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Self-assembly of complex structures in colloid-polymer mixtures
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If particles interact according to isotropic pair potentials that favor multiple length scales, in principle, a large
variety of different complex structures can be achieved by self-assembly. Here, we study the specific example
of colloid-polymer mixtures in which the effective interactions between colloids are dictated by a Aasakura-
Osawa—type potential that possesses two length scales. Upon examining the phase behavior of two-dimensional
colloid-polymer mixtures, we observe that nontrivial structures only occur in the vicinity of selected densities
where triangular ordering is suppressed by the pair potential. Close to these densities, a large number of different
phases self-assemble that correspond to tilings containing triangular, rhombic, square, hexagonal, and pentagonal
tiles, and including some of the Archimedean tilings. We obtain the ground-state energies by minimizing the
corresponding lattice sums with respect to particle positions in a unit cell as well as cell geometry and verify the
occurrence of selected phases at finite temperatures by using Brownian dynamics simulations. We explain how
the occurrence of nontrivial orderings can be predicted on a two-particle level by employing an enthalpylike pair
potentials. Our work provides a manual on how to find the regions of nontrivial phases in parameter space for

complex pair interactions in general.

DOI: 10.1103/PhysRevE.98.052601

I. INTRODUCTION

Self-assembly is the process by which the system con-
stituents form large organized functional units via their mutual
interactions without any external influence. Since the pioneer-
ing work by Whitesides et al. [1] on molecular systems, self-
assembly has been studied in great detail in a wide range of
length scales ranging from atomic to macroscopic systems and
throughout various scientific disciplines, including physics,
chemistry, materials science, and biology [2—14].

In monodisperse systems that do not possess more than
one characteristic length scale self-assembly usually occurs
in the same way as for hard disks or spheres, i.e., the particles
form a triangular phase in two or a fcc-crystal in three di-
mensions and at appropriate conditions. Beyond such simple
systems, a plethora of self-assembled complex structures can
be achieved in mixtures of different particle types such as in
metallic alloys [15] or in binary colloidal suspensions [16—
18]. Two further scenarios pave the way for high structural
complexity in one-component systems by requiring (i) an
interaction or shape anisotropy and (ii) a deliberate choice
of an isotropic pair interaction with multiple length scales
that affect the structure formation. Prototypical examples of
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the former are hard convex polyhedra packings [19] and
patchy colloids [20-22], whereas concerning the latter inverse
statistical-mechanical approaches have been undertaken to
investigate the self-assembly of nontriangular ground-state
structures with engineered pair interaction potentials [23-26].
More recently it has even been shown that complex ground-
state structures can be stabilized by repulsive and convex pair
interaction potentials which rule out the necessity for single-
or multiple wells in this potential [27-32]. Note that in general
determining the phase behavior from just the pair potential in
nontrivial [33].

A system that is well-studied in theory and simulation
and in addition can be realized and investigated experimen-
tally is a charge-stabilized colloid-polymer mixture which
intrinsically involves multiple length scales as the colloids
effectively attract each other close to contact due to depletion
interactions while being repulsive on larger length scales
because of screened electrostatic repulsions. Experimental
and theoretical studies have been performed to understand the
nature of colloid-polymer mixtures [34—45] some of which
exhibit glassy states [37,38], gels [39—43], and cluster forma-
tion [42,44,45]. The phase behavior concerning the gas, lig-
uid, and trivial solid phase has been investigated in Refs. [46—
57]. Moreover, the influence of many-body interactions on the
phase behavior of such mixtures [58,59] as well as confine-
ment effects [60—63] have been analyzed recently. However,
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to the best of our knowledge, detailed structural analysis of
the crystal phase were not in the focus of previous studies, nor
any nontrivial complex ordering have been reported with the
exception of local ground-state clusters [42,45].

In this article, we determine the ground states that occur
in a colloid-polymer mixture in two dimensions. The ground-
state orderings are calculated by minimizing the energy for
structures with one to six particles per unit cell. Aside from
the trivial triangular phase, we observe square, rhombic, tri-
angular, honeycomb, Kagome, and Archimedean tilings [64—
67] as well as further orderings that correspond to tilings
with hexagons and even pentagons. We further run Brownian
dynamics computer simulations to verify the existence of
occurring phases at finite temperatures.

To understand why nontrivial structures in monodisperse
systems with isotropic interactions can occur in general, we
determine the enthalpy on a two-particle level and demon-
strate that the resulting enthalpy-like pair potential can be used
to identify the parameters where triangular structures are sup-
pressed. Our approach explains why and how even monotonic
pair potentials can be used to self-assemble complex phases.

The article is structured as follows: We introduce the
system and methods in Sec. II. In Sec. III we first comment
on the comparison of results in the ground state and results
at finite temperature. Then, we discuss the observed phases in
detail before we explain the enthalpy-like pair potential that
can be used to predict the occurrence of nontrivial phases.
Finally, we conclude in Sec. I'V.

