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Dynamic magnetic response of a ferrofluid in a static uniform magnetic field
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A theory for the frequency-dependent magnetic susceptibility of a ferrofluid in a static uniform magnetic field
is developed, including the dipolar interactions between the constituent particles. Interactions are included within
the framework of modified mean-field theory. Predictions are given for the linear responses of the magnetization
to a probing ac field both parallel and perpendicular to the static field and are tested against results from
Brownian dynamics simulations. The effects of the particle concentration and dipolar coupling constant on the
field-dependent static susceptibilities and the frequency dispersions are shown to be substantial, which justifies
taking proper account of the interactions between particles. The theory is reliable provided that the volume
concentration and dipolar coupling constant are not too large and within the range of values for real ferrofluids.

DOI: 10.1103/PhysRevE.98.052602

I. INTRODUCTION

One of the defining characteristics of magnetic fluids is
the ability to control the physical properties of the material
by the application of uniform and nonuniform magnetic fields.
The interaction between the constituent magnetic particles
and the applied field can cause dramatic changes in the
structural organization of the particles within the nonmagnetic
carrier fluid, and this results in substantial changes in the
optical and magnetic properties, the dynamical quantities
such as viscosity, and the thermodynamic functions [1,2].
A particularly important example of such a system is a fer-
rofluid, in which the magnetic nanoparticles—roughly 10 nm
in diameter—are ferromagnetic, meaning that the magnetic
dipole moment reorients mainly due to Brownian rotational
motion of the particle as a whole. Smaller nanoparticles
exhibit superparamagnetism, in which the magnetic dipole
moment flips through the Néel mechanism [2].

Ferrofluids have been studied extensively, both experi-
mentally and theoretically, and the literature is vast. From
the theoretical point of view, the static and thermodynamic
properties of ferrofluids can be predicted quite reliably; for
a recent review, see Ref. [3]. In this work, the focus is on
the response of a ferrofluid to a weak ac magnetic field,
while the system is magnetized by a static magnetic field.
The linear response to the probing ac field is characterized by
the frequency-dependent susceptibility spectrum. The suscep-
tibility spectrum is an important physical property, because its
imaginary (out-of-phase) part controls the power dissipation
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in the ferrofluid [4]. The dissipation of heat can be exploited in
the medical treatment of diseased tissue by localized heating
(hyperthermia) [5–9], and it is important for developing new
applications to understand how material parameters control
the power loss [10–12].

In the absence of dipole-dipole interactions, and in the
presence of only the probing ac field, the mathematical
problem of computing the susceptibility spectrum is rather
straightforward. The general approach is based on solving
the Fokker-Planck-Brown equation for the one-particle ori-
entational distribution function [13,14]. The results are fa-
miliar as the Debye theory of polar media [15,16], which
gives simple closed-form expressions for the susceptibility
spectrum in terms of the Brownian rotation time and the static
(Langevin) susceptibility. Many attempts have been made to
include the effects of dipole-dipole interactions [17–22]. In
recent work by some of the current authors, an approach
based on the so-called modified mean-field theory [23] was
developed to enable interactions to be included in a systematic
way, based on classical statistical mechanics [24,25]. This
is a perturbation theory, and so far, only the leading-order
corrections have been incorporated in the dynamical case.
Tests against Brownian dynamics (BD) simulations have been
used to determine the range of applicability of the theory, in
terms of material parameters such as the particle concentration
and the strength of the dipole-dipole interactions [26–28].

In the presence of a static field, the problem becomes rather
more complicated [29,30]. First, there are two susceptibility
spectra, corresponding to the probing ac field being either
parallel or perpendicular to the static field. Second, the math-
ematical analysis of the dynamics leads to the identification of
a spectrum of time scales, even though in practice the longest
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time scale may be sufficient. In a lot of experimental work, the
theoretical expressions for noninteracting systems have been
used to analyze measured properties [31–33]. So far, there is
no theory for the dynamics of a system in a static field that in-
cludes the effects of dipole-dipole interactions. The aim of the
current work is to fill that gap using the modified mean-field
approach and to test the predictions against numerical results
from BD simulations. An outline of the theoretical framework
for noninteracting systems has already been published [34],
and this paves the way for including interactions.

The rest of this article is organized as follows. The ba-
sic microscopic model and some elementary properties of
noninteracting systems are outlined in Sec. II A. The theory
is detailed in Secs. II B and II C, organized in terms of the
probing ac field being, respectively, parallel and perpendicular
to the static field. The technical details in the two cases are
different, but for clarity, the derivations are organized in the
same way, as far as possible. Section II D describes the BD
simulations. The results are presented in Sec. III, and Sec. IV
concludes the article.

II. MODEL, THEORY, AND SIMULATIONS

A. Model and basic properties

The system is modeled as a suspension of N spherical mag-
netic particles with equal diameters σ and dipole moments
μ, immersed in a structureless fluid at temperature T with
viscosity η and total volume V . The short-range interactions
can be either of the hard-sphere form or, more conveniently
for BD simulations, given by the Weeks-Chandler-Andersen
potential,

us
ij =

⎧⎪⎨
⎪⎩

4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

+ ε, rij � rmin,

0, rij > rmin,

(1)

where ε is the Lennard-Jones energy parameter, rij is the
separation between particle i and particle j , and rmin = 21/6σ

is the position of the minimum in the Lennard-Jones potential.
The dipole-dipole interaction potential is

ud
ij = μ0

4π

[
(μi · μj )

r3
ij

− 3(μi · r ij )(μj · r ij )

r5
ij

]
, (2)

where μ0 is the vacuum permeability, μi =
μ(sin θi cos φi, sin θi sin φi, cos θi ) is the dipole moment on
particle i, and r ij = rj − r i is the separation vector between
particle i and particle j . The strength of the dipole-dipole
interactions is characterized by the dipolar coupling constant

λ = μ0μ
2

4πσ 3kBT
, (3)

where kB is Boltzmann’s constant. A static external magnetic
field of strength Hz is applied in the z direction. The Langevin
parameter characterizing the strength of the dipole-field inter-
action −μ0(μ · H ) is

αz = μ0μHz

kBT
. (4)

The potential energy of a single dipole, i, in units of the
thermal energy kBT is

Ui

kBT
= 1

kBT

N∑
j �=i

(
us

ij + ud
ij

) − αz cos θi . (5)

For noninteracting particles, the magnetization curve is given
by the simple Langevin law

M id
z (Hz) = ρμL(αz), (6)

where ρ = N/V is the number concentration of particles
in the system, and L(t ) = coth t − t−1. The Langevin static
susceptibility is

χL = ρμ0μ
2

3kBT
= 8ϕλ, (7)

where ϕ = πρσ 3/6 is the volume fraction. Elementary calcu-
lations give the field-dependent susceptibilities both perpen-
dicular (xy) and parallel (z) to the applied static magnetic
field:

