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Fractal aggregation of active particles

M. Paoluzzi,* M. Leoni, and M. C. Marchetti†

Physics Department and Syracuse Soft & Living Matter Program, Syracuse University, Syracuse, New York 13244, USA

(Received 8 July 2018; published 7 November 2018)

We study active run-and-tumble particles in two dimensions with an additional two-state internal variable
characterizing their motile or nonmotile state. Motile particles change irreversibly into nonmotile ones upon
collision with a nonmotile particle. The system evolves towards an absorbing state where all particles are
nonmotile. We initialize the system with one nonmotile particle in a bath of motile ones and study numerically the
kinetics of relaxation to the absorbing state and its structure as a function of the density of the initial bath of motile
particles and of their tumbling rate. We find a crossover from fractal aggregates at low density to homogeneous
ones at high density. The persistence of single-particle dynamics as quantified by the tumbling rate pushes this
crossover to a higher density and can be used to tune the porosity of the aggregate. At the lowest density the
fractal dimension of the aggregate approaches that obtained in single-particle diffusion-limited aggregation. Our
results could be exploited for the design of structures of desired porosity. The model is a first step towards the
study of the collective dynamics of active particles that can exchange biological information.
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I. INTRODUCTION

Self-propelled entities, from active colloids to motile bac-
teria, show rich collective dynamics and emergent patterns
[1–3]. In these systems transient or permanent spatial struc-
tures form spontaneously from the interplay of motility and
interactions, as, for instance, in the phenomenon of motility-
induced phase separation [4], in collections of rotors [5,6],
and in swarms of programmable robots [7]. Activity can also
be controlled with external perturbations, such as light [8],
allowing the possibility of controlling active assembly. Living
systems, from bacterial suspensions to tissues, can be thought
of as collections of motile active particles that can additionally
carry and exchange biological information or alter their phe-
notypic or genetic state. Study of the collective dynamics of
such information-carrying active particles has just begun [9]
and is of great importance for biology [10]. Such information
transfer is clearly important for understanding the evolu-
tionary behavior of bacterial species [11] or for regulating
intra- and intercellular biochemical signaling in multicellular
aggregates. Early work on active gels has modeled this via the
interplay of activity and diffusion of molecular species [12].

In this paper we study a minimal model of active particles
with run-and-tumble dynamics in two dimensions and an ad-
ditional, two-state, internal variable σ that describes the state
of motion: the particles can be motile (σ = 1) or nonmotile
or “dead” (σ = 0). Motile particles change their motility state
irreversibly upon collision with nonmotile ones. The system
therefore evolves towards the absorbing state where σ = 0 for
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all particles [13]. The model is relevant to the spreading of in-
fectious diseases that require person-to-person contacts [14].
Most previous work in this field has focused on the role of the
degree of separation between individuals and has considered
spreading dynamics on a network, with the focus on under-
standing the role of the topological properties of the network,
especially its connectivity, in controlling disease propaga-
tion [15,16]. In the present work, in contrast, we focus on the
role of the dynamics of individual agents in controlling the
spread of infection. Our model may also have some relevance
to biofilm formation [17,18] and to population dynamics [19].
In the latter context the growing boundary of the σ = 0 state
represents the frontier of an expanding population [20].

The model considered here is a variant of multiparticle
diffusion-limited aggregation (DLA) [21,22]. In the classic
single-particle DLA process individual particles are added to
the system one at a time and perform a random walk, until
they reach the boundary of the aggregate and become part
of the cluster [23,24]. A new particle is added only after
the previous one has joined the cluster. In two dimensions
(d = 2) this yields a fractal cluster with fractal dimension
df = d − η and η � 0.3. The two-point correlation function
of the aggregate decays as a power law ∼r−η. Starting with
the seminal paper by Witten and Sander [23], several findings
about the morphological properties of DLA aggregates have
been explored in great detail [25–28].

In the multiparticle DLA, the aggregate growth takes place
in a bath of Brownian particles with a small fraction of seed
particles taken to be initially part of the cluster. Multiparticle
DLA on a lattice was studied in Refs. [21,22] as a function of
the concentration of bath particles. It was found that at a low
bath concentration the aggregate structure resembled the one
obtained in single-particle DLA, while a higher concentration
led to more compact clusters.