II. SYSTEM AND METHODS
A. Colloid-polymer mixtures

When immersed in a solvent of relatively small-sized non-
adsorbing polymer coils, the larger colloidal particles sense a
short-ranged depletion attraction at sufficiently high polymer
concentrations. This attractive force arises due to an unbal-
anced osmotic pressure stemming from the depletion zone in
the region between the colloids.

The effective pair interaction potential between the center
points of the colloids in the presence of the polymers is given
by a screened Coulomb repulsion corresponding to a Yukawa-
like interaction, and on short lengths by depletion attraction
where we employ the AO-model [68,69]. Since polymers can
only enter the gap between two colloids if this gap is wider
than the size of the colloids, in the AO-approach one considers
an effective attraction due to the resulting depletion that is
proportional to the area that cannot be accessed by polymers.
Therefore, the pair interaction potential is [68,69]

3
r”

exp(—«rij) 3rij .
o(ri) = VO—KV,/' ! —Wo[l _2_d]+ﬁ] if rij <d,
R T if ryj > d
0 Krij ij P
(1

where r;; is the separation distance between colloids i and j,
k denotes the inverse screening length, and d the length that is
given by the depletion effect. To be specific, this depletion
length d corresponds to the sum of the effective diameter
of a colloid plus the effective diameter of a polymer. Note
that for our calculations we do not have to consider any hard

core colloid-colloid interactions, because in the ground state
such an hard core repulsion would only matter if two particles
touched. Therefore, our ground state results are valid for all
colloidal hard core diameters that are smaller or equal than the
smallest distance between two colloids. The energy amplitude
of the pure electrostatic Yukawa interaction is given by Vj,
whereas the strength of the depletion potential is set by Wj.
The crystalline phase diagrams can therefore be determined
in three-dimensional space spanned by the reduced energy
amplitude Vy/Wo, the reduced density ,/od, and the reduced
depletion length «d corresponding to the ratio of depletion
length divided by screening length.

We primarily explore the ground state of our model colloid-
polymer mixtures by determining the corresponding phase
diagrams in the (,/pd, kd)-plane at fixed Vo/Wy. At zero
temperature, the optimal structures with N particles are those
that minimize the total internal energy,

N

U= %Zv(m), )
)
i#]
at a given reduced density, depletion length, and energy
amplitude. We use a direct lattice summation technique to
determine U, and thus to predict the corresponding ground-
state structures. To examine the stability of resulting structures
at finite temperatures, we extend our studies to 7 > 0 by
means of Brownian dynamics computer simulations. In the
following, we provide details for both the lattice summation
and the finite-temperature simulations used in this work.

B. Lattice-sum calculations

At each given density ,/pd, depletion length «d, and
energy amplitude Vy/W,, we have performed lattice sum
minimizations for a set of candidates of crystalline lattices.
As possible candidates, we consider two-dimensional crystals
with a periodicity in both the spatial directions x and y whose
primitive cell is a parallelogram containing n particles, see
Appendix A. We consider candidates with primitive cells
comprising up to 6 particles, i.e., n =1,---,6, with no
further restrictions.

At prescribed parameters, the total potential energy per
particle u = U/N [cf. Eq. (2)] is minimized with respect to
the particle coordinates of the basis, and the cell geometry.
To be specific, we implement the Nelder-Mead method (also
known as downhill simplex method or amoeba method) to find
the minimum of the energy functions [70]. As this technique
is a heuristic approach, and thus it may not always converge
to the global minimum, we use at least 200 and at most 1000
different start configurations depending on the complexity of
those functions. Details are provided in Appendix A.

C. Brownian dynamics computer simulations

To study the validity of our theoretical ground-state pre-
dictions at finite but relatively low temperatures, we em-
ploy Brownian dynamics computer simulations in the NV T'-
ensemble by solving the Langevin equation for an over-
damped system. The position r; of particle i undergoing
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Brownian motion after a time step §¢ is

D
ri(t 4 8t) = 1;(t) + —F; ()8t + W, 3)
ksT

where D denotes the free diffusion coefficient, kg T the ther-
mal energy, and F; is the total conservative force acting on
particle i and stemming from the pair interaction v in Eq. (1).
The random displacement §W; is sampled from a Gaussian
distribution with zero mean and variance 2Ddt (for each
Cartesian component) fixed by the fluctuation-dissipation re-
lation. The time step is chosen as 8t = 1077, where T =
1/ (k% Dy) is used as the unit of the time. We run simulations
for up to 10°7, starting from a random distribution, a triangu-
lar or a square lattice of N = 2000 particles in a rectangular
simulation box under periodic boundary conditions. All three
runs yield the same final configurations at predetermined
density and depletion length, suggesting the thermodynam-
ical stability of our results rather than possible metastable
configurations.

