)
diffusion equation with a constant monolayer deposition rate
within a gap [5,9]. The nucleation probability is then assumed
to be ∼ n1(x)α , which gives Eq. (3); therefore it is only
valid after the system has had time to reach steady-state
conditions in which monomer density and, by extension, f (a)
within a gap are time independent. Since the deposition rate
is constant, provided there is no desorption we have coverage
θ = F t . Then Eq. (3) is only valid in a scaling regime where
the GSD, scaled to the average size, and f (a) are independent
of θ .

In this paper, we look further at the applicability of the
DFPE approach for island nucleation and growth in one
dimension. We are particularly interested in whether the
DFPE provides a self-consistent approach to understanding
the statistics of gaps. The following two questions are ad-
dressed.

(i) We can measure f (a) during a kinetic Monte Carlo
(kMC) simulation. How does the measured form compare to
that of Eq. (3), and how does the solution of Eq. (2), using the
observed f (a), compare to the kMC GSD?

(ii) Can we invert the argument of Eq. (2)? Can we find
f (a) from a given GSD, and if so how does this recovered
f (a) compare to that observed in the kMC?

II. KINETIC MONTE CARLO SIMULATION

We use a standard kMC simulation model where
monomers are deposited onto a one-dimensional lattice with
a constant monolayer deposition rate F and are free to diffuse
by nearest-neighbor hopping with the diffusion constant D.

Immobile point islands nucleate according to values of the
critical island size i and subsequently grow by capturing
either diffusing or deposited monomers. Island nucleation and
growth are irreversible and re-evaporation of monomers from
the surface is forbidden.

We start with an initially empty lattice with N = 106 sites
and the diffusion to deposition ratio R = D/F = 107. We
allow monomers to hop on average 20 times before the next
deposition event (R = 0.5×20×N ). In total we deposit n =
106 monomers to get θ = 100% coverage (not all of the n

monomers will get incorporated into islands, typically at the
end of a simulation there are up to a hundred free monomers
in the i = 1 case, and more for higher i).

At each diffusion step a monomer is selected at random and
moved by a unit length on the lattice, in a random direction.
If it arrives to a position adjacent to another monomer or
cluster of monomers, and the resulting number of monomers
is larger than i, they will be fixed in a single lattice site and the
newly nucleated island’s size and position will be recorded.
Islands capture monomers that diffuse to adjacent sites and
monomers that are deposited on top or on an adjacent position.
Increments in island sizes are recorded while the islands are
kept as single points on the lattice; this way the islands do not
coalesce for large coverage, which allows us to collect a lot of
data while the system has still got a long way to go before the
scaling breaks down [26].

In the i = 0 case we set the probability that a monomer
will stick to the site onto which it hopped or was deposited to
be p = 10−7.

To get the GSDs [φkMC(x)] we used outputs at coverage
θ = 100% and averaged the data over 100 runs. Every time a
new island nucleated, we recorded its position within the gap
and used that data to create fkMC(a) (as a histogram). Since
we want to understand scaling properties when the steady-
state conditions have been achieved, we need to find the
coverage at which fkMC stabilizes. It was previously shown
in Ref. [10] that the monomer density n1 behaves in a manner
that would yield Eq. (3) for small gaps, but not large ones.
Those findings corresponds to large coverages (where we
expect to find mainly smaller gaps) versus small coverages
(large gaps). Figure 1 shows fkMC for i = 1, reaching the
steady-state condition above the coverage of approximately
θ = 1%.

III. DFPE METHODOLOGY

For a given f (a), Eq. (2) is solved iteratively for φ(x).
Following the procedure described in Ref. [25], we perform
numerical integration on a mesh of 500 equally spaced points
for x ∈ [0, 5]. With an initial guess of a rectangular φ, we
iterate Eq. (2) until the solution stabilizes to at least its third
decimal place.

To solve the inverse problem of obtaining f from a given
φ, we use two different strategies.