χ id
xy (0) = 3χL

(
coth αz

αz

− 1

α2
z

)
= 3χLL(αz)

αz

, (8)

χ id
z (0) = 3χL

(
1 − coth2 αz + 1

α2
z

)
= 3χLL1(αz). (9)

A function L1(t ) = dL/dt is defined in Eq. (9). The dynam-
ical properties are considered theoretically in the following
two sections, and the frequency-dependent susceptibility of
a ferrofluid in a static magnetic field is determined, taking
into account interactions between the constituent particles.
For technical reasons, it is convenient to treat two cases
separately: first, the case where the probing ac field is parallel
to the static field (Sec. II B); and second, the case where the
probing ac field is perpendicular to the static field (Sec. II C).
As far as possible, the same notation is used in each section
to highlight the similarities between the derivations, but the
details are different. In each case, results for noninteracting
systems are outlined first [34], and then the effects of interac-
tions are described.

B. Dynamical properties: The frequency-dependent
susceptibility parallel to a static magnetic field

The ferrofluid is contained in a long, cylindrical tube
oriented along the z axis. The magnetic field applied to the
ferrofluid is of the form

H = (0, 0,Hz + heiωt ), (10)

where the probing ac field strength h is low. Note that the
static field causes a net magnetization of the sample and that
the weak, time-dependent, probing field causes a perturba-
tion to the magnetization, which is used only to define the
frequency-dependent susceptibility within the linear-response
regime. Because the applied and probing fields are parallel to
the symmetry axis of the cylindrical container, there are no
demagnetization effects. Due to the symmetry of the system,
the orientation of each dipole need only be described with
the polar angle θ . The probability distribution function of θ
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is denoted W (θ, t ) and is a solution of the Fokker-Planck
equation

2τB
∂W

∂t
= 1

sin θ

∂

∂θ

[
sin θ

(
∂W

∂θ
+ W

kBT

∂U

∂θ

)]
, (11)

where U is the potential energy of a dipole. τB is the Brownian
rotational time, given by

τB = 1

2Drot
= πησ 3

2kBT
, (12)

where Drot is the rotational diffusion coefficient. In previous
work [29,30], the dynamics of the magnetization parallel to
the applied field were found to be controlled by a spectrum of
relaxation times, the longest of which is

τ‖ =
[
αzL1(αz)

L(αz)

]
τB, (13)

which in small fields reduces to τ‖ = (1 − 2
15α2

z )τB. The imag-
inary part of the susceptibility spectrum would be expected to
show a peak at a frequency �‖ � τ−1

‖ , which increases with
increasing field strength.

1. Noninteracting particles

In the absence of interparticle interactions—denoted the
ideal (id) case—such as at low concentrations, the potential
energy of a dipole in units of kBT is simply

U

kBT
= −(αz + αeiωt ) cos θ, (14)

where the dipole label is omitted, and α = μ0μh/kBT is the
Langevin parameter for the probing ac field in the z direction.
Within the linear-response regime, where α � 1, the solution
of Eq. (11) can be expressed in the following form:

W id (θ, t ) =
(

αz

sinh αz

)
eαz cos θ + αeiωt

∞∑
n=0

Zid
n Pn(cos θ ).

(15)

The first term on the right-hand side is the unnormalized
equilibrium Boltzmann distribution, and the second term is
the perturbation introduced by the probing ac field. Inserting
Eq. (15) into Eq. (11), linearizing the equation to first order in
α, and using the orthogonality of the Legendre polynomials
Pn gives a recurrence relation for the coefficients Zid

n ,

−Zid
n−1

[
αzn(n + 1)

2n − 1

]
+ Zid

n [n(n + 1) + 2iωτB] + Zid
n+1

[
αzn(n + 1)

2n + 3

]
= −

(
2n + 1

2

)
Fn(αz), (16)

with Zid
0 = 0 and where

Fn(a) =
( a

sinh a

) ∫ 1

−1
Pn(x)

d

dx
[eax (1 − x2)]dx. (17)

Equation (16) shows that the coefficients depend on αz and ω.
Explicit expressions for Zid

n can be determined by truncating
the sum in Eq. (15) at some arbitrary order n = k, setting
Zid

n>k = 0, and solving the set of k algebraic equations. Once
W id is determined, the magnetization is given by

M id
z (t ) = 1

2
ρμ

∫ 1

−1
W id (θ, t ) cos θ d cos θ

= 1

2
ρμ

∫ 1

−1

[(
αz

sinh αz

)
eαzx + αeiωtZid

1 P1(x)

]
x dx

= ρμL(αz) + χLheiωtZid
1 , (18)

where Zid
1 is the only coefficient that appears because∫ 1

−1 xPn(x) dx = 2
3 for n = 1 and 0 otherwise. The frequency-

dependent susceptibility is

χ id
z (ω) = ∂M id

z

∂ (heiωt )
= χLZid

1 , (19)

which shows that Zid
1 is the key coefficient, although it

depends on higher-order coefficients through the recurrence
relation in Eq. (16). In this work, Eq. (15) is truncated at n =
5, i.e., Zid

n>5 = 0. The solution of the five algebraic equations
is tedious, and the essential details are given in Appendix
A; but it is stressed once again that all of the coefficients
depend on both αz and ω, and in particular, the first coefficient
is written Zid

1 = G(αz, ωτB), where G has the property that

G(0, 0) = 1. In the zero-frequency limit (ωτB → 0), the static
susceptibility is given by

χ id
z (0) = χLG(αz, 0), (20)

G(αz, 0)

= 3

[
L(αz)

(
α4

z + 180α2
z + 2475

) − 6αz

(
3α2

z + 110
)

αz

(
α4

z + 60α2
z + 495

)
]
.

(21)

This is an approximate equation arising from the truncation of
Eq. (15), and a comparison between this and the exact formula
in Eq. (9) is made in Sec. III A. In the limit αz → 0, G(0, 0) =
1, and the correct Langevin initial susceptibility is obtained.