It is noteworthy that more sophisticated simulation algo-
rithms making use of nonrectangular simulation boxes [71]
might yield stable phases which we are not able to capture
here in our simulations. This being said, however, we do
not expect a radical change in the morphology of the phase
diagram. In soft systems, the coexistence between two main
phases will most likely suppress the occurrence of subtle
phases with free-energies relatively close to each other and
to the aforementioned main phases. Moreover, we want to
emphasize that our main goal lies in determining the ground
state of colloid-polymer mixtures, where we consider nonrect-
angular boxes, and comparing the results to the predictions of
our enthalpy-based theory, where simulations shall only serve
as an additional supportive data to strengthen our findings.

In the following, we present the results from both the
zero-temperature lattice-sum minimizations and the finite-
temperature simulations.

III. RESULTS

Before delving into the ground-state phase diagram for
the given example of colloid-polymer mixtures in detail, i.e.,
determining each single phase structure at prescribed density
and depletion length, we first report on the occurrence of
nontriangular phases in coarse-grained phase diagrams both
at zero- and finite temperature.

A. Zero- and finite-temperature phase diagrams

In Fig. 1 we show the phase diagrams of a model colloid-
polymer mixture as a function of reduced density ,/pd and
reduced depletion length xd. The nontriangular crystalline
phases only occur in special parameter regions. These re-
gions are marked in Fig. 1 in yellow for ground states as
determined by minimizing the interaction energy. We have
further investigated the stability of nontriangular phases at
finite temperatures by means of Brownian dynamics computer
simulations. Particularly, we consider a temperature such
that Vo/kgT = 1000 and we fix the energy amplitudes to
Vo/ Wp = 1. We reveal the stability of nontriangular crystals
in the blue regions shown in Fig. 1. The similarity to the
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FIG. 1. Zero- and finite-temperature phase diagrams of colloid-
polymer mixtures as a function of the reduced density ,/pd and the
reduced depletion length kd. The nontriangular stability modes as
determined by lattice-sum minimizations and Brownian dynamics
simulations are shown by yellow (at 7 = 0) and blue (at T > 0)
regions, respectively. The actual determined phase points at the
boundary are indicated by black dots and blue squares. The inset
shows the solid- and fluid-state phase diagram as a function of the
reduced density and the reduced inverse temperature at fixed kd = 1.
Details are explained in the text.

nontriangular stability regimes at T = 0 (shown in yellow in
Fig. 1) is striking. Specifically, in both cases, the majority of
the parameter space in the (,/pd, «d) plane is governed by
the triangular crystal as shown by the white region in Fig. 1.
Nontriangular phases only occur in the vicinity of specific
densities and for sufficiently large values of «d.

Moreover, the inset of Fig. 1 provides the evolution of the
nontriangular solid phase space at kd = 1 as a function of the
inverse reduced temperature where melting is observed upon
rising the temperature. Note also that at finite temperatures,
the system melts as ,/pd — 0. The melting is, however, out
of the scope of this paper, and therefore not analyzed further
here.

The phase diagrams in Fig. 1 have been determined at a
finite ratio of the energy scales, Wy/Vy = 1. Note that in the
limit Wy — 0O the only solid phase in two dimensions pos-
sesses triangular order while in three dimensions in principle
transitions between different solid states might occur [72,73].

Note that with the simulations we observe typical examples
out of almost all of the different occurring phase categories
as listed and explained in the next subsection. As the main
goal of this manuscript is to provide a detailed view of self-
assembly of complex phases at 7 = 0, simulations are only
supposed to serve as additional data to strengthen the ground-
state results. Therefore, we content ourselves to show some
characteristic simulation snapshots for the occurring phases
rather than describing the finite-temperature phase diagram
thoroughly.

B. Detailed phase diagram of a colloid-polymer mixture

In the following, we explore the ground-state phase di-
agram of a colloid-polymer mixture in detail. The stability
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FIG. 2. Detailed zero-temperature phase diagram of a colloid-
polymer mixture as a function of the reduced density ,/od and the
reduced depletion length xd. The large white zone indicates the sta-
bility of the triangular phase, whereas other colors have been used to
demonstrate the nontriangular stability regimes that include a variety
of phase structures, each colored differently and labeled as follows:
Sq, square phase; Rh, rhombic phase; Hex, hexagon-based structures
including the honeycomb (Hc) lattice; Oct, octagon-based structures;
Tri, trimers; TR, triangle-rectangular structures; TS, triangle-square
structures; Pen, pentagon-based structures. The black dots are the ac-
tual computed phase points at the boundary of nontriangular phases.
The yellow areas illustrate the coexistence between the neighboring
phases. The phases are shown for up to 4 particles per unit cell. The
regions where we find additional phases with five or six particles per
unit cell are marked by transparent colors. While outside of these
regions we do not expect the occurrence of phases with even more
particles per unit cell, within the transparent regions more complex
phases might be stable.

