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Effective dielectric tensor of deformed-helix ferroelectric liquid crystals
with subwavelength pitch and large tilt angle
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Short pitch deformed helix ferroelectric liquid crystals have numerous applications as active materials in
displays, optical telemetry, and biomedical devices. In this paper, we derive convenient analytical formulas
to calculate the effective dielectric tensor of these materials beyond the space average approximation. By
comparison with exact numerical calculations, we show that our formulas are remarkably accurate in predicting
optical properties in virtually all practical situations, including the important case of large tilt angles, where
the space average approximation breaks down. We also present a comparison between the two complementary
approaches of expanding the mesoscopic dielectric tensor versus the mesoscopic transfer matrix, by deriving an
expression for the effective transfer matrix as an infinite expansion and explicitly calculating the corresponding
effective dielectric tensor for the first time. Our results demonstrate that both methods give accurate predictions
when two-photon scattering terms are taken into account.
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I. INTRODUCTION

Liquid crystals (LCs) are extensively used as active el-
ements in displays [1] and optical communication devices
[2,3], thanks to the fact that their optical properties can be
controlled by applying external electric fields. More recently,
LCs have enjoyed a renaissance and found new applications in
biology [4,5] and nanotechnology [6]. In particular, deformed-
helix ferroelectric liquid crystals (DHFLCs) are a class of ma-
terials [7] that are being investigated for application not only
to displays [8] but also to optical sensing networks [9–11],
Q-switched [12] and mode-locked [13] lasers, and biomedical
devices [14,15]. Homogeneously aligned DHFLCs have been
shown to exhibit a remarkably linear and fast response to
very small electric fields [16], characteristics that make them
suitable to detection of sub-mV voltages, such as those in
biological tissues [14]. Given the number of practical appli-
cations, it is important to develop accurate models to simulate
the electro-optic response of these materials and optimize the
performance of the various devices. Fully numerical simula-
tions are possible, e.g., using finite element analysis software,
where the electro-optical properties of a LC cell can be
calculated from the microscopic parameters of the material,
or using rigorous coupled-wave theory [17,18]. However, it is
often desirable to have a simpler analytical model that can
clearly explain the relation between parameters, even if at
the cost of approximating the problem. We are particularly
interested in describing the reflection and transmission of cells
containing homogeneously aligned DHFLCs liquid crystals
driven by an external electric field, as this is a technologically
relevant configuration. It has been shown that in the limit of
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short pitch, i.e., when the pitch is much smaller than the wave-
length of the incident light, an effective medium description
is appropriate [19,20], because the only meaningful physical
quantities are the averages of the fields over a scale that is
larger than the pitch and smaller than the wavelength [21].
In particular, the effective medium approximation works well
for the homogeneous alignment considered in this paper, even
when spatial dispersion, and therefore optical activity, are
considered [20]. Several approaches have been put forward
to determine a suitable effective dielectric tensor and we can
broadly subdivide them into two categories: methods relying
on a perturbative expansion of the dielectric tensor, such as the
Bloch wave method [20], and methods relying on a perturba-
tion of the transfer matrix, such as the iteration procedure by
Oldano et al. [19,22] and the polarization grating approach
[23–25]. Galatola [20] has presented a general expression for
the effective dielectric tensor based on a Bloch-wave decom-
position and applied it to the case of cholesteric LCs. Oldano
et al. [19,22] have reported a method to iteratively calculate an
effective transfer matrix in the case of samples placed between
parallel planes orthogonal to the direction of periodicity of
the dielectric medium. They have also shown that, for this
particular orientation, optical activity cannot be described by
an effective dielectric tensor. However, their method does
not apply to the homogeneously aligned DHFLCs considered
here. Other groups have derived explicit expressions for the
space averaged effective transfer matrix and reported the
corresponding effective dielectric tensor, including explicitly
the effect of an external electric field [23,26], but we will show
that this approximation is too crude to describe DHFLCs with
large tilt angles.

In this paper we present a comparison between the two
complementary approaches of expanding the mesoscopic di-
electric tensor versus the mesoscopic transfer matrix, filling
the gaps in the literature and using the same conceptual frame-
work for both methods. In particular, we derive the following

2470-0045/2018/98(5)/052707(10) 052707-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052707&domain=pdf&date_stamp=2018-11-27
https://doi.org/10.1103/PhysRevE.98.052707


SILVESTRI, SRINIVAS, AND LADOUCEUR PHYSICAL REVIEW E 98, 052707 (2018)

results: (i) an explicit expansion for the effective transfer
matrix, (ii) two explicit expansions for the effective dielectric
tensor, obtained with the two above mentioned approaches,
(iii) simple analytical formulas for the effective dielectric ten-
sor of short pitch, electrically driven, homogeneously aligned
DHFLCs, which are extremely accurate within the whole
range of practical material parameters. We then compare our
analytical expressions to the exact numerical treatment. We
anticipate that the two methods give similar accuracy and
that just a few terms of the infinite expansions are gener-
ally sufficient to describe even LCs with large tilt angles in
the whole range of realistic parameters. We also find that,
while the transfer matrix approach method is more similar,
in spirit, to the exact numerical approach we adopted, the
Bloch wave method yields more convenient formulas, which
will certainly be useful to the many researchers working in
the area of DHFLCs. We point out that optical activity is
not discussed, as we focus on the zeroth order of the short
pitch expansion, where spatial dispersion is neglected. The
paper is organized as follows. In Sec. II we describe in detail
the transfer matrix approach for a generic dielectric grating
consisting of a slab with its dielectric tensor periodic along a
direction parallel to the slab surface. In Sec. III, we present
the analytical results for the same geometry, derived using the
Bloch wave approach. In Sec. IV, the previous results are used
to derive explicit formulas for the effective dielectric tensor of
DHFLCs. Finally, in Sec. V, we compare the analytical results
with an exact numerical approach. The last section is devoted
to the conclusions.