2. Interacting particles

Following earlier work [24], interactions between particles
are described by an effective field acting on each particle. This
is achieved within the framework of the first-order modified
mean-field (MMF1) theory [23–25]. In brief, this approxima-
tion is based on the interaction energy for dipole 1 in Eq. (5)
being written

U1

kBT
= − ρ

kBT

〈
W id (θ2, t )ud

12�(r12 − σ )
〉
2 − αz cos θ1, (22)

where � is the Heaviside function representing the impene-
trability of particles 1 and 2. The angle brackets denote an
integration over the position and orientation of particle 2:

〈f12〉2 = 1

4π

∫
dr2

∫ 1

−1
d cos θ2

∫ 2π

0
dφ2 f12. (23)
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The approximation is that the pair correlation func-
tion between particle 1 and particle 2—which deter-
mines the total interaction energy—is written g12 =
W (θ1, t )W id (θ2, t )�(r12 − σ ), leading to the factorization ap-
parent in Eqs. (11) and (22). Inserting Eq. (15) gives, for the
potential-energy function in the Fokker-Planck equation,

U

kBT
=−

[
αz + χLL(αz) + αeiωt

(
1 + 1

3
χLZid

1

)]
cos θ,

(24)

where the label ‘1’ is now omitted. As before, assuming that
the probing ac field is small (α � 1), the solution of Eq. (11)

can be written as

W (θ, t ) =
(

ᾱz

sinh ᾱz

)
eᾱz cos θ + αeiωt

∞∑
n=0

ZnPn(cos θ ), (25)

where

ᾱz = αz + χLL(αz) (26)

is an effective static Langevin parameter. The first term on the
right-hand side is the unnormalized equilibrium Boltzmann
distribution at the MMF1 level [23]. Following the same
procedure as in Sec. II B 1, the linearized solution of Eq. (11)
leads to the following recurrence relation between the new
coefficients Zn:

−Zn−1

[
ᾱzn(n + 1)

2n − 1

]
+ Zn[n(n + 1) + 2iωτB] + Zn+1

[
ᾱzn(n + 1)

2n + 3

]
= −

(
2n + 1

2

)
Fn(ᾱz)

(
1 + 1

3
χLZid

1

)
. (27)

As before, Z0 = 0 and the sum in Eq. (25) is truncated at n =
5, with Zn>5 = 0. The solution of the five algebraic relations
gives for the first coefficient

Z1 = G(ᾱz, ωτB)

(
1 + 1

3
χLZid

1

)
, (28)

where both Z1 and Zid
1 depend on the same function G, but

with the effective and bare applied static fields, respectively.
The magnetization and frequency-dependent susceptibility
follow from equations similar to Eqs. (18) and (19), respec-
tively, with the results

Mz(t ) = ρμL(ᾱz) + χLheiωtZ1, (29)

χz(ω) = χLZ1. (30)

In the zero-frequency limit (ωτB → 0), the magnetization
curve and static susceptibility are given by

Mz = ρμL(ᾱz), (31)

χz(0) = χLG(ᾱz, 0)

[
1 + 1

3
χLG(αz, 0)

]
, (32)

where G(a, 0) was defined in Eq. (21). In the limit αz → 0,
G(0, 0) = 1, and the familiar MMF1 result for the initial
susceptibility χL(1 + χL/3) is recovered [23].

C. Dynamical properties: The frequency-dependent
susceptibility perpendicular to a static magnetic field

The development closely mirrors that in Sec. II B. To em-
phasize this, the same symbols are used here as far as possible,
but of course the definitions are different. The ferrofluid is
contained in a long, cylindrical tube oriented along the y axis.
The magnetic field applied to the ferrofluid is of the form

H = (0, heiωt , Hz), (33)

where the weak, time-dependent, probing field causes a small
magnetization in the y direction, which is used only to de-
fine the frequency-dependent susceptibility within the linear-
response regime. Demagnetization fields in the y direction are

absent, but those in the z direction must be taken into account
when interactions between particles are included (Sec. II C 2).
The orientation of each dipole is characterized by the polar an-
gle θ and the azimuthal angle φ. The Fokker-Planck equation
for the probability distribution function W (θ, φ, t ) is

2τB
∂W

∂t
= 1

sin θ

∂

∂θ

[
sin θ

(
∂W

∂θ
+ W

kBT

∂U

∂θ

)]

+ 1

sin2 θ

∂

∂φ

(
∂W

∂φ
+ W

kBT

∂U

∂φ

)
. (34)

In Refs. [29] and [30], the longest characteristic time control-
ling the dynamics of the magnetization perpendicular to the
applied field was found to be

τ⊥ =
[

2L(αz)

αz − L(αz)

]
τB, (35)

which in small fields reduces to τ⊥ = (1 − 1
10α2

z )τB. The
imaginary part of the susceptibility spectrum would be ex-
pected to show a peak at a frequency �⊥ � τ−1

⊥ , which
increases with increasing field strength.

1. Noninteracting particles

In the ideal, noninteracting case, the potential energy of a
dipole in units of kBT is

U

kBT
= −αz cos θ − αeiωt sin θ sin φ. (36)

Equation (34) can be solved by expanding W in terms of a
set of spherical harmonics, but since U is a function of sin φ,
the expansion need only contain terms to that order. Treating
α � 1 as a small parameter and linearizing Eq. (34) gives the
solution

W id (θ, φ, t ) =
(

αz

sinh αz

)
eαz cos θ

+αeiωt

∞∑
n=0

Zid
n P 1

n (cos θ ) sin φ, (37)
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where P 1
n (cos θ ) = sin θ [dPn(cos θ )/d cos θ ] are associated Legendre polynomials. Equation (37) yields the following recur-

rence relation for the coefficients Zid
n , with Zid

0 = 0:

Zid
n−1

[
αz(n − 1)(n + 1)

2n − 1

]
− Zid

n [n(n + 1) + 2iωτB] − Zid
n+1

[
αzn(n + 2)

2n + 3

]
= −

(
2n + 1

2

)
(n − 1)!

(n + 1)!
Fn(αz). (38)

The coefficients Zid
n depend on both αz and ω, and the functions Fn are given by

Fn(a) =
( a

sinh a

) ∫ 1

−1
P 1

n (x)

[
eax

√
1 − x2

+ d

dx
(eaxx

√
1 − x2)

]
dx. (39)

Once W id is determined, the magnetization in the y direction is given by

M id
y (t ) = 1

4π
ρμ

∫ π

0

∫ 2π

0
W id (θ, φ, t ) sin2 θdθ sin φdφ

= 1

4
ρμαeiωt

∞∑
n=1

Zid
n

∫ 1

−1
P 1

n (x)
√

1 − x2 dx = χLheiωtZid
1 . (40)

The frequency-dependent susceptibility in the y direction is

χ id
y (ω) = ∂M id

y

∂ (heiωt )
= χLZid

1 , (41)

where Zid
1 depends on the higher coefficients through the recurrence relation in Eq. (38). Of course, the representation of W id

in Eq. (37) has to be truncated at some arbitrary order to give a closed set of algebraic equations, and as in Sec. II B, this is
done at n = 5 with Zid

n>5 = 0. The calculation is outlined in Appendix B, where Zid
1 = G(αz, ωτB) is written to emphasize the

dependence of the susceptibility on αz and ω. As before, the function G has the property that G(0, 0) = 1. In the zero-frequency
limit (ωτB → 0), the static susceptibility in the y direction is

χ id
y (0) = χLG(αz, 0), (42)

G(αz, 0) = −3

[
L(αz)

(
2659α4

z + 154 092α2
z + 1 188 000

) − 160αz

(
α4

z + 189α2
z + 3465

)
αz

(
701α4

z + 47 508α2
z + 475 200

)
]
. (43)

In Sec. III A, this approximate relation is tested against the exact formula in Eq. (8). In the limit αz → 0, G(0, 0) = 1, and the
Langevin initial susceptibility is recovered.