A. Tikhonov regularization for the inverse problem

Equation (2) belongs to the well-known class of Fredholm
integral equations of the first kind, φ(x) = ∫

k(x, a)f (a)da,
which are ill posed. We also have an additional complication
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FIG. 1. fkMC for various coverage intervals, from θ = 0% to θ =
75%, for i = 1. Between θ = 1% and 3% the system has reached
steady-state conditions so subsequent fkMC curves overlap.

of having the left-hand side φ(x) appearing in the kernel
function k(x, a). This means that any noise in the input data
will propagate in the kernel. Hence this is not a standard
inverse problem and, to the best of our knowledge, there is no
established way of solving this particular type of problem. We
proceed to treat Eq. (2) as we would treat a standard Fredholm
equation.

One of the most common ways to deal with ill-posed
equations is the Tikhonov regularization procedure, in which a
regularization term is added onto the original equation. This is
a standard method found in many textbooks (see, for example,
Ref. [27]); we describe it briefly.

The problem of finding an f that satisfies the matrix equa-
tion Kf = φ [the discretized form of Eq. (2), where the oper-
ator K stands for the kernel function and the integral operator]
can be treated as a minimization problem: minf {‖Kf − φ‖2

2}.
By adding a regularization term, this problem is substituted
with minf {‖Kf − φ‖2

2 + λ‖Lf ‖2
2}. Here, f is the sought

solution, L is the regularization operator, usually chosen to
be the identity operator or a differential operator, and the
regularization parameter λ > 0 controls how much weight
is given to the minimization of ‖Kf − φ‖2

2 relative to the
minimization of the added term ‖Lf ‖2

2. Solving the inverse
problem then includes choosing the appropriate operator L

and optimizing for λ. For a particular value of λ, the matrix
equation to be solved for f is

(KT K + λLT L)fλ = KT φ, (4)

where KT is the transpose of the matrix operator K . It is
straightforward to solve Eq. (4) numerically.

If K is ill conditioned, with an ill-determined rank, the
addition of the regularization operator L has a function of
making Eq. (4) well posed; then Eq. (4) will have a unique
solution fλ for all λ.

The procedure then involves solving Eq. (4) while varying
λ to find an optimal value of λ which stabilizes the solution
without oversmoothing it. Good values of λ are typically taken

||L
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FIG. 2. L curve for inverting Eq. (2) with α = 1 and f defined
by Eq. (3). Four chosen values of λ are marked with green diamond
symbols; corresponding solutions Pλ and their integrals φλ are shown
in Fig. 3.

to be within the corner of the ‖Lf ‖2
2 vs ‖Kf − φ‖2

2 plot, the
so-called L curve.

We tested the identity and the second derivative operator as
candidates for the regularization operator L and, despite the
fact that the second derivative should be the first choice for
damping oscillatory behavior in unstable solutions, we found
that we get better results when using the identity operator. In
our calculations, we used routines from Ref. [28] (see chapter
therein on Linear Regularisation Methods).

In Figs. 2 and 3 (where L is the identity operator), we
use f (a) = 6a(1 − a) [Eq. (3) with α = 1, corresponding to
the deposition case for the critical island size i = 1 or the
diffusion case for i = 0] to show the results of the Tikhonov
regularization method for a known function.

With this f (a), we integrated Eq. (2) iteratively to obtain
φ(x) and solved Eq. (4) for fλ (solved the inverse problem).
Figure 2 shows the L curve, where each point of the curve
corresponds to a different λ (λ increases from left to right).
Note that ‖Kfλ − φ‖2 is the root mean error between the input
φ and φλ [where φλ = Kfλ is the result of integrating Eq. (2)
with f = fλ].

We chose four values of λ, highlighted on the L-curve
plot, and show the four solutions fλ in Fig. 3 (bottom panel),
as well as the corresponding φλ (upper panel), alongside the
original φ and f . While different φλ lie almost perfectly on
top of each other and on top of input φ, the solutions fλ show
how strongly this problem is ill posed. For the two smaller
values of λ, the solutions fλ exhibit high oscillations and
the largest λ begins to show signs of oversmoothing in the
interval a ∈ [0.7, 1]. The best solution still has some noise,
it is not symmetric and needs normalization; the area under
the curve is ‖fλ‖1 ≈ 0.99. We found that a general trend is
a decreasing ‖ · ‖1 norm with growing λ (moving away from
the corner of the L curve to the right). The same problems
are amplified when applying the method to φkMC, obtained
from (noisy) kMC data, with an additional problem that the
solutions fλ sometimes dropped slightly below zero near
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FIG. 3. Top: Original φ (black circles) to be inverted: the solution
of integrating Eq. (2) [where P was taken to be Eq. (3) with α = 1].
After obtaining the Tikhonov results of inversion, fλ, we integrated
them again according to Eq. (2) to get the shown φλ; all of the curves
overlap. Bottom: Tikhonov results fλ (λ = 4.96×10−7, 5.1×10−6,
1×10−4, and 4.5×10−4), shown with the true f (a) = 6a(1 − a)
(black circles).