II. TRANSFER MATRIX APPROACH

A. Problem definition

We consider the problem of a dielectric grating in a slab
geometry oriented as in Fig. 1, where the dielectric constant
is periodically varying along x̂.

We begin by considering harmonic electromagnetic waves
of the form E(r, t ) = E(k̂) × exp(i[k · r − ωt]), which sat-
isfy Maxwell’s equations

∇ × E = ik0μH, (1a)

∇ × H = −ik0εE, (1b)

where {E, H} is the electric and magnetic field-strength
vector pair, k0 = 2π/λ0 is the wave number of light of
wavelength λ0 in free space, and μ is the magnetic ten-
sor and ε the dielectric tensor, both of rank 2. The wave
vector in an isotropic ambient medium (denoted by sub-
script m) can be written in terms of a unit wave vector as
k = kmk̂, where km = nmk0 with nm = √

μmεm. For uniform
plane waves we neglect time-dependence, so that {E, H} =
{E(k̂), H(k̂)} exp(ik · r). A wave thus defined propagates in
an ambient medium for z < 0 and impinges on a dielec-
tric slab of thickness D at the interface z = 0 at an angle
of incidence θi to the normal in the plane of incidence,
which is spanned by k̂ = (sin θi cos ϕi, sin θi sin ϕi, cos θi )
and ep(k̂) = (cos θi cos ϕi, cos θi sin ϕi, − sin θi ). The az-
imuthal angle ϕi is the angle formed between the plane of
incidence and the xz plane (the grating plane). Hence, with

θi

k

D

x

z
ep

es

nm

nm

ε(x)
λg

FIG. 1. Geometry of the problem. A planar dielectric grating
of thickness D is placed in an isotropic ambient medium with
refractive index nm. The dielectric tensor of the grating, ε(x ), varies
periodically in a direction parallel to the slab’s surface with pitch λg .
This geometry describes deformed helix ferroelectric liquid crystals
with homogeneous alignment.

es (k̂) = (− sin ϕi, cos ϕi, 0),

E(k̂) = E‖ep(k̂) + E⊥es (k̂), (2a)

μmH(k̂) = k−1
0 k × E = nm[E‖es (k̂) − E⊥ep(k̂)]. (2b)

In the case considered here, the magnetic tensor is assumed
to be isotropic, while the dielectric tensor is assumed to be
symmetric and periodic along x with period λg . In formulas

μij = μδij , (3a)

εij = εji, (3b)

εij (x + λg ) = εij (x). (3c)

The quantity λg is called the grating pitch and the corre-
sponding grating wave number is defined as kg = 2π/λg .
We assume further the formalism of Kiselev et al. [23] for
Maxwell’s equations in terms of the lateral components of the
electromagnetic field Ep, Hp, defined by

E = Ezẑ + Ep, H = Hzẑ + ẑ × Hp, (4)

or equivalently, Ep = (Ex,Ey )T and Hp = (Hy,−Hx )T ,
where superscript T denotes the matrix transpose. The wave
vector may be decomposed in similar fashion as k = kzẑ +
kp, where kp = √

k2
m − k2

z (cos ϕi x̂ + sin ϕi ŷ) is the lateral
wave-vector component of the incident wave, which remains
constant for all propagation by the appropriate boundary
conditions for continuity of Ep, Hp [27]. The resulting system
of differential equations may be written in simplified form,
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with τ = k0z, as

−i∂τ F = M̂F =
(
M̂(11) M̂(12)

M̂(21) M̂(22)

)(
Ep

Hp

)
, (5)

where we define F = (Ex,Ey,Hy,−Hx )T . M̂(ij )
αβ are the

differential operators

M̂(11)
αβ = −∇αε−1

zz εzβ, (6a)

M̂(12)
αβ = μδαβ − ∇αε−1

zz ∇β, (6b)

M̂(21)
αβ = εαβ − εαzε

−1
zz εzβ − μ−1∇⊥

α ∇⊥
β , (6c)

M̂(22)
αβ = −εαzε

−1
zz ∇β, (6d)

with α, β ∈ {x, y}, and (x, y interchangeably 1,2)

∇α = α̂
1

ik0

∂

∂α
, ∇⊥

α = −α̂
εαβ

ik0

∂

∂β
,

where εαβ is the two-dimensional Levi-Civita symbol, and
the Einstein summation convention applies to β in the second
expression.