2. Interacting particles

Including interactions is slightly more complicated in this case, because the static external magnetic field and the probing ac
field are perpendicular to one another, with the ac field parallel to the long axis of the cylindrical container and the y direction.
Therefore, demagnetization fields must be taken into account when dealing with the static field in the z direction. If the Langevin
parameter corresponding to the external applied field in the z direction is αext

z , then the effective internal Langevin parameter at
the MMF1 level is

ᾱz = αext
z − 1

2χLL
(
αext

z

)
. (44)

Hence, at the MMF1 level, the potential energy for a single dipole is

U

kBT
= −ᾱz cos θ − αeiωt sin θ sin φ

(
1 + 1

3
χLZid

1

)
. (45)

Combining Eqs. (34) and (45) and linearizing with respect to the small parameter α leads to the solution

W (θ, φ, t ) =
(

ᾱz

sinh ᾱz

)
eᾱz cos θ + αeiωt

∞∑
n=0

ZnP
1
n (cos θ ) sin φ, (46)

where the first term on the right-hand side corresponds to the unnormalized equilibrium Boltzmann distribution at the MMF1
level, when the static field is perpendicular to the cylinder axis. The recurrence relation for the coefficients Zn is now

Zn−1

[
ᾱz(n − 1)(n + 1)

2n − 1

]
− Zn[n(n + 1) + 2iωτB] − Zn+1

[
ᾱzn(n + 2)

2n + 3

]
= −

(
2n + 1

2

)
(n − 1)!

(n + 1)!
Fn(ᾱz)

(
1 + 1

3
χLZid

1

)
.

(47)
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These equations are solved by truncation at n = 5, with Z0 =
0 and Zn>5 = 0. The first coefficient is

Z1 = G(ᾱz, ωτB)
(
1 + 1

3χLZid
1

)
, (48)

where the function G is defined in Appendix B and has
the property G(0, 0) = 1. The magnetization and frequency-
dependent susceptibility are obtained in a similar fashion to
the noninteracting results in Eqs. (40) and (41), respectively:

My (t ) = χLheiωtZ1, (49)

χy (ω) = χLZ1. (50)

In the zero-frequency limit, the static susceptibility is given
by

χy (0) = χLG(ᾱz, 0)
[
1 + 1

3χLG(αext
z , 0)

]
, (51)

where G(a, 0) is written explicitly in Eq. (43). In the limit
αext

z → 0, G(0, 0) = 1, and the familiar MMF1 initial suscep-
tibility is recovered.

3. Demagnetization-field effects

The theoretical expressions are compared with results from
simulations carried out with conducting boundary conditions;
see Sec. II D. In the simulations, the external static field
and the internal static field are the same because there are
no demagnetization effects, whereas in the theory, they are
different because of the cylindrical shape of the sample. The
simplest way to compare simulation and theory is to ignore
all demagnetization fields in the theory. This is an artificial
solution, but it is easier than carrying out the simulations in
some specific geometry. To be clear, the comparison is based
on Eqs. (48), (50), and (51), but with αz instead of αext

z and
with ᾱz given by Eq. (26) instead of Eq. (44); αz is the internal
static Langevin parameter, as applied in simulations. But
for comparing with experiments on long cylindrical samples,
where demagnetization fields cannot be eliminated at will,
Eq. (44) is the correct expression for ᾱz, defined in terms of
the external static Langevin parameter αext

z . See [35].

D. Simulations

The theory is tested rigorously by comparison to BD simu-
lations. The justification for this is that there are complicating
factors associated with experimental measurements, including
particle polydispersity, the contribution of Néel relaxation
to the magnetic response [2,4], and uncertainties concerning
the thickness of the nonmagnetic layer, which can obscure
the effects of dipole-dipole interactions on the Brownian
relaxation mechanism, and the concomitant changes to the
frequency-dependent susceptibility. These effects are very
difficult to isolate from experimental measurements, and so
BD simulations offer a ‘perfect’ computational experiment
with which to test the mathematical approximations made
in the theory. Once it has been determined that the theory
takes proper account of dipole-dipole interactions, then the
additional factors can be included afterwards for comparison
with experimental data.

BD simulations were carried out in the NV T ensemble
by using Langevin dynamics with a Stokes-force friction

coefficient that was high enough to suppress short-time
inertial motion, while keeping the Brownian rotation time,
and hence the simulation runs, as short as possible. The
translational and rotational diffusion coefficients are Dtrans =
kBT /3πησ and Drot = kBT /πησ 3, respectively. Defining
the Stokes-force friction coefficient as γ = 3πησ/m,
where m is the particle mass, gives Dtrans = kBT /γm,
Drot = 3kBT /γmσ 2, and through (12) τB = γmσ 2/6kBT .
Simulations were carried out with LAMMPS [36,37] using the
velocity-Verlet algorithm, reduced time step δt∗ = 0.005,
and friction coefficient γ ∗ = 20 (the LAMMPS damping
time is τ ∗

damp = 1/γ ∗), all in Lennard-Jones reduced units.
The temperature was set to T ∗ = 1 in all cases, and so the
Brownian rotation time was τ ∗

B = γ ∗/6T ∗ = 10/3 = 667δt .
N = 512 dipolar Weeks-Chandler-Andersen particles in a
static uniform field were simulated in a cubic simulation cell
of side L with periodic boundary conditions applied. The
particle concentration is defined in Lennard-Jones units as
ρ∗ = Nσ 3/L3, and the corresponding volume fraction is
ϕ = πρ∗/6. The long-range dipole-dipole interactions were
computed using an Ewald sum with conducting boundary
conditions; in this case, there are no demagnetization fields,
and the internal and external applied magnetic fields are
identical. All simulations consisted of 107 time steps after
equilibration. The instantaneous magnetization vector was
output every five time steps. The frequency-dependent
susceptibility spectra were computed using the formula

χβ (ω) = χβ (0)

[
1 + iω

∫ ∞

0
Cβ (t )eiωt dt

]
, (52)

where β = x, y, z. The normalized magnetization
autocorrelation functions are given by

Cβ (t ) = 〈δMβ (t )δMβ (0)〉〈
δM2

β

〉 , (53)

where δMβ (t ) = Mβ (t ) − 〈Mβ〉; 〈Mz〉 is the magnetization
curve, while 〈Mx〉 = 〈My〉 = 0. The static susceptibilities are
given by

χβ (0) = μ0
〈
δM2

β

〉
V kBT

. (54)

Results for Cx (t ) and Cy (t ), and χx (0) and χy (0), were
averaged in order to calculate χxy (ω). BD simulations were
also carried out in exactly the same way as described above
but without dipolar interactions, in order to compare them
with theoretical predictions for the noninteracting (ideal) case.