of zero-temperature crystalline phases are shown in Fig. 2
for \/pd < 2.5 and «d < 1.8. In Fig. 2 we show the de-
tailed phase behavior for the first nontriangular regions with
lowest density. The phase diagram reveals a large structural
diversity. The white region indicates the stability regime of
the triangular lattice as before, whereas the colored areas
demonstrate the occurrence of stable nontriangular phases of
different symmetry and complexity. Here, we obtain simple
phases with n = 1 particle per unit cell such as rhombic (Rh)
and square (Sq) lattices as shown by blue and orange regions
in Fig. 2 as well as more complex structures with n > 2.
The latter possess a richer diversity and can be grouped into
hexagon-based (Hex, green regions) structures including the
honeycomb (Hc) lattice, octagon-based (Oct, gray regions)
structures, trimers (Tri, purple), triangle-rectangular (TR, red
regions), and triangle-square (TS, turquoise region) structures,
and finally the pentagon-based (Pen, purple transparent re-
gions) structures as indicated by different colors and labeled
accordingly in Fig. 2. Structural details are provided in Ap-
pendix B.

For the sake of completeness, we further investigated the
phase coexistence in our system: We have implemented the
common tangent construction (Maxwell construction), i.e., we
determine the convex hull of the energy curves for all consid-
ered structures. If the convex hull corresponds to the energy

curve in a point, the respective structure is stable in that point.
If the convex hull is a tangent connecting the energy curves of
two structures, these two structures are in coexistence in that
point, because a mixture of the respective structures possesses
the smallest internal energy. That way we have determined the
corresponding coexistence regimes between two neighboring
phases, which we indicate by the yellow areas in the phase
diagram in Fig. 2. As expected, the coexistence turns out to
be relatively small at zero-temperature as compared to pure
one-phase stability regimes.

The phases in Fig. 2 are shown for up to four particles per
unit cell with solid colors. In addition, the regions where five
or six particles per unit cell lead to new phases are marked by
transparent colors encircled by the red lines. While outside of
these regions we do not have any indication for the occurrence
of phases with even more particles per unit cell, within the
transparent regions more complex phases might be expected
to be stable.

Our lattice-minimization routine reveals solely the stability
of perfect lattices at zero-temperature. Having the possibility
of stable nonperiodic structures in mind, we have included
some quasicrystalline orderings according to the Penrose-,
square-triangle-, and square-rhombic-tiling into our calcula-
tions by computing the potential energies per particle of large
periodic approximants of the corresponding quasiperiodic
tilings. As a result, within the studied parameter range, we
have not observed any stable quasicrystalline phase.

C. Enthalpylike pair potential and occurrence of
nontriangular phases

Obviously it would be of desire to predict where the
nontrivial (i.e., the nontriangular) ground-state phases become
stable just on a two-particle level without having to calculate
the total energy of the system. While the densities where
nontrivial phases in principle can occur might be roughly esti-
mated from the pair potential, there is no direct way to predict
whether there indeed is a nontrivial phase and where the onset
in kd-direction of this phase is. Specifically, nontrivial phases
can even occur for pair potentials that are strongly monotonic
and for which it is not obvious why a ground state with
multiple length scales should be stable. Of course, the reason
for the occurrence of multiple length scales is the pressure
that prevents the particles to just choose minima of the pair
potential. In principle one could think of the pressure to force
particles toward distances that are smaller than a possible
minimum of the pair interaction potential corresponding to an
effective tilt of this pair potential.

While the total area of the system is fixed, locally the
area (or in three dimensions the volume) around particles,
e.g., the area of Voronoi cells, can in principle vary from
particle to particle. However, mechanical equilibrium requires
that the pressure on the side of a Voronoi cell corresponds
to the pressure on the neighboring cell. As a consequence, if
one wants to break down a thermodynamic potential onto a
two-particle level, the energy is not a good choice because
the area is not fixed on the particle level. In contrast, the en-
thalpy is the thermodynamic potential that can be employed to
predict ground states in case of fixed pressure (corresponding
to results of other ensembles in the thermodynamic limits).
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Therefore, we break down the enthalpy onto a two-particle
level where the pressure is the same for different pairs of
particles. The resulting enthalpylike pair potential on the two-
particle level turns out to be a tilted pair interaction potential.

In the following we determine the two-particle enthalpylike
quantity A(r;;), where r;; is the distance between the consid-
ered particles. This enthalpylike pair potential should be given
such that its sums up to the total enthalpy H, i.e.,

N
H:izlh(ri,-):UerA, @)
i Ji#]
where p is the macroscopic pressure and A the total area
of the system (in three dimensions the volume has to be
used instead). The enthalpylike pair potential therefore can be
introduced as

h(r) = v(r) + Z%a(r), (5)

where a(r) is an effective surface area between any two
particles at a relative distance r, which we refer to as the pair
area in the following. The pair area a(r) has to follow from a
subdivision of the total area A as in

N
NA = a(ry). (6)
i
i#]
Note that a(r;;) shall be given such that for a fixed particle i,
a summation over j leads to A. Then, a summation over all i
and j with i # j yields a total area of N A.