B. Floquet diffraction harmonics

The in-plane periodicity of the dielectric tensor allows its
expansion as a Fourier series

εij =
∞∑

n=−∞
εij,n exp(inkgx). (7)

The M̂(ij )
αβ are thus periodic, so that Eq. (5) is a differential

problem amenable to Floquet theory [28], allowing a Floquet
harmonics representation for the solution as

F(r) = F(rp, τ )

=
∞∑

n=−∞
Fn(τ ) exp(ikn · rp ),

(8)

where rp = (x, y, 0), and kn = kp + nkg = k0qn, with the
dimensionless wave index vector qn = (q (n)

x , q (n)
y , 0), and

qn = |qn|. From the definitions introduced, we note

q (n)
x = qn cos φn = nm sin θi cos ϕi + n

kg

k0
, (9a)

q (n)
y = qn sin φn = nm sin θi sin ϕi, (9b)

so that the rotation angle φn diminishes with increasing order
n. We will also make use of the vector pn = ẑ × qn. Substitut-
ing Eq. (8) into Eq. (5) and taking the inner product on both
sides with the Fourier kernel function, we obtain the system
of equations for Floquet harmonics Fn(τ ),

−i∂τ Fn(τ ) =
∞∑

m=−∞
Mnm(τ )Fm(τ ), (10)

where

Mnm =
(

M(11)
nm M(12)

nm

M(21)
nm M(22)

nm

)
. (11)

[M(ij )
nm ]αβ are the nth order Fourier coefficients of the 2×2

matrices M̂(ij )
αβ exp(ikm · r), given explicitly by

[
M(11)

nm

]
αβ

= −q (n)
α β

(n−m)
zβ , (12a)[

M(12)
nm

]
αβ

= μδαβδnm − q (n)
α η(n−m)

zz q
(m)
β , (12b)[

M(21)
nm

]
αβ

= ξ
(n−m)
αβ − μ−1δnmp(n)

α p
(m)
β , (12c)[

M(22)
nm

]
αβ

= −β (n−m)
αz q

(m)
β , (12d)

in terms of the nth order Fourier coefficients

ξ
(n)
αβ = 1

λg

∫ λg

0
e−inkgx

[
εαβ − εαzε

−1
zz εzβ

]
dx, (13a)

η(n)
zz = 1

λg

∫ λg

0
e−inkgx

[
ε−1
zz

]
dx, (13b)

β (n)
αz = 1

λg

∫ λg

0
e−inkgx

[
ε−1
zz εαz

]
dx, (13c)

β (n)
zα = 1

λg

∫ λg

0
e−inkgx

[
ε−1
zz εzα

]
dx. (13d)

It is straightforward to verify that, due to the dielectric
tensor symmetry, we have the following relations for the
transfer matrix terms

β (n)
αz = β (n)

zα , (14a)

β (−n)
αz = [

β (n)
αz

]∗
, (14b)

ξ
(n)
αβ = ξ

(n)
βα , (14c)

ξ
(−n)
αβ = [

ξ
(n)
αβ

]∗
, (14d)

η(−n)
zz = [

η(n)
zz

]∗
. (14e)

In the ambient medium, Floquet harmonics are decoupled
and represent forward and backward-propagating eigenwaves
with wave vector z-components k±

z = ±k0

√
n2

m − q2
n , respec-

tively. From the inequality

qn � n
kg

k0
= n

λ0

λg

, (15)

it follows that in the limit of gratings with very short pitch, i.e.,
as λg/λ0 → 0, all diffraction orders with n � 1 correspond to
evanescent waves, more strongly attenuated with increasing
order. This also applies to Floquet harmonics inside the slab
and it creates the possibility of defining an effective tensor to
describe the optical properties of the grating, valid in the limit
λg/λ0 → 0. However, it is important to recognize the fact that
in the slab all Floquet harmonics are coupled by the presence
of the grating.

C. Effective transfer matrix and effective dielectric tensor

In this section we derive the analytical expression of an ef-
fective transfer matrix, M(eff ), that correctly describes the opti-
cal properties of the polarization grating in the limit λg/λ0 →
0. We use a procedure analogous to time-independent
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perturbation theory in quantum mechanics, where the transfer
matrix M̂ plays the role of the Hamiltonian. We split M̂
into a unperturbed part, M̂0, describing an average transfer
matrix, and a perturbation, �M̂(x), due to the grating and
depending on the spatial coordinate x. Once expressed in
terms of Floquet harmonics, we have

M = M0 + �M, (16)

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · M−1−1 0 0 · · ·
· · · 0 M00 0 · · ·
· · · 0 0 M11 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

�M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · 0 M−10 M−11 · · ·
· · · M0−1 0 M01 · · ·
· · · M1−1 M10 0 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Note that M, M0, and �M are non-Hermitian and that the
Floquet harmonics basis consists of 4-dimensional vectors, so
that the elements of the above matrices are non-Hermitian,
noncommuting 4 × 4 matrices. Keeping it in mind, we can
still adopt a procedure similar to time-independent quantum
mechanics perturbation theory. The “eigenvalues” of the un-
perturbed transfer matrix M0 are the 4 × 4 transfer matrices
Mnn, describing the evolution of waves in the absence of any
spatial modulation of the dielectric tensor. Our goal is to find
the perturbed “eigenvalue” of the 0th order Floquet harmonic,
corresponding to the evolution of the four propagating waves.
After a tedious derivation, we obtain, up to the third order in
the perturbation,

M(eff )
λg

= M00 −
∑
n	=0

M0n[Mnn]−1Mn0

+
∑
n	=0

∑
m	={0,n}

M0n[Mnn]−1Mnm[Mmm]−1Mm0,

(19)

which can be explicitly calculated from Eqs. (12) and depends
on the grating pitch λg through qn. By taking the short pitch
limit, we get the effective 4 × 4 transfer matrix