III. RESULTS

In all of the following, the susceptibility perpendicular to
a static field applied along the z axis is referred to as χxy ,
reflecting the fact that in the BD simulations, the x and y

components have been measured and averaged.

A. Static properties

Figures 1(a) and 1(b) show the magnetization curve
and static field-dependent susceptibilities of noninteracting
particles as functions of the Langevin parameter αz, from
BD simulations and theory. The results are also reported in
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FIG. 1. Field-dependent properties of the one-particle model de-
scribing an ideal superparamagnetic gas with Langevin parameter αz.
(a) Mz/Mz(∞) is the fractional magnetization in the z direction. The
solid line is the exact result [Eq. (6)] and the symbols are from BD
simulations. (b) χ id

xy (0) and (c) χ id
z (0) are the field-dependent static

susceptibilities in the xy and z directions, respectively. Solid lines are
the exact results [Eqs. (8) and (9)], dashed lines are the approximate
results [Eqs. (20) and (42)], and symbols are from BD simulations.
In (b), the exact and approximate results are indistinguishable on
the scale of the graph. (d) �id

xy and �id
z are the peak frequencies

in the imaginary parts of the susceptibility spectra in the xy and z

directions, respectively. τB is the Brownian rotation time, (12). Solid
lines are �‖τB = τB/τ‖ and �⊥τB = τB/τ⊥ from Eqs. (13) and (35),
respectively; dashed lines are the approximate results [by numerical
differentiation of Eqs. (19) and (41)]; and symbols are from BD
simulations.

Table I. Figure 1(a) shows perfect agreement between the BD
simulations and the Langevin theory, (6). There are two sets of
theoretical lines in Fig. 1(b), one being the exact results from
(8) and (9), and the other being the truncated expansions from
Eqs. (20) and (42). Both sets of theoretical lines coincide with
the simulation results in the range αz � 5. χ id

xy (0) and χ id
z (0)

decrease with increasing field due to the energetic constraint
of the dipolar orientation by the static applied field in the
z direction, but obviously the effect is stronger in the field
direction, and so χ id

z (0) < χ id
xy (0). Equations (20) and (42) are

only valid for αz � 10; they deviate from the exact results at
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FIG. 2. Magnetization curves for ferrofluids with (a) λ = 1.0 and
(b) λ = 2.5 and with concentrations 0.0 � ρ∗ � 0.5. Lines are from
MMF1 theory, (31), and symbols from BD simulations.

higher values of αz, as shown explicitly in Fig. 1(c), but over
the range αz � 5 studied in detail here, they are sufficient.

Figure 2 shows the magnetization curves of systems with
λ = 1.0 and λ = 2.5 and at different concentrations 0.0 �
ρ∗ � 0.5. With λ = 1.0, the BD simulation results and the
MMF1 theory [Eq. (31)] are generally in good agreement,
except at the highest concentration. With λ = 2.5, there are
significant deviations at concentrations ρ∗ � 0.3. These devi-
ations are a result of growing positional and orientational cor-
relations between the particles with increasing concentration
[38], which are not captured precisely by the MMF1 approx-
imation [Eq. (22)]. There are, of course, many higher-order
theories that describe such correlations more accurately, such
as the second-order modified mean-field theory [23,39–44],
integral equations [45,46], various types of thermodynamic
perturbation theories [47,48], and cluster expansions [49,50].
At present, the dynamical theory has not been extended be-
yond the MMF1 level, and so that is as far as this analysis is
taken.

Figure 3 shows the static field-dependent susceptibilities of
systems with λ = 1.0 and λ = 2.5, and concentrations 0.0 �
ρ∗ � 0.5, as functions of the Langevin parameter αz. The BD
simulation results are listed in Tables II and III, while the
theoretical results are from Eqs. (32) and (51). The plots show
the ratios χβ (0)/χ id

β (0) to isolate the effects of interactions;
it is shown below that in all cases χz < χxy . The behavior
is rather complex. In all cases, under low-field conditions,
both χxy (0)/χ id

xy (0) and χz(0)/χ id
z (0) increase with increasing

concentration due to the interparticle interactions; the increase

TABLE I. Results for noninteracting systems from theory and Brownian dynamics (BD) simulations. αz is the Langevin parameter, χ id
xy (0)

and χ id
z (0) are, respectively, the static field-dependent susceptibilities in the xy and z directions, �id

xy and �id
z are, respectively, the peak

frequencies in the imaginary parts of the susceptibility spectra in the xy and z directions, and τB is the Brownian rotation time, (12).

αz Theory BD

χ id
xy (0)/χL χ id

z (0)/χL �id
xyτB �id

z τB χ id
xy (0)/χL χ id

z (0)/χL �id
xyτB �id

z τB

0 1.000 1.000 1.000 1.000 1.001(1) 1.001(1) 1.000(6) 1.001(3)
1 0.939 0.828 1.080 1.109 0.935(1) 0.819(1) 1.080(5) 1.124(5)
2 0.806 0.522 1.313 1.456 0.801(1) 0.522(1) 1.339(7) 1.48(1)
3 0.672 0.304 1.666 2.072 0.670(1) 0.300(1) 1.713(8) 2.12(2)
4 0.564 0.184 2.090 2.906 0.563(1) 0.181(1) 2.15(1) 2.99(2)
5 0.483 0.122 2.532 3.787 0.481(1) 0.118(1) 2.62(1) 3.99(3)
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FIG. 3. Static field-dependent susceptibilities of ferrofluids with
(a, b) λ = 1.0 and (c, d) λ = 2.5 and with concentrations 0.0 � ρ∗ �
0.5: (a, c) χxy (0); (b, d) χz(0). Results are shown divided by the
respective ideal-gas susceptibilities χ id

xy (0) and χ id
z (0). Lines are from

theory [(32), (51)], and symbols from BD simulations.

is greater for the system with stronger dipolar interactions
(λ). As the field is increased, χxy (0) decreases monotoni-
cally towards the ideal value, as the dipole-field interactions
dominate over the dipole-dipole interactions and cause strong
alignment of the dipoles in the z direction. With increasing
field, χz(0) first decreases below the ideal value and then
increases again towards the ideal value, and under high-field
conditions, it decreases with increasing concentration. This
shows that there is an additional orientational constraint aris-
ing from the nose-to-tail dipolar correlations which strongly
reduces the susceptibility, more so at high concentrations.
Overall, the agreement between MMF1 theory and simulation
is very good.