In this paper we consider an off-lattice model of mul-
tiparticle aggregation where the bath particles undergo
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run-and-tumble dynamics, moving ballistically at speed v0,
with the direction of motion randomized at the tumbling rate
λ. By tuning λ the single-particle dynamics changes from
diffusive in the limit λ → ∞, with v2

0/λ finite [29], as imple-
mented in conventional DLA, to ballistic in the limit λ → 0,
as studied in models of ballistic aggregation [30,31]. Unlike
in models of single-particle ballistic aggregation (see, e.g.,
Ref. [32]), here we do not obtain compact aggregates with
a fractal dimension equal to the dimensionality of space even
for λ = 0. The reason is that collisions cause the particles’
trajectories to deviate from straight runs, generating a finite
λeff (φ). We expect λeff (φ) to vanish with vanishing density,
resulting in compact aggregates for ballistic single-particle
dynamics (λ = 0). This regime is difficult to probe, however,
as it requires very long run times and large system sizes. We
find that the structure of the final cluster is mainly controlled
by the initial concentration of motile particles. The tumbling
rate promotes the formation of homogeneous aggregates, with
an effect similar to that of increasing the random-walk step
size in DLA models [33]. It also has a profound effect on
the time for relaxation to the absorbing state, and increasing
λ greatly accelerates the dynamics. This result suggests that
microorganisms like bacteria may take advantage of run-and-
tumble dynamics to speed up aggregation and promote biofilm
formation.

II. MODEL

The model is designed to study the effect of activity on
multiparticle aggregation processes in two spatial dimensions.
We consider N disks of diameter a in a square box of
side L with periodic boundary conditions in two dimensions.
All particles interact with short-ranged repulsive interactions.
Initially the system contains a small fraction of nonmotile
particles (one particle in the simulations), while all other
particles are motile and perform run-and-tumble dynamics.
The motile particles switch to a nonmotile or “dead” state
upon collision with a nonmotile particle. At long times the
final state will of course be one where all particles are dead.
The scope of our work is to quantify the structural properties
of the final state and the influence of activity on the kinetics
of the aggregation process. The state of particle i, with i =
1, . . . , N , is characterized by the position ri , a unit vector ei

that specifies the direction or motion during the run phase,
and the internal state variable σi , with σi = 0 for nonmotile
particles and σi = 1 for motile ones.

The dynamics of motile particles is overdamped and gov-
erned by the stochastic equation for the translational ve-
locity vi = ṙi and the angular velocity ωi = ṙi ∧ ei given
by [34–36]

vi = v0eiσi (1 − τi ) + μ
∑

i �=j

f (rij ),

(1)
ωi = tr

i τi σi .

In (1), rij ≡ |ri − rj |, τi is an auxiliary state variable, with
τi = 0 during the run and τi = 1 during the tumble, and
μ = 1 is the mobility. During a tumble, particle i acquires
a random torque tr

i that rotates the direction of ei . Tumbles
are Poissonian distributed at a rate λ. The particles interact
mechanically through purely repulsive, short-ranged, forces
f (r) = −∇rV (r ) with V (r ) = ε0

12 ( a
r

)12. In the following we
consider ε0 = 1 .

The state variable σi evolves according to a deterministic
rule: when the distance between particle i and particle j at
time t is less than δ = 4

3a, we update the state of both particles
by letting σi,j (t + dt ) = σi (t ) · σj (t ).

We have solved Eqs. (1) numerically using a second-order
Runge-Kutta scheme with time step dt =10−3 for v0 =1.
The simulations are carried out for a maximum of 5 × 106

steps. We perform numerical simulations exploring different
values of the tumbling rate λ∈ [10−3, 1] and of the packing
fraction φ = ρ0π (a/2)2 ∈ [5 × 10−2, 0.72], with ρ0 = N/L2

the mean number density. The values of φ are spanned by
varying the number of particles N = 102–1202 at fixed L.
Most of the results presented here have been obtained for
system sizes L=120a. We have also examined the depen-
dence of our results on the system size considering L = 180a

and 240a. Finally, we have considered an average over 50
independent runs.

III. RESULTS

All our simulations start with one seed nonmotile particle
in state σi =0, embedded in a sea of N − 1 particles with
σj =1 for i �= j . The final state, of course, is one where
σi =0,∀i. To characterize the dynamics we evaluate the time
evolution of the fraction of nonmotile particles, f (t ) = 1 −
N−1 ∑

i σi (t ), which is 1 when the system reaches the absorb-
ing state, i.e., σi = 0,∀i.