M(eff ) = lim
λg→0

M(eff )
λg

, (20)

which is finite and describes a homogeneous medium. The
effective dielectric tensor is then defined by the relations

[M(eff,11)]αβ = −q (0)
α

ε
(eff )
zβ

ε
(eff )
zz

, (21a)

[M(eff,12)]αβ = μδαβ − q (0)
α q

(0)
β

ε
(eff )
zz

, (21b)

[M(eff,21)]αβ = ε
(eff )
αβ − ε (eff )

αz ε
(eff )
zβ

ε
(eff )
zz

− μ−1p(0)
α p

(0)
β , (21c)

[M(eff,22)]αβ = −ε (eff )
αz

ε
(eff )
zz

q
(0)
β , (21d)

linking the effective transfer matrix to the effective dielectric
tensor. Some comments about Eq. (19): Similar to Oldano
[19], we borrowed a quantum mechanics approach, but in our
case the perturbation is time-independent, as the grating peri-
odicity is not in the direction of propagation. The three terms
appearing in the summation Eq. (19) correspond to the zeroth,
second, and third order of the perturbation theory corrections,
respectively, the first order being null. In particular, the zeroth-
order term is the space average of the transfer matrix and N th-
order corrections describe N-photon scattering, where the
coupling between propagating waves is mediated by (N − 1)
evanescent waves. We point out that our procedure gives a
double expansion in the scattering multiplicity and in the order
of Fourier components. Regarding the short pitch limit, we do
not show explicitly the dependence on the grating’s pitch and
we only present the limit λg → 0.

We report explicit expressions for the effective dielectric
tensor including the 2-photon scattering terms, and neglecting
terms corresponding to scattering multiplicities N > 2. They
have been obtained by calculating M(eff ) analytically from
Eq. (12) and then using Eqs. (21) to determine the six inde-
pendent dielectric tensor components. For example, 1/ε (eff )

zz

can be found from Eq. (21b), ε
(eff )
zβ /ε (eff )

zz from Eq. (21a), so

that then ε
(eff )
αβ follows from Eq. (21c). Recalling that qn =

{q (0)
x + nλ0/λg, q

(0)
y , 0}, we finally find

ε
(eff,TM)
αβ = ξ

(0)
αβ − 2[

β
(0)
xz

]2 + ξ
(0)
xx η

(0)
zz

∞∑
n=1

(
η(0)

zz 
[
ξ (n)
xα ξ

(n)∗
xβ

] − ξ (0)
xx 
[

β (n)
αz β

(n)∗
βz

] + β (0)
xz 
[

ξ (n)
xα β

(n)∗
βz + ξ

(n)
xβ β (n)∗

αz

])
(22a)

[
ε (eff,TM)
zz

]−1 = η(0)
zz + 2[

β
(0)
xz

]2 + ξ
(0)
xx η

(0)
zz

∞∑
n=1

(
η(0)

zz

∣∣β (n)
xz

∣∣2 − ξ (0)
xx

∣∣η(n)
zz

∣∣2 − 2β (0)
xz 
[

η(n)
zz β (n)∗

xz

])
(22b)

ε (eff, TM)
αz

ε
(eff,TM)
zz

= ε (eff, TM)
zα

ε
(eff,TM)
zz

= β (0)
αz − 2[

β
(0)
xz

]2 + ξ
(0)
xx η

(0)
zz

∞∑
n=1

(
η(0)

zz 
[
ξ (n)
xα β (n)∗

αz

] + ξ (0)
xx 
[

η(n)
zz β (n)∗

αz

] + β (0)
xz 
[

β (n)
xz β (n)∗

αz − ξ (n)
xα η(n)∗

zz

])
,

(22c)
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where the superscript TM indicates that the dielectric tensor
has been obtained by a transfer matrix approach and α, β ∈
{x, y}. We point out that retaining only the first term in the
right-hand side of each of the equations above corresponds to
the space average approximation (labeled TM00 in Sec. V),
while the summations correspond to the 2-photon scattering
correction expressed as a Fourier expansion and are included
in the approximations labeled TM21 and TM22 in Sec. V,
where the former includes only Fourier terms with n = 1
and the latter terms with n � 2. The above formulas allow
the calculation of an effective macroscopic tensor when the
explicit form of the periodic mesoscopic dielectric tensor is
specified. Equations (22), together with the transfer matrix
expansion Eq. (19), are the main results of this section. In
Sec. IV we specify the mesoscopic dielectric tensor for the
case of DHFLCs and, in the Appendix, we explicitly report the
corresponding Fourier components, up to the second order, of
the coefficients appearing in Eq. (22).