An alternative visualization of the same results is given
in Fig. 4, which shows the static field-dependent suscepti-
bilities as functions of the concentration ρ∗. The BD sim-
ulations show that χxy (0)/χ id

xy (0) increases with increasing
concentration but that the slope decreases with increasing
field strength, due to the dipole-field interactions becoming
more important than the dipole-dipole interactions. The be-
havior of χz(0)/χ id

z (0) is different: at low fields (αz � 1),
χz(0) > χ id

z (0) and increases with increasing concentration,
while at higher fields, the opposite is true. Again, this reflects
the cooperative effects of the field and concentration on the
chainlike correlations between particles. Overall, the MMF1
theory is generally reliable, compared to BD simulations, for
all values of λ and ρ∗.

B. Dynamic properties

The dynamical properties of noninteracting particles are
characterized by the peak frequencies �id in Im[χ id

xy (ω)] and
Im[χ id

z (ω)]. These are shown in Fig. 1(d), from both the
theory and the BD simulations. The predictions from the new,
approximate theory were obtained by numerical differentia-
tion of the imaginary part of the susceptibility spectrum. Both
peak frequencies increase with increasing field strength due

TABLE II. Results from Brownian dynamics (BD) simulations
of ferrofluids with dipolar coupling constant λ = 1.0. ρ∗ is the
reduced concentration, χL is the Langevin susceptibility, (7), αz is
the Langevin parameter, (4), χxy (0) and χz(0) are, respectively, the
static field-dependent susceptibilities in the xy and z directions, �xy

and �z are, respectively, the peak frequencies in the imaginary parts
of the susceptibility spectra in the xy and z directions, and τB is the
Brownian rotation time, (12).

ρ∗ χL αz χxy (0) χz(0) �xyτB �zτB

0.1 0.4189 0 0.4787(3) 0.4675(5) 0.831(6) 0.88(1)
1 0.4416(3) 0.3617(4) 0.95(2) 1.02(2)
2 0.3579(3) 0.2079(2) 1.25(1) 1.43(3)
3 0.2962(2) 0.1153(1) 1.59(2) 2.15(5)
4 0.2427(2) 0.0685(1) 2.06(3) 3.06(7)
5 0.2061(1) 0.0448(0) 2.50(2) 4.21(8)

0.2 0.8378 0 1.0072(7) 1.018(1) 0.79(1) 0.79(1)
1 0.9257(7) 0.7592(8) 0.89(1) 0.92(2)
2 0.7484(5) 0.3988(4) 1.16(1) 1.46(3)
3 0.6013(4) 0.2159(2) 1.53(2) 2.23(5)
4 0.4926(3) 0.1294(1) 2.00(2) 3.21(6)
5 0.4149(3) 0.0859(1) 2.46(3) 4.21(5)

0.3 1.2566 0 1.373(1) 1.352(1) 0.682(9) 0.72(1)
1 1.537(1) 1.146(1) 0.80(1) 0.94(2)
2 1.1856(8) 0.5651(6) 1.10(1) 1.43(3)
3 0.9219(7) 0.2972(3) 1.55(2) 2.24(4)
4 0.7503(5) 0.1761(2) 1.97(3) 3.36(7)
5 0.6275(4) 0.1166(1) 2.47(3) 4.4(1)

0.4 1.6755 0 2.554(2) 2.619(3) 0.608(6) 0.601(5)
1 2.183(2) 1.545(2) 0.76(1) 0.86(2)
2 1.630(1) 0.6982(7) 1.10(1) 1.51(3)
3 1.2654(9) 0.3609(4) 1.50(2) 2.48(5)
4 1.0116(7) 0.2163(2) 2.00(3) 3.8(1)
5 0.8458(6) 0.1449(1) 2.43(4) 4.8(2)

0.5 2.0944 0 3.559(3) 3.509(4) 0.541(5) 0.54(1)
1 2.885(2) 1.952(2) 0.703(4) 0.86(1)
2 2.110(2) 0.8323(8) 1.09(2) 1.51(3)
3 1.596(1) 0.4165(4) 1.52(2) 2.62(4)
4 1.2815(9) 0.2506(3) 1.97(3) 3.63(5)
5 1.0658(8) 0.1674(2) 2.48(3) 4.86(8)

to the Zeeman force, which obviously affects the z (parallel)
component of the magnetization directly and hence more
strongly. Compared to the BD simulation results, Eqs. (13)
and (35) are more accurate than the approximate theory; this
is a direct consequence of the truncation of the probability
distribution function W (θ, φ, t ) in the latter approach.

The susceptibility spectra for four systems with λ = 1.0
and 2.5, and ρ∗ = 0.1 and 0.5, are shown in Figs. 5, 6, 7, and
8. The case of λ = 1.0 and ρ∗ = 0.1 should be easiest to treat
theoretically, because the effects of dipole-dipole interactions
should be small. This is borne out in Fig. 5. At low to
moderate frequencies (below the peaks in Im[χ ]), both χxy (ω)
and χz(ω) decrease with increasing field strength, and for a
given frequency, χz(ω) < χxy (ω); this is the same behavior
as seen in the static susceptibilities in the noninteracting case
discussed in Sec. III A. As the field strength is increased, the
peaks in both χxy (ω) and χz(ω) shift to higher frequencies,
again as seen in the noninteracting case. The agreement
between theory and simulation is excellent in this case.
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TABLE III. Results from Brownian dynamics (BD) simulations
of ferrofluids with dipolar coupling constant λ = 2.5. ρ∗ is the
reduced concentration, χL is the Langevin susceptibility, (7), αz

is the Langevin parameter, (4), χxy (0) and χz(0) are, respectively,
the static field-dependent susceptibilities in the xy and z directions,
�xy and �z are, respectively, the peak frequencies in the imaginary
parts susceptibility spectra in the xy and z directions, and τB is the
Brownian rotation time, (12).