FIG. 1. Snapshots of the absorbing state obtained as the final step of our numerical simulation. The aggregates are homogeneous at high
densities and porous, with a fractal structure, at lower densities. For φ below about 0.1 the aggregates no longer fill the box and display the
properties of single-particle DLA.
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FIG. 2. (a) Fractal dimension df of the absorbing state as a function of the packing fraction φ for tumbling rates ranging from λ = 0.001
(orange) to λ = 1 (dark blue). Error bars are smaller than the symbols. Horizontal dotted blue and black lines correspond to df = 1.74 and
df = 2, respectively. (b) The color shows the fractal exponent df of the absorbing state according to the scale indicated identifying various
regimes in the φ-versus-λ plane. Dotted blue and black lines correspond to df = 1.74 and df = 2, respectively. Dotted red and green lines
represent df = 1.8 and df = 1.95.

A. Structure of the absorbing state

In Fig. 1 we show snapshots of the final state of nonmotile
particles at the end of the simulations as a function of the
packing fraction φ and tumbling rate λ. The seed particle
is always at the center of the box. At high densities the
particles fill the space uniformly and the spatial dimension
of the particle aggregate matches the Euclidean dimension.
The value df = 2 is chosen as defining the crossover from
fractal to homogeneous structures. At lower densities, the
system self-assembles in porous fractal patterns. The struc-
ture of the final state is quantified by evaluating the fractal
dimension of the final nonmotile aggregate and the two-point
correlation function. To calculate the Minkowski-Bouligand
dimension we divide space in a square grid of linear size ε.
The fractal dimension is then defined by evaluating df (ε) =
ln N (ε)/ ln ε−1, where N (ε) is the number of grid points that
are occupied by particles. The fractal dimension df is defined
as the slope of the linear plot of ln N (ε) versus ln ε [37]. The
results are shown in Fig. 2(a). We have also verified that the
fractal dimension computed using more general definitions
(e.g., information and correlation dimensions [28,37]) agrees
with that obtained from box counting.

The fractal dimension depends only weakly on the tum-
bling rate. We identify three distinct behaviors as a function
of the packing fraction. At large packing fractions the final
state is homogeneous, with df = 2. At intermediate packing
fractions the final aggregate has a porous structure, with df

decreasing continuously from df = 2 to the value df = 1.74
(in the limit of large system sizes),which characterizes fractal
aggregates obtained in single-particle DLA. At packing frac-
tions below about 0.1 the aggregates are fractal and compact,
in the sense that they do not span the system size. A more
quantitative version of the phase diagram in the (φ, λ) plane
is shown in Fig. 2(b). A similar behavior as a function of the
packing fraction of the bath particles (here motile) has been
obtained in lattice models of multiparticle DLA [21,22]. In
our work the persistence of the dynamics as quantified by the

tumbling rate provides an additional knob for tuning the struc-
ture of the final state. Lower tumbling rates, corresponding to
more persistent dynamics, enhance the fractal structure of the
aggregate by pushing the porous region to a higher density.

To further quantify the structural properties of the absorb-
ing state, we have calculated the static structure factor S(k),
defined as [38]

S(k) = 1

N

˝∣∣∣∣∣∣

N∑

j=1

e−irj ·k

∣∣∣∣∣∣

2˛
, (2)

where the angular brackets indicate an average over inde-
pendent final configurations. The behavior of S(k) is shown
in Fig. 3(a) for λ = 1, and packing fractions in the range
φ = 0.08–0.54. Since in the absorbing state the particles are
always in contact, S(k) shows a pronounced peak at kpeak =
2π/a even for a low initial motile particle density. Counter-
intuitively, the height of the peak increases with decreasing
density, consistent with the growth of the correlation length
shown in Fig. 3(b). As in colloidal aggregation (see, for
instance, [39]) and DLA [40,41], we expect the structure
factor of the final aggregate to obey a scaling ansatz of
the form S(k) ∼ ξ 2F (kξ ), where F (x) is a universal scal-
ing function, with F (x → 0) = constant and ξ = ξ (φ, λ) a
correlation length that depends on the model’s parameters.
At intermediate wave vectors the structure factor exhibits
power-law behavior, S(k) ∼ k−df , as shown in Fig. 3(a) for
one packing fraction value (see dashed red line). At high
densities, where the absorbing state spans the entire system
and is uniform, the scaling exponent df is replaced by the
system’s dimensionality d = 2, the correlation length is of
order a and the structure factor is well approximated by an
Ornstein-Zernike form, S(k) = ξ 2S0[1 + (ξk)2]−1, with S0