III. BLOCH WAVE APPROACH

In this section, we adopt the Bloch wave method described
by Galatola [20] and extended by Ponti et al. [29]. We will
focus on the short-pitch limit, i.e., λg/λ0 → 0, thus neglecting
all terms proportional to (λg/λ0)m with m > 0. Including
terms corresponding to the 0-, 2-, and 3-photon scattering, as
in the previous section, we write the effective dielectric tensor
as

ε (eff,BW) = ε (0) +
∑
n	=0

ε (n) · G(0) · ε (−n)

+
∑
n	=0

∑
m	={0,n}

ε (n) · G(0) · ε (m) · G(0) · ε (−n−m),

(23)

where the superscript BW indicates that the above formula has
been derived using a Bloch wave approach,

ε (n) = 1

λg

∫ λg

0
e−inkgxε dx, (24)

and G(0) is the short pitch limit of the matrix defined in Eq.
(4) of Ref. [29], given explicitly for our orientation by

G(0) = − 1

ε
(0)
xx

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠. (25)

We note that ε (0) is simply the space average of the dielectric
tensor, while the other terms represent corrections due to
the coupling with evanescent waves mediated by the grating.
We will show in Sec. V that for our purposes the 3-photon
scattering terms can be neglected. Using the above definitions
and including only 0- and 2-photon scattering terms (as done
in the previous section), we can calculate the components of
the effective dielectric tensor explicitly as

ε
(eff,BW)
αβ = ε

(0)
αβ − 2

ε
(0)
xx

∞∑
n=1


[
ε (n)
xα ε

(n)∗
xβ

]
, (26a)

ε (eff,BW)
αz = ε (eff,BW)

zα = ε (0)
αz − 2

ε
(0)
xx

∞∑
n=1


[
ε (n)
xα ε (n)∗

xz

]
, (26b)

ε (eff,BW)
zz = ε (0)

xx + 2

ε
(0)
xx

∞∑
n=1

∣∣ε (n)
xz

∣∣2
. (26c)

where the superscript BW indicates that the dielectric tensor
has been obtained by a Bloch wave approach and, again,
α, β ∈ {x, y}. We note that the series expansion Eq. (23) is
formally very similar to the transfer matrix expansion Eq. (19)
and both describe the same physical processes. However,
the various terms are different, including the zeroth order.
Again, we note that retaining only the first term in the right-
hand side of each of the equations above corresponds to
the space average approximation (labeled BW00 in Sec. V),
while the summations correspond to the 2-photon scattering
correction expressed as a Fourier expansion. We add that
these summations are included in the approximations labeled
BW21 and BW22 in Sec. V, where the former includes only
Fourier terms with n = 1 and the latter terms with n � 2.
We will see in the next section that the Bloch wave method
produces more convenient analytical formulas, when applied
to DHFLCs, compared to the transfer matrix approach. We
will compare the accuracy of the two methods in Sec. V, but
we can anticipate that the two methods give similar accuracy.

IV. EFFECTIVE DIELECTRIC TENSOR FOR
SHORT-PITCH DEFORMED HELIX FERROELECTRIC

LIQUID CRYSTALS

In this section, we explicitly calculate the effective di-
electric tensor of deformed helix ferroelectric liquid crystals,
assuming the same slab geometry of Fig. 1. These LCs are
used in their Smectic C* phase with homogeneous alignment
under small electric fields, which produce a deformation of the
helical structure rather than its complete unwinding [7]. The
helical pitch defines the grating pitch and is denoted by the
same symbol, λg . Under these assumptions the mesoscopic
dielectric tensor takes the form [23]

εij = ε⊥δij + δε didj , (27)

where i, j ∈ {x, y, z}, δij is the Kronecker δ, ε⊥ (ε‖) is the
relative permittivity corresponding to the ordinary (extraordi-
nary) refractive index, and δε = ε‖ − ε⊥. The director, d̂, is
a unit vector giving the orientation of all molecules in each
layer. Choosing the helix axis along x we have

d̂ = (dx, dy, dz) = (cos θt , sin θt cos �, sin θt sin �), (28)

where θt is the tilt angle defining the director cone, and � is
the azimuthal angle made by the director on the cone about
the helix axis in a given smectic layer. We now consider small
electric fields applied perpendicular to the helix axis and to the
slab surface, i.e. E = Eẑ, with |E| = E � EC . This geometry
is illustrated in Fig. 2. For convenience, we also define the
dimensionless small parameter αE ≡ E/EC � 1. Under the
above assumptions, the deformed helical structure is given by
[23,30]

� ≈ φ(x) + αE sin φ(x), (29)

052707-5



SILVESTRI, SRINIVAS, AND LADOUCEUR PHYSICAL REVIEW E 98, 052707 (2018)

θt

Φ

x

z

λg

E

FIG. 2. Geometry of a DHFLC. In each smectic layer (delimited
by dashed lines) the direction of the director is shown by an arrow.
The resulting helical structure, with pitch λg , has its axis along x.
The tilt angle, θt , and the azimuthal angle, �, are also indicated. The
electric field, E, is perpendicular to the helix axis.

where φ(x) = kgx = 2πx/λg . We can now explicitly calcu-
late the Fourier coefficients presented in the previous sections.
Since the above formula is only valid for small electric
fields, we expand the analytical formulas in this section up
to the second order in the Taylor expansion of the small
parameter αE .