To get an idea what the enthalpylike pair potential can look
like, we consider a particle i and its k neighbor shells. The
remaining N — 1 particles are distributed over these k shells.
We denote the kth shell of i, to which the particle j belongs,
by the index k;;, its thickness by S its relative position to the
particle i by ry,,, and the corresponding coordination number
by Z,;. Consequently, the pair area a(r;;) can be written as
the area of the kth shell of particle i to which the particle j
belongs as

s 7)
Tk
Zy, ki

a(r i j) ~
where 1/Z;,, compensates the counting of multiple particles
in the same shell so that each shell contributes only once
to the sum in Eq. (6). While the coordination number can
be easily obtained from the theta series of lattices, the most
common ones of which being tabulated in Refs. [74,75], the
choice of thickness §; is rather not trivial as the space can
be subdivided differently into circular nonoverlapping rings
under the constraint that each of which contain solely one
neighbor shell. For the canonical choice of the thickness
Or = (rgs1 — rr—1)/2, where the shell positions r; can be
gained from the radial distribution function of the structure,
we employ a polynomial fit up to the second order to the pair
area from Eq. (7) over a range of the first six neighbor shells:

a(r) = By + Bykr + B3(Kr)2, (8)

with the distance r given in units of the screening length
«~! and the coefficients B, By, and B; that depend on the
depletion length and the density. In the considered range of
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FIG. 3. Ground-state phase diagram of colloid-polymer mix-
tures. The majority of the phase space (white area) is governed by
the triangular phase, whereas nontriangular phases can be stabilized
around certain values of the reduced density and along the reduced
depletion length. These nontriangular stability modes as determined
by lattice-sum minimizations are shown by the yellow regions. The
actual determined phase points at the boundary are indicated by the
black dots. The red region indicates the theoretically predicted stabil-
ity zone where complex nontriangular structures with two different
length scales that are sufficiently distinct from the triangular length
scale are expected to become stable. The hatched nontriangular
subdomain comprises such stable complex phases as obtained by
lattice-sum minimizations where the closest-neighbor distance in
the first stability mode at ,/pd ~ 1 deviates at least 15% from the
triangular lattice constant. Accordingly smaller thresholds are used
for the hatched areas drawn in the higher nontriangular stability
modes (yellow areas) at larger densities. The details are explained
in the text.

r, the coefficient B; dominates over B, and Bs. Note that
a subdivision of the total area A into pair areas a(r) is not
unique. However, as a(r) is a function of the distance, we
think that the use of concentric nonoverlapping shells for the
pair areas is natural to obtain an approximation for 4 (r), based
on h(r), and thus a(r).

If the enthalpy can be broken down into similar two-
particle contributions as described above the following criteria
for nontriangular phases has to hold: Complex nontriangular
crystals with multiple length scales can occur as ground states
if and only if there exists conditions at which the enthalpylike
pair potential /(7) possesses a concave region.

As shown in Fig. 3, the nontriangular crystalline phases
only occur in special parameter regions that are marked in
yellow for ground states as determined by minimizing the
interaction energy. The red area indicates the phase space
within which complex nontriangular structures are expected to
become stable according to our enthalpy-based prediction. In
the following, we explain our considerations and calculations
to obtain the prediction shown in Fig. 3 for the system
considered in this article in detail.

To predict where nontrivial phases at zero temperature can
occur in the colloid-polymer mixture, we consider the explicit
form of the pair interaction in Eq. (1), characteristic examples
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FIG. 4. Characteristic examples of pair interaction potentials
v(r) as given by Eq. (1). Potentials are shown for three different
reduced depletion lengths (kd = 0.6, 1.2, 1.5, 1.8), where the deple-
tion lengths are indicated by the dashed lines. The inset illustrates the
enthalpylike pair interaction & for kd = 0.6,1.2,1.5, 1.8 at ,/pd =
1.1 as defined in Eq. (5), possessing a concave region for xd =
1.2,1.5, 1.8, and lacking such a region for xd = 0.6, respectively.
The same color code is used for both the main figure and the inset.
We theoretically predict that whenever & exhibits a concave region,
complex nontriangular phases are expected to become stable as
shown by the red area in Fig. 3, and we support our predictions by
rigorous numerical calculations of complex nontriangular phases as
indicated by the hatched area in Fig. 3. Note that, in the inset, the
enthalpylike pair interactions are arbitrarily shifted along the y axis
for the sake of clarity.

of which are shown in Fig. 4 at different reduced depletion
lengths «d and at V,/ Wy = 1. For large «d = 1.8, a single
well occurs with a clear local maximum slightly below the
reduced depletion length (the positions of which are indicated
by dashed lines). We find that the nontriangular structures
occur at reduced densities where the depletion length d ap-
proximately corresponds to the kth next-neighbor distance ay
of the triangular lattice with k = 1, --- , 5; cf. Fig. 3. These
distances are a;, a, = \/gal, a3 = 2ay, ay = ﬁal, and a5 =
3a; with a; ~ 1/,/p. In other words; the triangular lattice
is suppressed at densities where its interparticle distances
roughly correspond to the depletion length of the system
and thus being in the close vicinity of the maximum of the
potential yielding an increase in the energy of the triangular
lattice. The system will therefore possess lower potential
energy for structurally more complex crystals with separated
length scales or for rhombic or square lattice.