and ξ as fitting parameters, as shown by the dashed green
line in Fig. 3(a) for φ = 0.44. At lower densities, where the
structure becomes porous and fractal, the correlation length
increases as the density decreases and one observes power-law
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FIG. 3. (a) Static structure factor S(k) as a function of k for
λ = 1 and densities ranging from φ = 0.08 (dark-blue symbols) to
φ = 0.54 (yellow symbols). The black arrow indicates the direction
of increasing packing fraction of the initial bath of motile parti-
cles. The green line is a fit to the Ornstein-Zernike form S(k) =
ξ 2S0[1 + (ξk)2]−1 for φ = 0.44, corresponding to ξ = 7.1 ± 0.6.
This value is in agreement with the estimate of ξ made through
Eq. (3) [see (b)]. The red line is a fit to the power law S(k) ∼
k−df , with df = 1.9 ± 0.3 for φ = 0.087. Considering the statistical
error, the value obtained from the power law is consistent with
the fractal dimension computed through the box counting method.
(b) Correlation length ξ in units of box side L for several values:
λ = 0.001, 0.01, 0.1, and 1. The correlation lengths are computed
through Eq. (3), i.e., without any fitting parameter. The green curve
is a fit to ξ ∼ (φ − φDLA)−ν , with ν = 1.7 ± 0.2. The data have large
error bars. Values of ξ larger than L are due to statistical error.

behavior, S(k) ∼ k−df , over a broad range of wave vectors.
The correlation length extracted from S(k) is shown as a
function of the packing fraction φ for various tumbling rate
values in Fig. 3(b). The correlation length ξ has been calcu-
lated by computing the second moment of the structure factor
according to [42]

ξ 2 = − ∂ ln S(k)

∂k2

∣∣∣∣
k2=0

. (3)

It shows a clear growth with decreasing density, as long as
the size Rg of the fractal structure is comparable to the size L

of the box. Below packing fractions φDLA ∼ 0.1, where one
obtains DLA-type behavior, Rg < L and ξ ∼ Rg decreases
with decreasing φ. The increase in ξ with decreasing density
for φ > φDLA can be fit by ξ ∼ (φ − φDLA)−ν , where ν =
1.7 ± 0.2. In the porous regime, the correlation length ξ cor-
responds to the characteristic length scale of the self-similar
structures, i.e., it quantifies the aggregate’s porosity.

B. Aggregation kinetics

The relaxation to the absorbing state is best displayed
in terms of the growth of the fraction f (t ) of nonmotile
particles, shown in Fig. 4. At high densities the behavior is
well described by an exponential growth as obtained from the
solution of a logistic equation [20], given by

∂tf = 1

τ
f (1 − f ), (4)

with τ the collision time, and the solution

f (t ) = f0

f0 + (1 − f0)e−t/τ
, (5)

where f0 = f (t = 0) is the initial fraction of nonmotile
particles (in the numerics, we set f0 = 0.01). The logistic
model fails, however, at lower densities where spatial inho-
mogeneities are important [see Fig. 4(a)]. In this case the
long-time dynamics is best described by a power law, with
f (t ) ∼ tγ (φ,λ). The nonuniversal exponent γ approaches 1
at low densities [see inset in Fig. 4(a)]. The main effect of
activity, compared to the Brownian dynamics considered in
Refs. [21,22], is to accelerate the approach to the absorbing
state [see Fig. 4(c)].

We show in Figs. 4(b) and 4(c) the relaxation time τ ,
defined as the time needed for the system to reach the final
configuration where σi = 0, ∀i, i.e., f (τ ) = 1. The relaxation
time decreases with increasing density and becomes indepen-
dent of λ at high densities. This crossover is most evident
in Fig. 4(c), which shows τ as a function of the tumbling
rate for a range of densities. This behavior can be understood
qualitatively as a crossover from persistent (or active) to
Brownian dynamics using the following simple argument.
The mean square displacement MSD(t ) = 〈[
r (t ) − 
r (0)]2〉 of
an individual particle performing run-and-tumble dynamics
displays a crossover from ballistic behavior MSD(t ) = v2