We report here the results obtained with the Bloch wave
method, while analytical formulas for the transfer matrix
approach are presented in the Appendix. The effective di-
electric tensor can be readily obtained from Eqs. (26), using
definitions Eqs. (28), (27), and (24). Including terms up to the
Fourier coefficient n = 2, we get

ε (eff)
xx ≈ ε⊥ + δε cos2 θt , (30a)

ε (eff)
xy = ε (eff)

yx ≈ −αE

δε

2
sin θt cos θt , (30b)

ε (eff)
yy ≈ ε⊥

2

(
1 + ε‖

ε
(eff)
xx

)
+ α2

E

δε

4
sin2 θt , (30c)

ε (eff)
xz = ε (eff)

zx = ε (eff)
yz = ε (eff)

zy = 0, (30d)

ε (eff)
zz ≈ ε⊥

2

(
1 + ε‖

ε
(eff)
xx

)
− α2

E

δε

4

ε⊥
ε

(eff)
xx

sin2 θt , (30e)

corresponding to the BW22 approximation of Sec. V. It is also
useful to derive explicit expressions for the eigenvalues of the
effective dielectric tensor, the rotation of the principal axes
and the birefringence. The three eigenvalues are ε

(eff)
+ , ε

(eff)
− ,

and ε (eff)
zz , with

ε
(eff)
± =

[
ε (eff)
xx + ε (eff)

yy

2

]
±

[
ε (eff)
xx − ε (eff)

yy

2

]√
1 + tan2 [2�],

(31)

and the rotation of the principal axes around z, �, induced by
the electric field is defined by

tan (2�) = 2ε(eff)
xy

ε
(eff)
xx − ε

(eff)
yy

. (32)

From the above expression we can explicitly find

� = −αE

4

δε sin(2θt )

ε
(eff)
xx − ε

(eff)
yy,0

, (33)

where we defined ε
(eff)
yy,0 = ε⊥

2 (1 + ε‖
ε

(eff)
xx

). Finally, the birefrin-
gence is given by

�n ≡
√

ε
(eff)
+ −

√
ε

(eff)
− =

√
ε

(eff)
xx −

√
ε

(eff)
yy,0

+α2
E

√
ε

(eff)
xx

√
ε

(eff)
yy,0 − ε⊥

ε
(eff)
xx

√
ε

(eff)
yy,0 − ε

(eff)
yy,0

√
ε

(eff)
xx

δε sin2 θt

8
. (34)

The formulas in this section can be used to describe DHFLCs
using an effective dielectric tensor approach and we will show
in the next section that they are remarkably accurate within a
wide range of parameters. We notice that in the absence of any
electric field, i.e., when αE=0, Eqs. (30) agree with the results
in Ref. [19] [cf. Eq. (9)].

With the formulas presented in this section it is also possi-
ble to calculate the critical tilt angle, θ iso

t , at which, in the ab-
sence of any external electric field, the liquid crystal becomes
isotropic. For the uniaxial case considered here, Abdulhalim
found this isotropization angle to be such that cos θ iso

t =
1/

√
3 or θ iso

t = 54.7◦ [31]. In his work, the author adopted
a space average approximation for the dielectric tensor, which
corresponds to the BW00 approximation of Sec. V. However,
when we consider the more accurate BW22 approximation
presented in this section, we find that the isotropization angle
satisfies

cos2 θ iso
t = 3

4

ε⊥
δε

(√
1 + 8

9

δε

ε⊥
− 1

)
(35)

and therefore depends on the intrinsic anisotropy of the LC
through the ratio δε/ε⊥. As an example, we calculated the
isotropization angle for δε/ε⊥ = 0.1 and δε/ε⊥ = 0.2, find-
ing θ iso

t = 55.2◦ and θ iso
t = 55.6◦, respectively. In the limit of

vanishingly small anisotropy, we finally have

lim
δε→0

cos2 θ iso
t = 1

3
, (36)

thus recovering the result of Ref. [31].

V. EXACT NUMERICAL RESULTS AND DISCUSSION

In this section we benchmark the effective dielectric tensor
approximations derived in the previous sections against exact
numerical calculations for a DHFLC slab in the presence
of an external electric field. In particular, we compute the
birefringence, �n, the rotation of the optic axes induced by
the electric field, �, and the transmission at crossed polarizers,
adopting an approach similar to the one used in Ref. [20].
In the case of the exact numerical calculations, the first step
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TABLE I. List of approximations compared in this section. The second and third column report the formulas used to calculate the effective
dielectric tensor and the terms included, respectively. Including only the 1st term corresponds to the space average approximation. The fourth
column indicates the lines and colors used in the figures to indicate each approximation. Analytical expressions for BW00 and BW21 are not
explicitly reported in this paper, as they can be easily derived.

Right-hand side
Approximation Equation terms included Plot legend Notes

TM00 (22) 1st Dashed green Same as Ref. [23]
TM21 (22) 1st,

∑
n�1 Dashed red See Appendix

TM22 (22) 1st,
∑

n�2 Dashed blue See Appendix
BW00 (26) 1st Solid green
BW21 (26) 1st,

∑
n�1 Solid red

BW22 (26) 1st,
∑

n�2 Solid blue See Eq. (30)
Exact N/A N/A Black crosses See Ref. [20]