Note that nontriangular phases are still present at low
reduced depletion lengths where the pair interaction potential
does not possess a concave part, e.g., for kd = 0.6 as shown
by the green curve in Fig. 4. Recently developed inverse
statistical-mechanical methods have been indeed used to en-
gineer purely repulsive and convex interaction potentials that
yield nontriangular ground-state crystals such as honeycomb
lattice [28-32].

In the following, we analyze the conditions under which
h(r) might exhibit a concave region. Note that, unlike the pair
interaction potential v(r), the explicit form of /(7 ) depends on

the density via the macroscopic pressure p, cf. Eq. (5). The
pressure p is given by p = —dU/0A where in the vicinity
of a given particle i we can use dA; = d(nrizj) = 2mrjdrij
as the change in the area and the energy per particle u =
U/N =3, iz v(rij)/2N ~ 3 v(rij) for T = 0 such that
p/N ~ — Zj #mav(r,»j)/ar,»j in the ground state. At each
density and depletion length, we obtain B, and B; from
Eq. (8) and p/N for our reference system, i.e., the triangular
lattice, and determine i (r) = v(r) + 2p(Bakr + Bzk?r?)/N.
Note that By in Eq. (8) represents an additive constant which
when plugged into Eq. (5) does not change the qualitative
form of h(r).

In Fig. 3, the red area illustrates the phase space where h
possesses a concave region and where in each nontriangular
stability mode (i = 1, -- -, 5, the yellow “fingers”) the par-
ticles in the corresponding triangular shell k; are located in
this concave region. Within and only within this red area,
we expect the stability of complex nontriangular phases if
stability is dominated by the closer neighbors. If, however,
the closest-neighbor distance in a nontriangular crystal devi-
ates only slightly from the triangular lattice constant at the
same density, it is then upon further neighbors whether the
triangular or the nontriangular one becomes stable. For ex-
ample, some regular phases like the square phase or rhombic
phases that are morphologically close to the square phase are
dominated by one nearest-neighbor length scale exactly as the
triangular phase and therefore whether a triangular, a square or
such a rhombic phase is stable not only depends on the closest
neighbors. As a consequence, our theory can correctly predict
a subdomain of the nontriangular stability region, and thus the
red area shown in Fig. 3 differs from the nontriangular yellow
area obtained by ground-state calculations, if, e.g., a square
phase occurs.

Our approach captures the occurrence of some regular
[e.g., elongated rhombic phases as shown in Fig. 6(b)] and
complex phases (e.g., honeycomb, cluster phases, etc.) that
are dominated by two nearest neighbors with distances suf-
ficiently distinct from the triangular lattice constant. As an
example; the hatched area in Fig. 3 indicates a subspace
of nontriangular phases with stable complex phases whose
nearest-neighbor distances differ at least 15% from the tri-
angular lattice constant in the first, 7% in the second and
third, and 3.5% in the fourth and fifth nontriangular stability
modes. Note that the choice of such a distance cutoff is rather
arbitrary. However, we observe the same qualitative picture
for different cutoffs above 10% in the first nontriangular
stability mode and accordingly adjusted cutoffs at larger sta-
bility modes. Moreover, we assumed so far that the triangular
lattice is destabilized whenever its particles lie in the concave
region of h(r). This being a plausible assumption, we want
to remark that the triangular order can also be suppressed
when particle positions are slightly off the concave region due
to subtle energy differences. We therefore anticipate minor
broadening of the red area along the density axis at fixed kd
when we slightly relax the sufficient condition, namely if we
allow the triangular-lattice particles to be located close to but
outside of the concave part of A(r) to stabilize the complex
nontriangular phases. Hence, the discrepancy between the red
and the hatched area in Fig. 3 is not surprising.
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So far we have investigated the phase diagrams of colloid-
polymer mixtures at fixed Vy/ Wy = 1, where our theory—
despite the aforementioned discrepancy—can predict remark-
ably well the occurrence of complex nontriangular phases.
To convince the reader of the versatility of h(r), we fur-
ther studied the phase diagram in (Vo/ Wy, ./od) plane at
fixed xd in Appendix C. Our enthalpy-based theory can not
only capture the kd-values at which the complex nontri-
angular phases start to occur (cf. Fig. 3), it also correctly
predicts the stability zone of complex nontriangular phases
in (Vo/ Wy, i/pd) plane, especially the Vy/ Wo-values below
which such complex structures become stable; see Fig. 13.