ρ∗ χL αz χxy (0) χz(0) �xyτB �zτB

0.1 1.0472 0 1.393(1) 1.394(1) 0.54(1) 0.52(2)
1 1.2524(9) 0.988(1) 0.62(2) 0.71(3)
2 0.9581(7) 0.479(2) 0.85(2) 1.19(4)
3 0.7541(5) 0.264(2) 1.22(3) 2.04(9)
4 0.6215(4) 0.167(2) 1.44(4) 2.82(6)
5 0.5217(4) 0.115(2) 1.94(6) 4.0(1)

0.2 2.0944 0 3.668(3) 3.628(4) 0.402(2) 0.362(7)
1 2.936(2) 1.897(2) 0.47(1) 0.58(2)
2 2.112(2) 0.7821(8) 0.72(1) 1.25(4)
3 1.590(1) 0.4058(4) 1.07(3) 2.00(7)
4 1.2959(9) 0.2443(2) 1.33(4) 3.2(1)
5 1.0618(8) 0.1660(2) 1.78(6) 4.4(2)

0.3 3.1416 0 6.653(5) 6.375(6) 0.36(1) 0.325(6)
1 4.945(3) 2.774(3) 0.47(1) 0.64(1)
2 3.316(2) 1.047(1) 0.74(3) 1.27(3)
3 2.473(2) 0.5265(5) 1.06(2) 2.28(9)
4 1.958(1) 0.3245(3) 1.46(4) 3.5(1)
5 1.625(1) 0.2203(2) 1.81(5) 4.8(2)

0.4 4.1888 0 10.113(7) 10.36(1) 0.299(3) 0.298(8)
1 7.036(5) 3.523(4) 0.472(9) 0.62(2)
2 4.597(3) 1.217(1) 0.76(2) 1.47(5)
3 3.377(2) 0.6211(6) 1.12(1) 2.5(1)
4 2.650(2) 0.3864(4) 1.50(5) 3.9(2)
5 2.180(2) 0.2655(3) 1.88(5) 4.91(3)

0.5 5.2360 0 15.00(1) 14.51(1) 0.248(4) 0.25(2)
1 9.407(7) 4.136(4) 0.443(9) 0.66(1)
2 5.913(4) 1.365(1) 0.79(1) 1.6(1)
3 4.319(3) 0.7043(7) 1.17(3) 2.6(1)
4 3.340(2) 0.4364(4) 1.59(3) 3.9(2)
5 2.753(2) 0.3023(3) 2.03(7) 4.8(4)

Figure 6 shows the susceptibility spectra for a system with
λ = 1.0 and ρ∗ = 0.5. Apart from the increase in χxy and χz,
the changes in the spectra are subtle and are analyzed in more
detail later. The main point, though, is that the MMF1 theory
is less accurate at this higher concentration, although the static
susceptibility is described accurately. The peak positions in
Im[χxy (ω)] and Im[χz(ω)] are overestimated by the theory in
low fields and are detailed below.

Figures 7 and 8 show the susceptibility spectra for sys-
tems with λ = 2.5 and ρ∗ = 0.1 and 0.5, respectively. The
key points here are that, in the BD simulations, the peak
positions in the imaginary parts are shifted to much lower
frequencies compared to the λ = 1.0 case and that the de-
viations between simulation and theory are substantial. The
decreases in peak frequencies signal the onset of dipolar
nose-to-tail correlations and the concomitant increase in the
characteristic rotation time. Although the theory gives
fairly accurate predictions for all static susceptibilities with
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FIG. 4. Static concentration-dependent susceptibilities of fer-
rofluids with (a, b) λ = 1.0 and (c, d) λ = 2.5 and with Langevin
parameters 0 � αz � 5: (a, c) χxy (0); (b, d) χz(0). Results are shown
divided by the respective ideal-gas susceptibilities χ id

xy (0) and χ id
z (0).

Lines are from theory [(32), (51)], and symbols from BD simulations.

ρ∗ = 0.1, there are noticeable discrepancies in χxy with ρ∗ =
0.5, particularly with high values of αz.

Figures 9 and 10 show how the peak positions � in the
imaginary parts of the susceptibility spectra depend on αz and
ρ∗, respectively. The results are divided by the corresponding
values in the noninteracting system in order to isolate the
effects of dipole-dipole interactions. Recall from Fig. 1(d)
that over the range 0 � αz � 5, the peak frequencies �id

xy

and �id
z increase by factors of 2.6 and 4.0, respectively.

The BD simulation results in Fig. 9 show that, for a given
concentration, �xy/�

id
xy increases with increasing αz towards

1. This is because the dipole-field interaction is increasing
compared to the dipole-dipole interaction. At low values of αz,
increasing the concentration leads to a decrease in �xy/�

id
xy ,
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FIG. 5. Frequency-dependent susceptibilities of a ferrofluid with
λ = 1.0 and ρ∗ = 0.1. Real parts of (a) χxy (ω) and (b) χz(ω).
Imaginary parts of (c) χxy (ω) and (d) χz(ω). Lines are from theory
[(30), (50)], and symbols from BD simulations.
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FIG. 6. Frequency-dependent susceptibilities of a ferrofluid with
λ = 1.0 and ρ∗ = 0.5. Real parts of (a) χxy (ω) and (b) χz(ω).
Imaginary parts of (c) χxy (ω) and (d) χz(ω). Lines are from theory
[(30), (50)], and symbols from BD simulations.

which is due to the transverse dipolar correlations and an
increase in the characteristic rotation time. At high values of
αz, these transverse correlations are less significant, as the
dipoles are strongly aligned in the z direction, and so the
concentration effect is reduced. The MMF1 theory captures
most of these trends, but the agreement with simulation is
only good with λ = 1.0 and ρ∗ � 0.2. �z/�

id
z shows different

behavior, starting off below 1 in a low field and ending up
above 1 in a high field. In a low field, the dipole-dipole
correlations give a high characteristic rotation time and a low
peak frequency; hence, increasing the concentration leads to a
decrease in the peak frequency. In a high field, the dipole-
field interactions cause strong alignment of the dipoles in
the field direction, and this is enhanced by the interparticle
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FIG. 7. Frequency-dependent susceptibilities of a ferrofluid with
λ = 2.5 and ρ∗ = 0.1. Real parts of (a) χxy (ω) and (b) χz(ω).
Imaginary parts of (c) χxy (ω) and (d) χz(ω). Lines are from theory
[(30), (50)], and symbols from BD simulations.
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FIG. 8. Frequency-dependent susceptibilities for a ferrofluid
with λ = 2.5 and ρ∗ = 0.5. Real parts of (a) χxy (ω) and (b) χz(ω).
Imaginary parts of (c) χxy (ω) and (d) χz(ω). Lines are from theory
[(30), (50)], and symbols from BD simulations.

interactions, particularly those in the nose-to-tail configura-
tion; hence, increasing the concentration leads to an increase
in the peak frequency. This behavior is captured qualitatively
by the theory, but quantitative agreement with the BD sim-
ulations is lacking except with λ = 1.0 and ρ∗ � 0.2. The
theoretical predictions are inaccurate when all of λ, ρ∗, and
αz are large.