of the procedure consists in constructing the block matrix
M including all the matrices Mnm with {n,m} � nmax and
|n − m| � nmax. We found that nmax = 4 is sufficient to obtain
a typical accuracy of 0.001% on the calculated optical prop-
erties. From the eigenvalues and eigenvectors of the transfer
matrix at normal incidence we can immediately calculate the
birefringence and the rotation of the principal axes around z,
respectively, while transmission at any incident angle can be
calculated using the procedure described in detail in Ref. [20].
In the case of the various effective medium approximations,
we adopt the same approach, but using a 4×4 transfer matrix
calculated with Eqs. (21) from the various effective dielectric
tensors. The LC parameters are those of the mixture FLC-
576 at room temperature, i.e., θt = 32◦, ε⊥ = 1.5, ε‖ =
1.72, and λg = 0.2 μm [23]. The reference wavelength of
the incident light has been chosen as λ0 = 1.55 μm, as this
is the typical telecommunication wavelength we use in our
optical transducers [16]. Unless otherwise specified, other
parameters are d = 50 μm, θi = 0, ϕi = 0, αE = 0.2, and
nm = 1.5. For each approach, we have chosen to include
in the comparison the space average approximation, i.e., the
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FIG. 3. Birefringence as a function of the incident light’s wave-
length (λ0) for the exact numerical calculations (black crosses) and
for the six analytical approximations, as indicated in the legend. A
summary of the various approximations is also reported in Table I
for convenience.

zeroth order in the scattering multiplicity, and the 2-photon
scattering approximation, the latter with |n| � 1 or |n| � 2 in
the Fourier expansion. This gives a total of 6 approximations,
labeled TM00, TM21, TM22, BW00, BW21, BW22, where
TM (BW) indicates the transfer matrix (Bloch wave) method
and the two numbers indicate the largest multiplicity of the
photon scattering and the largest Fourier component included,
respectively. A summary of the various approximations is
presented in Table I.

In Figs. 3 and 4 we show the birefringence, �n, and the
optic axes rotation, �, respectively, in the presence of an
electric field (αE = 0.2), as a function of the incident wave-
length, λ0. These calculations allow us to check the validity of
the short pitch approximation. For �n, we see that at long
wavelengths the exact results tend to the values calculated
with the 2-photon scattering approximations, namely TM21,
TM22, BW21, BW22. The various approximations predict the
short pitch limit with different relative accuracies, all below
0.3%, with the Bloch wave method giving the best results.
It is interesting to note that the exact birefringence is within
0.3% of its short pitch limit already for λ0 = 0.35 μm,
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FIG. 4. Rotation of the optic axes as a function of the incident
light’s wavelength λ0. Symbols indicate the exact numerical cal-
culations, while lines denote the six analytical approximations, as
indicated in the legend.

052707-7



SILVESTRI, SRINIVAS, AND LADOUCEUR PHYSICAL REVIEW E 98, 052707 (2018)
0.

00
0.

05
0.

10
0.

15
0.

20

Tilt angle, θt (deg)

B
ire

fr
in

ge
nc

e

0 30 60 90

BW00
BW21
BW22
TM00
TM21
TM22

FIG. 5. Birefringence as a function of the tilt angle. Symbols
indicate the exact numerical calculations, while lines denote the six
analytical approximations, as indicated in the legend.

corresponding to λg/λ0 = 0.57. For the optic axes rotation the
results are similar, except that the TM22 approximation gives
much better results than in the birefringence case, as opposed
to the TM21 which performs poorly. For the optic axes rota-
tion, the exact results are within within 1% of the short pitch
limit for λ0 = 0.55 μm (corresponding to λg/λ0 = 0.36) and
within 0.3% of the same limit for λ0 > 0.9 μm. We conclude
that the effective medium approximation is appropriate for our
parameters and it is an excellent approximation even at much
shorter wavelengths.

In Figs. 5 and 6 we show the birefringence, �n, and
the optic axes rotation, �, respectively, in the presence of
an electric field (αE = 0.2) as a function of the tilt angle.
The birefringence shows the expected behavior, reaching a
minimum close to the isotropization angle [θ iso

t = 55.4◦ from
Eq. (35)], but the medium never becomes isotropic due to
the presence of an electric field [25,31]. We see that for tilt
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FIG. 6. Rotation of the optic axes as a function of the tilt angle.
Symbols indicate the exact numerical calculations, while lines denote
the six analytical approximations, as indicated in the legend.
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FIG. 7. Normal incidence transmission at crossed polarizers cal-
culated as a function of the electric field. Incident light is linearly
polarized along the direction of the helix axis. Symbols indicate the
exact numerical calculations, while lines denote the six analytical
approximations, as indicated in the legend.

angles larger than 15◦ the space average approximation gives
a noticeable error on the birefringence. Moreover, neither the
TM00 nor the TM21 approximation gives the correct limit for
cholesteric LCs (θt = 90◦). In the case of the axis rotation
the discrepancy between the space average approximations
and the exact results is noticeable at tilt angles between 30◦
and 60◦, while the correct behavior is recovered in the limit
of cholesteric LCs. We conclude that, for tilt angles > 15◦,
2-photon scattering terms should be included. The actual
error committed in calculating the optical transmission (or
reflection) of a DHFLC cell depends on the cell’s thickness.

To further prove this point, we show in Fig. 7 an example
of normal incidence transmission at crossed polarizers, when
the incident light is polarized along the direction of the helix
axis and θt = 32◦. We notice that the approximations with
2-photon and first order Fourier components (BW21, TM21)
give already very good results, at least within the range of
validity of the small field approximation. The more accurate
approximations, BW22 and TM22, give an almost perfect
agreement up to αE = 1. The space average approximations
instead (BW00 and TM00) are in poor agreement with the
exact results at all electric field intensities.