To demonstrate the explicit form of the enthalpy-
like pair potential A(r) in contrast to the pair poten-
tial v(r), we plot h(r) in the inset of Fig. 4 for
kd =0.6,1.2,1.5,1.8 with the reduced pressure p =
2pB3/NVy =~ 0.61,0.048, 0.019, 0.008, respectively. These
reduced pressure values are obtained at ,/od = 1.1. Three of
them, namely «d = 1.2, 1.5, 1.8 show a clear concave region,
whereas h for kd = 0.6 lacks completely such a situation for
any density. A comparison with Fig. 3 confirms our conjecture
that if 2(r) has no concave region such as for kd = 0.6, then
we do not expect the stability of complex phases with multiple
length scales that are fairly distinct from the triangular length
scale.

The global order is still reflected by the pressure as well
as the functional form a(r) used to determine h(r). As a
consequence in principle 4 (r) has to be determined for differ-
ent candidate structures, to check whether the corresponding
candidate structure minimizes the total enthalpy H as given
in Eq. (4). However, since the functional form in Eq. (8)
is a good approximation to many lattices, the enthalpylike
function obtained by this choice for a(r) can be used to check
whether the triangular order is stable or not.

It is noteworthy that our criterion for nontriangular order
does not take three-body or other higher multi-body interac-
tions into account. Note that along the boundaries shown in
Fig. 3 no triple overlaps of depletion zone occurs and therefore
corrections due to many-body forces caused by multiple over-
laps of diffusion zones do not affect these boundaries, while
the boundaries between some of the complex phases shown
in Fig. 2 in principle might change if many-body forces are
considered.

To summarize the results of this subsection, by deter-
mining the enthalpylike pair potential A(r) for triangular
lattices we can predict the parameters where triangular order
or other symmetries dominated by only one length scale
can become unstable, namely if A(r) possesses a concave
part. Furthermore, we know that complex phases that are
dominated by two distances between nearest neighbors can
only occur if such a concave part exists. Note that instead of
complex phase with two or more length scales in principle
also a coexistence between phases with different length scales
might occur.

IV. CONCLUSIONS

We have determined the ground-state phase diagram for
a colloid polymer mixture, which we have modeled with
effective pair interactions involving a short-ranged depletion

attraction and a long-ranged screened electrostatic Coulomb
repulsion. We have found a rich morphology: First, we iden-
tify large regions of triangular-lattice stability and regions
of nontriangular lattices appearing as stability modes as a
function of the density at fixed depletion length and polymer
concentration. Second, the nontriangular regimes themselves
feature a large diversity with respect to the stable phases. We
recover simple phases such as rhombic and square lattices, but
more interestingly, we also reveal complex phase structures
with pentagon-, hexagon-, and octagon-based structures as
well as trimers, triangle-rectangular and triangle-square crys-
tals, most of which are also found to be stable at 7 > 0. Fur-
thermore, some of these ground-state structures correspond to
the well-known Archimedean tilings, self-assembly of which
has attracted a special interest in fundamental and applied
physical sciences [65-67].

Ground-state calculations can always depend on the candi-
date structures that are considered. We have determined all
phases that are obtained for up to n = 6 particles per unit
cell, where we show the phases for up to n = 4 particles per
unit cell and indicate how an inclusion of n =5, 6 particles
into our minimization process yields slight changes shown
by the transparent regions encircled by the red lines. The
overall change when increasing the number of particles per
unit cell is marginal and hence we only expect nonsignificant
morphology changes of the nontriangular stability regions
in the phase diagram in Fig. 2 upon an inclusion of n > 6
particles per unit cell. Our Brownian dynamics simulations
confirm the triangular, square, thombic, and pentagon-based
structures. However, it is noteworthy that occurrence of exotic
phases other than hitherto found ones within the stability zone
of nontriangular lattices cannot be ultimately excluded.

In addition, we have developed a theoretical tool to predict
the self-assembly of complex phase structures in classical
condensed matter systems on a two-particle level. Our ap-
proach involves an enthalpylike pair potential. We found
that our approach can identify the parameter region where
complex structures with two or more length scales are stable.

By using Brownian dynamics simulations, we confirmed
that the nontrivial phase regions observed in the ground state
are still present at nonzero, small temperatures.