Figure 10 shows how the peak frequencies depend on
the concentration. The BD simulation results show that, in
general, �xy/�

id
xy decreases with increasing concentration,

which is due to the increasing dipole-dipole correlations and
increasing characteristic rotation time. The magnitude of this
effect is lower in stronger fields because there the dipole-field
interactions are dominant. The theory is only reliable with low
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FIG. 9. Field-dependent peak frequencies of ferrofluids with
(a, b) λ = 1.0 and (c, d) λ = 2.5 and with concentrations 0.0 � ρ∗ �
0.5: (a, c) �xy ; (b, d) �z. Results are shown divided by the respective
ideal-gas peak frequencies �id

xy and �id
z . Lines are from theory, and

symbols from BD simulations.
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divided by the respective ideal-gas susceptibilities �id
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z . Lines
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values of λ, ρ∗, and αz. With increasing concentration, the
BD simulations show that �z/�

id
z decreases in low fields and

increases in high fields, again reflecting the balance of dipole-
dipole and dipole-field interactions. The theory is accurate
only with the lowest values of λ, ρ∗, and αz.

It emphasized that the results in Figs. 9 and 10 are pre-
sented in units of the peak frequency at zero concentration
[Fig. 1(d)] in order to accentuate the dependence on dipolar
interactions, but the absolute values of �xy and �z vary
significantly with the field strength, and hence plotting these
absolute values would obscure the deviations between simu-
lation and theory.

IV. CONCLUSIONS

In this work, the calculation of the magnetic susceptibility
spectra of a ferrofluid in a static field is outlined. The presence
of the static field introduces several technical complications
compared to the zero-field case: first, there are two suscepti-
bility spectra, corresponding to the parallel and perpendicular
orientations of the probing ac field with respect to the static
field; second, the mathematical details of the problem neces-
sitate an expansion with respect to the static-field Langevin
parameter, as opposed to a simple closed-form expression;
and third, demagnetization-field effects have to be considered.
Nonetheless, explicit expressions may be given for the suscep-
tibility spectra, and these have been tested against numerical
results from Brownian dynamics simulations. In the case of
noninteracting magnetic nanoparticles (meaning, vanishing
concentration) the theory and simulations are in good agree-
ment, which justifies the initial choice of how many terms
should be included in the expansion with respect to the static-
field Langevin parameter. Interactions have been included at
the first-order modified mean-field level, meaning that the
susceptibility is expanded in powers of ρλ up to second order;
as a result, the theoretical results were expected to be accurate
only at a low concentration (ρ) and high temperature (λ−1).

Comparisons with simulations shows this to be the case. As
long as ρσ 3 ∼ 0.1 and λ ∼ 1, the theory is reliable. Note
that these parameters are typical for real ferrofluids at room
temperature. As an example, a systematic analysis of the mag-
netization curves of magnetite ferrofluids with a very wide
range of volume fractions, 0.0303 � ϕ � 0.346 [51], gave a
consistent value of the average dipolar coupling constant at
T = 293 K of λ � 0.965 [41]. Ferrofluids with volume frac-
tions ϕ � 0.2 (ρ∗ � 0.4) are considered to be concentrated.
A typical applied magnetic field of 100 kA m−1 corresponds
to an average Langevin parameter of 4.74. These calculations
are based on the assumption that the magnetization of the
particle material is equal to its saturation value, justified a
posteriori by the excellent agreement between theory and
experiment. More recently, an ultracentrifugation analysis of
magnetite-ferrofluid sedimentation profiles, and correspond-
ing magnetization-curve measurements, gave dipolar coupling
constants λ � 1–2, depending on the particle size [52,53]. The
dynamical theory presented here is not intrinsically limited to
this range of parameters; in principle, it can be extended by
including interparticle interactions to higher order, and more
straightforwardly, it can be extended to higher ranges of the
static-field strength.

Overall, the effects of interparticle interactions are shown
to be very significant. With increasing particle concentration,
the static susceptibility parallel to a weak (strong) static field
increases (decreases) by as much as a factor of 2–3, and the
peak frequency in the imaginary part of the susceptibility de-
creases (increases) by tens of percent. This reflects the compe-
tition between interparticle interactions (which favor chainlike
correlations, enhancing the susceptibility and decreasing the
peak frequency) and particle-field interactions (which cause
strong alignment of the particles, decreasing the suscepti-
bility and increasing the peak frequency). With increasing
particle concentration, the static susceptibility perpendicular
to the applied static field increases, and the peak frequency
decreases, but the changes are smaller with stronger static
fields. This is due to particle-field interactions dominating
interparticle interactions, causing the system to behave as in
the noninteracting (zero-concentration) case.
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APPENDIX A: EXPRESSION FOR G IN THE
PARALLEL CASE

Solving the five algebraic equations yields the following
result for the function G(a, b):

G(a, b) = D̃(a, b)

D(a, b)
. (A1)
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D(a, b) and D̃(a, b) are determinants defined as follows:

D(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2(1 + ib)
2a
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, (A2)

D̃(a, b) =
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F2(a) 2(3 + ib)
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0 0
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F3(a) −12a
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2(6 + ib)

4a
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2
F4(a) 0 −20a

7
2(10 + ib)
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2
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2(15 + ib)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A3)

The functions Fn(a) are defined in Eq. (17). Explicit expressions for the first five functions are as follows:

F1(a) = −4L(a)

a
, (A4)

F2(a) = −12L3(a)

a
, (A5)

F3(a) = −24

[
L(a)

a
− 5L3(a)

a2

]
, (A6)

F4(a) = 40

[
10L(a)

a2
− 1

a
− 35L3(a)

a3

]
, (A7)

F5(a) = 60

[
14

a2
− L(a)

a
− 105L(a)

a3
+ 315L3(a)

a4

]
, (A8)

L(a) = coth a − 1

a
, (A9)

L3(a) = 1 − 3L(a)

a
. (A10)

For the case a = b = 0, F1(0) = − 4
3 , Fn>1(0) = 0, D(0, 0) = D̃(0, 0) = 2 × 6 × 12 × 20 × 30, and hence G(0, 0) = 1.

APPENDIX B: EXPRESSION FOR G IN THE PERPENDICULAR CASE

Solving the five algebraic equations yields the following result for the function G(a, b):

G(a, b) = D̃(a, b)

D(a, b)
. (B1)
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D(a, b) and D̃(a, b) are determinants defined as follows:

D(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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D̃(a, b) =
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The functions Fn(a) are defined in Eq. (39). Explicit expressions for the first five functions are as follows:

F1(a) = 4

[
1 − L(a)

a

]
, (B4)

F2(a) = 12

[
L(a) − 2L3(a)

a

]
, (B5)
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[
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, (B6)
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. (B8)

For the case a = b = 0, F1(0) = 8
3 , Fn>1(0) = 0, D(0, 0) = D̃(0, 0) = (−2) × (−6) × (−12) × (−20) × (−30), and hence

G(0, 0) = 1.
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