a = 1, although seemingly within the noise error we would
expect when solving for kMC data input.

Since this implementation of Tikhonov regularization does
not give entirely satisfactory results (loss of symmetry, ‖ · ‖1

norm or positivity), we would need to modify it. Normaliza-
tion can be always done by hand, but adding extra symmetry
and positivity constraints on the regularization, while theoret-
ically possible, would turn the L curve of our minimization
problem into a three-dimensional hypersurface in R4. This
would extend the scope of the work enormously, so instead
we look for an alternative approach.

B. Fourier representation for the inverse problem

To complement the Tikhonov regularization results, we de-
velop an alternative method of solving the inverse problem. In
this method, we represent f (a) as a finite Fourier series whose
corresponding φ matches the true, kMC-obtained φkMC.

Whether we take Eq. (3) to be an accurate model of
physical systems or not, f (a) at least has to be equal to zero
at a = 0 and 1, and it is physically reasonable to assume it
is symmetrical. Therefore we only use sine waves and odd
wave numbers to enforce symmetry around a = 1/2 and the
requirement fF (0) = fF (1) = 0. We start with a single nor-
malized sine; fF (a) = N sin(πa), N being the normalization
constant. We integrate this fF according to Eq. (2) to obtain
φF and calculate the error:

δ =
∑

i

[φF (xi ) − φkMC(xi )]
2. (5)

Then we proceed to build fF by adding higher random har-
monics A sin(kπa), where in each step we randomly choose
the wave number (from the allowed values k = 3, 5, . . . , kmax)
and the amplitude A (A ∈ [−Amax, Amax]), normalize the new
fF , and recalculate φF and δ. Then, provided that the resulting
fF is everywhere positive, we keep the newly added harmonic
with the Boltzmann probability exp [−(δnew − δold )β]. We
repeat this cycle with a fixed β (initially set to 1) m times
before increasing β by a factor of 2 (i.e., perform a simulated
anneal). After increasing β in such a way M times, we narrow
in on the solution by a search in which we only keep the newly
added harmonics if δnew < δold.

Since there are five search parameters (values of kmax and
Amax, number of cycles M and m, and the number of search
attempts while only accepting moves with δnew < δold), we
needed to find the optimal parameters on a known problem
before proceeding to calculate fF for φkMC.

Therefore we first integrated Eq. (2) with f (a) given by
Eq. (3) and then used the resulting φ in place of φkMC in
Eq. (5) to see how could we correctly reconstruct fF . Because
Eq. (2) is ill posed, adding higher harmonics actually leads to
a worse, less stable solution fF with high-frequency noise, as
shown in Fig. 4. At the same time the error δ [Eq. (5)] can
decrease (here with the rest of the search parameters fixed,
although in general, when increasing kmax, a higher number
of search cycles is needed to reach a stable solution). This
happens regardless of the amount (or absence) of noise in
the input and cannot be avoided. It is a consequence of the
following property of the equation Kf = φ: the inverse K−1

of the operator K : U → V is unbounded, and the equation is
ill posed, if U is an infinite dimensional space [29]. Hence de-
creasing the dimension of space, spanned with the harmonics,
in which we build f , is a form of regularization.

Because of that, we limited the maximum allowed wave
number to 11. With kmax = 11 and allowed maximum ampli-
tude Amax = 0.05 per one search attempt, we ran the sim-
ulated anneal with m = 30 and M = 500 cycles (30×500
random harmonic choices) and then ran through another 300
attempts, accepting only δnew < δold. These are the parameters
we then used to calculate fF for φkMC, for all the values of i

(for i = 0 we also used kmax = 5 as explained below).