0 t
2

for t < λ−1 to diffusive behavior MSD(t ) = 4Dt for t < λ−1,
with D = v2

0/(2λ) an effective diffusivity [43]. The dynamics
can be characterized by an associated persistence length �p =
v0/λ over which individual particles travel ballistically in
a straight line. The time scale τ controlling collisions that
transform motile particles into nonmotile ones can then be
estimated by MSD(τ ) = φ−1, where φ−1/2 is the mean sep-
aration between particles. When �p > φ−1/2, the dynamics is
ballistic and this gives v2

0τ
2 ∼ φ−1, or τ ∼ φ−1/2 independent

of λ, as shown in Fig. 4(c). When �p > φ−1/2 the dynamics is
diffusive, with the result Dτ ∼ φ−1 or τ ∼ λ/φ. The results
shown in Figs. 4(b) and 4(c) are qualitatively consistent with
this simple argument.
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FIG. 4. (a) Increase in the fraction of nonmotile particles with
time for an increasing packing fraction in the porous regime (φ =
0.05–0.44) for λ = 1. Dashed red curves are fits to the logistic form
given in Eq. (5), with τ a fitting parameter. Dashed black lines are
fits to f ∼ tγ . Inset: Nonuniversal exponent γ as a function of the
packing fraction φ. (b) Relaxation time τ defined as f (τ ) = 1 as
a function of φ at different values of the tumbling rate λ. Dashed
red and blue lines are fits to the φ−1/2 and φ−1 behavior derived
in the text. The vertical cyan line denotes the value of the packing
fraction below which the fractal aggregate dimension is dDLA = 1.74.
(c) Relaxation time τ as a function of the tumbling rate λ for a range
of packing fractions φ = [5 × 10−2, 0.72]. The dashed black line
has slope 1. The figure clearly displays the crossover from a regime
where the dynamics is ballistic at small λ and τ is independent of
λ to one where the dynamics is Brownian and τ increases with λ.
The crossover takes place at increasing values of λ as the density
increases.

IV. CONCLUDING REMARKS

We have examined the collective dynamics of repulsive
run-and-tumble particles that exchange motility state upon

contact and evolve irreversibly towards an absorbing steady
state of nonmotile particles. The structure of the absorbing
state changes from fractal to homogeneous as the density
of the initial bath of motile particles increases—a behavior
qualitatively similar to that previously observed in models of
multiparticle DLA [21,22]. The aggregates evolve from frac-
tals at low densities and high tumbling rates, as in diffusion-
limited aggregation [23], to homogeneous structures, as is
typical of clusters in Eden’s models [44]. The persistence
of the dynamics controlled by the tumbling rate provides
a new knob for tuning the structure of the aggregate, with
persistence accelerating the relaxation and promoting uniform
structures.

By examining both the structure of the absorbing state and
the relaxation dynamics when varying the packing fraction,
φ, of the initial bath of run-and-tumble particles and their
tumbling rate, λ, we identify three regimes:

(i) At low densities (φ < φDLA ∼ 0.1) the absorbing state
is a fractal with dimension df � 1.74 as in single-particle
DLA. In this regime the correlation length is bound by the
size Rg < L of the cluster: it increases with the density and
it approaches the system size L as φ approaches φDLA from
below. The persistence of the single-particle dynamics renders
φDLA a weak function of λ, pushing it to a lower density with
increasing persistence.

(ii) At intermediate densities the aggregate is a space-
filling porous structure of fractal dimension growing smoothly
from df = 1.74 to df = 2 with increasing density. The relax-
ation to the absorbing state is power law, with a nonuniversal
exponent. Persistence of the single-particle dynamics accel-
erates the relaxation and promotes the formation of homoge-
neous aggregates.

(iii) At high densities the final aggregate is homogeneous
with fractal dimension df = 2. In this regime the relaxation
to the absorbing state is exponential and well described by a
simple logistic model.

Our model provides a first step towards the study of the
effects of motility on population dynamics [45–47]. In this
context it will be interesting to allow for processes where
motile particles can be reactivated or ‘reawakened’ after a
lag time. Our preliminary work on such more general models
suggests a rich behavior with the possibility of survival of a
population of motile particles in the steady state. It may be
possible to test our predictions regarding the role of persis-
tence of the single-particle dynamics in tuning the structure
of the steady-state aggregates by employing light to locally
affect the tumbling rate of genetically modified swimming
bacteria [48,49]. The mechanism described here could also be
exploited to use active colloids, where persistence is tuned by
rotational diffusion, to design and assemble microstructures
of the desired porosity for technological and biomedical ap-
plications.
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