Since the zz component of the effective dielectric tensor
can only be probed at oblique incidence, we have calculated
the transmission at crossed polarizers for various incident
angles in the presence of an electric field (αE=0.2). The re-
sults, reported in Fig. 8, show that the 2-photon approximation
works well in the whole range of incident angles, while the
space average approximations consistently produce noticeable
errors.

In general, we conclude that, while space average ap-
proximations are appropriate for small tilt angles, 2-photon
scattering terms must be taken into account for DHFLCs with
large tilt angles. We have also found that first order Fourier
components are often enough to get good results across a wide
range of parameters, but we recommend including second
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FIG. 8. Transmission at crossed polarizers as a function of the
incident angle. Incident light is linearly polarized along the direction
of the helix axis. Symbols indicate the exact numerical calculations,
while lines denote the six analytical approximations, as indicated in
the legend.

order Fourier terms, which make the agreement with the
exact calculations almost perfect. Our results also confirm
that 3-photon scattering terms can be neglected for most
practical purposes. Another interesting conclusion is that both
the transfer matrix and the Bloch wave method have the
same accuracy when similar terms are taken into account in
the effective dielectric tensor expansion. Finally, and most
importantly, we have proven that the effective dielectric ten-
sor description is remarkably accurate over a huge range of
parameters, covering virtually all practical situations. Based
on the results of this section, we recommend researchers to
use Eqs. (30), which are extremely convenient and remarkably
accurate.

VI. CONCLUSIONS

We have presented analytical formulas to calculate the
effective dielectric tensor of short pitch DHFLCs with ho-
mogeneous alignment in the presence of an external electric
field. This effective medium approximation is shown to be ex-
tremely accurate in the whole range of practically relevant pa-
rameters. We also compared two complementary approaches
to the effective medium approximation, relying on an expan-
sion of the mesoscopic transfer matrix and the mesoscopic
dielectric tensor, respectively. To do that, we have derived for
the first time an explicit expansion for the effective transfer
matrix and calculated the corresponding effective dielectric
tensor. Our results show that the two methods give similar
results when terms describing similar physical processes are
taken into account.
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APPENDIX: TRANSFER MATRIX
METHOD—COEFFICIENTS OF THE EFFECTIVE
DIELECTRIC TENSOR EXPANSION FOR DHFLCs

In this Appendix, we present analytical expressions to
calculate the effective dielectric tensor with the transfer matrix
method, using Eqs. (22). We assume that the periodic material
is a DHFLC with the geometry of Fig. 2 in the presence of
small electric fields, so that definitions Eqs. (27)–(29) hold.
As discussed in Sec. IV, we expand each coefficient into a
Taylor series in the small parameter αE up to the second order.
For the space average approximation, TM00, we only include
the zeroth-order term, i.e., the first term on the right-hand side
of each equation. The relevant quantities are

β (0)
αz = β (0)

zα = 0, (A1a)

η(0)
zz ≈ 1 + vγ 2

v α2
E

ε⊥
√

1 + v
, (A1b)

ξ (0)
xx ≈ ξ

(0)
xx,0 + γxxα

2
E, (A1c)

ξ (0)
xy = ξ (0)

yx ≈ γxyαE, (A1d)

ξ (0)
yy ≈ ξ

(0)
yy,0 + γyyα

2
E, (A1e)

where

v = δε

ε⊥
sin2 θt , (A2a)

γv = (
√

1 + v − 1)/v, (A2b)

γxx = δε cos2 θt√
1 + v

vγ 2
v , (A2c)

γxy = −δε γv sin θt cos θt , (A2d)

γyy = ε⊥
√

1 + v vγ 2
v , (A2e)

ξ
(0)
xx,0 = ε⊥ + δε cos2 θt√

1 + v
, (A2f)

ξ
(0)
yy,0 = ε⊥

√
1 + v. (A2g)

These formulas are identical to the ones presented in
Ref. [23], even if the notation is slightly different. For the
TM21 and TM22 approximations, we also need the first- and
second-order Fourier components, which are as follows:

β (1)
zx = β (1)

xz ≈ iγxy

ε⊥
√

1 + v

[
1 + 3

4
(1 − 3γv )α2

E

]
, (A3a)

β (1)
zy = β (1)

yz ≈ iγ 2
v vαE, (A3b)

η(1)
zz ≈ − 1

ε⊥

vγ 2
v αE√

1 + v
, (A3c)

ξ (1)
xx ≈ −γxxαE, (A3d)

ξ (1)
xy = ξ (1)

yx ≈ −γxy

[
1 −

(
9

4
γv − 1

)
α2

E

]
, (A3e)

ξ (1)
yy ≈ −γyyαE, (A3f)
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β (2)
zx = β (2)

xz ≈ − iγxy

ε⊥
√

1 + v
(1 − 3γv )αE, (A3g)

β (2)
zy = β (2)

yz ≈ −iγ 2
v v

[
1 + (1 − 4γv )α2

E

]
, (A3h)

η(2)
zz ≈ 1

ε⊥

vγ 2
v√

1 + v

[
1 + (1 − 4γv )α2

E

]
, (A3i)

ξ (2)
xx ≈ γxx

[
1 + (1 − 4γv )α2

E

]
, (A3j)

ξ (2)
xy = ξ (2)

yx ≈ γxy (1 − 3γv )αE, (A3k)

ξ (2)
yy ≈ γyy

[
1 + (1 − 4γv )α2

E

]
. (A3l)
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