IV. RESULTS

We show the diffusion and deposition φ [Eq. (2) with
f given by two cases of Eq. (3)], the GSD obtained from
kMC (φkMC), and φF and φλ plotted together in the upper
panels in Figs. 5–8, for critical island sizes i = 1, 2, 3, and 0,

052801-4



DISTRIBUTIONAL FIXED-POINT EQUATIONS FOR … PHYSICAL REVIEW E 98, 052801 (2018)

FIG. 4. Searching for the optimal parameter kmax. Top: Original
φ to be inverted [Eq. (2) in which f was taken to be Eq. (3) with
α = 4]. After obtaining the results of inversion built with the Fourier
series, fF , for different values of kmax, we integrated them again
according to Eq. (2) to get the φF plotted on top of each other; all
of the curves overlap. Bottom: Inversion results fF (kmax = 9, 11,
13, 19, and 31), shown with the true f (a) = 360a4(1 − a)4.

respectively. The solutions of integrating Eq. (2) with f (a) =
fkMC(a) are plotted with empty square symbols.

The bottom panels of Figs. 5–8 show the deposition and
diffusion f (a) given by Eq. (3), fkMC(a) obtained from kMC
simulations, and the solutions of the inverse problems fF and
fλ.

Errors δ listed in the legends are the sum of squares
differences between kMC-obtained φkMC and φF and φλ ob-
tained by integrating the solutions fF and fλ according to
Eq. (2) [for φF the error is given with Eq. (5) and for φλ it
is given with ‖Kfλ − φkMC‖2

2]. The solutions fF are always
normalized during the procedure of adding new harmonics,
but the Tikhonov procedure only deals with the ‖ · ‖2 norm,
so none of the fλ solutions shown have the ‖ · ‖1 norm equal
to 1. We have found, however, that all i solutions with optimal
choices of λ have a norm close to 1, and it only significantly

FIG. 5. Critical island size i = 1. Top: Solutions of integrating
Eq. (2) with f given by Eq. (3) (α = i + 1 case is shown in light blue
diamonds and α = i in dark blue circles). The kMC-obtained GSD
φkMC (solid black squares) is inverted according to Eq. (2); when the
resulting fF,λ are used to integrate Eq. (2) we get φF,λ (shown in red
up and green down-facing triangles, respectively). The empty squares
show the result of integrating Eq. (2) with f = fkMC. Bottom: α =
i + 1 and α = i cases of Eq. (3) (light blue diamonds and dark blue
circles), the kMC result fkMC (solid black squares), and the results of
inverting φkMC: fF (red up triangles) and fλ (green down triangles).

drops (below 0.95) for too high λ which also gave a large
error δ.

We note here that our fkMC results are similar to the
nucleation probabilities for i = 1, 2, and 3 shown in a recent
publication by González, Pimpinelli, and Einstein [6].

When we use fkMC to integrate Eq. (2), the resulting GSD
(empty squares in the upper panels of Figures 5–8) fits the
kMC-obtained GSD (φkMC) quite well for all the i cases, but
it does not match it perfectly. We remind the reader here that
the DFPE model we are using involves a mean-field approxi-
mation; a non-mean-field version suggested in Ref. [25] gives
more accurate results.

Returning to the inverse problem, for the i = 1 and 2 cases
(Figs. 5 and 6) both the Fourier and the Tikhonov method gave
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FIG. 6. Critical island size i = 2. The symbols used in this figure
have the same meaning as those in Fig. 5.

good fF and fλ results, but in the i = 2 case we start to see
the effect of increased noise in the input φkMC relative to the
i = 1 case: fλ is noticeably negative near a = 1. In the i =
3 case the situation is even worse (see Fig. 7), so here the
Tikhonov solution is more of a guideline for the behavior of
the true f (a). On the other hand, the Fourier construction was
successful in all the cases so we can conclude that, by using
both methods for assurance, we can find reliable solutions in
problems where f (a) is not directly measurable (e.g., many
experiments to create nanostructures).

In the i = 0 case (Fig. 8), only the diffusion limit (α= i+1)
of Eq. (3), as introduced in Ref. [9], has physical meaning. In
addition, the Fourier result for φkMC inversion with kmax = 11
is problematic. Its high oscillations around a = 0.5 suggest a
higher degree of regularization is needed, so even though the
previously established cutoff kmax = 11 gave excellent results
when inverting Eq. (2) for all α values in Eq. (3) (including
the here relevant α = i + 1 = 1), we additionally show the
inverse fF where we used kmax = 5. This result is backed by
the Tikhonov solution (λ is taken from the corner area of the
L curve).

The measured fkMC(a) for i = 0 lies almost perfectly on
top of the diffusion curve. However, the solution of Eq. (2)

FIG. 7. Critical island size i = 3. The symbols used in this figure
have the same meaning as those in Fig. 5.

with f = fkMC is (in this case most noticeably) not matching
φkMC, which shows the limitations of the mean-field approxi-
mation used to formulate this approach.

For critical island sizes higher than 0, the measured
fkMC(a) (and, consequently, φkMC) is at least a little below
the diffusion prediction, allowing for a small contribution of
the deposition-driven nucleation. We finish our analysis by
quantifying the level of this contribution for different i. Table I
shows the result of fitting fkMC on a convex combination of
analytic expressions for diffusion and deposition f (a) from
Eq. (3):

fkMC = βf diffusion
α=i+1 + (1 − β )f deposition

α=i (6)

with the least squares method. We also show the fit of φkMC on
the convex combination of the diffusion and deposition cases,

φkMC = γφdiffusion
α=i+1 + (1 − γ )φdeposition

α=i , (7)

where we fitted kMC curves φkMC on the results of the
numerical integration of Eq. (2). From the results, we can
safely conclude that diffusion is the dominant mechanism of
island nucleation. (Note that the result for γ in the i = 2 case
is larger than 1, but not if its allowed error is subtracted.)
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FIG. 8. Critical island size i = 0. The symbols used in this figure
have the same meaning as those in Fig. 5.

V. SUMMARY

In this paper, we have revisited the mean-field DFPE (1)
model of gap fragmentation on a one-dimensional substrate
from Ref. [25]. Using the Tikhonov regularization method,
from the kMC-obtained GSD and the integral equation form
of the DFPE for the GSD [Eq. (2)], we were able to calculate
the gap fragmentation probability, that is, the probability of a
new island nucleation occurring at a position a inside a gap

TABLE I. Results of fitting kMC results according to Eqs. (6)
and (7).

i β γ

1 0.821 ± 0.007 0.728 ± 0.010
2 0.819 ± 0.015 1.015 ± 0.018
3 0.844 ± 0.004 0.714 ± 0.020

[f (a)]. The results show fair agreement with the probability
fkMC(a) that we measured directly from kMC simulations,
although they lack the expected symmetry and strict positivity.
Growing amounts of numerical noise (in cases of higher i)
aggravate this problem.

We developed an alternative method of inverting Eq. (2) to
obtain f , in which we represent f as a finite Fourier series and
use the series properties. This allows us to impose symmetry
and positivity, however a downside is a more time-consuming
procedure due to the large amount of search parameters.
The results of this method are in better agreement with the
measured fkMC(a), so this method, especially when backed
by the well-known Tikhonov method, makes for a good tool
in solving problems where it is not possible to measure f (a)
directly.

The DFPE model we use involves two limiting cases of
island nucleation: diffusion (via colliding adatoms) and depo-
sition driven. As expected, within this framework our results
(both the kMC-obtained GSD and fkMC) favor the diffusion-
driven nucleation as the dominant mechanism. We found
no correlation between i and one mechanism’s contribution
amount relative to the other; however, if there were a trend,
a model with a built-in mean-field approximation would most
likely be too crude for it to be observed, especially from noisy
data.

Finally, we emphasize that, while the DFPE we employ
here may not offer a perfect fit [as seen with the solutions
of Eq. (2) with fkMC values which have slightly higher peaks
than φkMC values], its strength lies in the unique possibility of
calculating f (a) from a given GSD, without the need for ad-
ditional information. This provides the opportunity for further
interpretation of experimental data and greater insight into
the physics of nucleation and growth by helping to identify
the dominant mechanisms that drive the gap fragmentation
probability distribution f (a). Our approach to tackling the
inverse solutions to the DFPE might also be applied and
adapted to the analysis of allied problems [30].
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