Our investigations have fundamental implications as we
identified the ground-state phase diagram of colloid-polymer
mixtures alongside a zoo of novel structures occurring in
the same system, and practical implications as we establish
systematic routes for the self-assembly of complex struc-
tures. These phases should be accessible in experiments and
therefore our phase diagram explains how to tailor complex
colloidal structures that might, e.g., be of interest for photonic
applications: We observe that the nontriangular phases start
to occur at kd = 1, i.e., where the depletion length becomes
approximately equal to the screening length. As a matter
of fact, the screening length x~! can be tuned in experi-
ments, e.g., by varying the salt concentration [76,77], and
under ionized conditions, the screening length can be made
notably smaller than the colloidal diameter. Consequently,
the predicted complex phases can occur at depletion lengths
smaller than the diameter. Note further that in experiments
the depletion length can be as large as 1 um, e.g., Ref. [78],
and thus of the order of the particle diameter, while in many
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systems it is smaller, i.e., kd > 1; see Ref. [43]. Therefore, we
expect that many experimental systems are in the parameter
range where the predicted nontriangular phases can occur.
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APPENDIX A: LATTICE-SUM MINIMIZATIONS

In the following we provide details of the lattice-sum
minimizations employed to obtain the ground-state phase
structures of colloid-polymer mixtures and the corresponding
phase diagrams in Figs. 1, 2, and 3.

The system’s behavior is dictated by the variables density
p, inverse screening length «, depletion length d, and energy
amplitudes V and Wj. Thus, for a given triplet of reduced pa-
rameters (,/pd, kd, Vo/ W), we find the stable phase at T =
0 by minimizing the corresponding potential-energy function
per particle. As we restrict ourselves to periodic structures as
possible candidates, we define the two-dimensional primitive
cell to be a parallelogram with up to n = 6 particles and
to be spanned by the two lattice vectors a = a(1,0) and
b = ay(cosH, sin6), where y denotes the aspect ratio (y =
|b|/|a] = b/a), and 6 is the angle between a and b, see Fig. 5.
The position of a particle i in the parallelogram is specified by
the vector r; = (x;, y;). The total energy per particle can be
written asu = U/N = U,/n with U, denoting the cell energy
given as

1 <& /
Ue =3 UZZI ; v(|r; —r; + T)), (Al)

where v is the pair-interaction potential from Eq. (1),and T =
la + mb with [, m € N. The sum over T runs over all lattice

yA

(x1,y1) a

FIG. 5. Schematic illustration of a unit cell with two particles
possessing spatial coordinates (x;, y;), i = 1, 2. The unit cell is a par-
allelogram spanned by the lattice vectors a and b. In our numerical
calculations, we minimize the angle 6 between the lattice vectors,
their aspect ratio y = |b|/|a|, and the particle coordinates (x;, y;).

cells where the prime indicates that for T = 0 the terms with
i = j are omitted.

Given n particles in the cell, without loss of generality, we
fix one particle at the origin such that we are left with 2(n —
1) positional parameters to minimize. We further include the
geometrical parameters y and 6 into our minimization process
to find the best possible cell shape. These parameters clearly
set b, and they dictate the lattice constant a via the density
o =n/laxb|=n/a’ysin.

To deal with the infinite summation over T in Eq. (Al),
i.e., summation over lattice cells using the integers / and m,
we introduce a cutoff distance beyond which the additional
energy gain is smaller than 1078 times the total energy.

Lastly, we would like to mention that we have used the
Nelder-Mead method [70] to minimize our lattice sums.
Also known as downhill simplex or amoeba method, this
method represents a gradient-free approach, and thus, it might
converge faster than some conventional gradient-based algo-
rithms. In recent years, more sophisticated optimization algo-
rithms have been developed to improve the performance that
make use of, e.g., evolutionary strategies [79,80]. This having
said, however, we deal at most with n = 6 cell particles,
i.e., 10 positional and 2 geometrical minimization parameters.
Hence, for this small set of parameters at hand, we believe
we do not need any highly sophisticated techniques to find
the minimum-energy state. Importantly, we use up to 1000
independently and randomly generated start configurations of
particle positions and cell shapes, where we observe already
the final structure within 10-50 runs for up to n =4, and
within 50-200 for n > 4.

APPENDIX B: STRUCTURAL DETAILS OF STABLE
PHASES

1. Triangular (Tr), rhombic (Rh), and square (Sq) phases

The ground-state phase diagram exhibits three simple crys-
talline phases, namely the triangular, rhombic, and square
phases that are each shown in the left panels of Figs. 6(a)—
6(c), respectively. The red lines serve as a guide to the eye
showing the trivial unit cells in each structure. Characteristic
snapshots of simple phases from finite-temperature BD simu-
lations at V/kpT = 1000 are displayed in the right panels of
Figs. 6(a)-6(c).

We further identify plenty of complex structures containing
at least two particles per unit cell. To achieve a clear overview
for the reader, we choose to present them in groups according
to the main repeating structural unit of each phase. Each group
is uniquely color-coded in Fig. 2 as we use different colors
and its shades for different groups. In the following, we list
these groups alongside with structural images, and for clarity,
we further regard the resulting structures as tilings, and we
illustrate their prototiles.

2. Hexagon-based structures (Hex)

Hexagon-based structures appear in the first nontriangular
region, albeit comprising regular hexagons as their main pe-
riodically repeating unit. For the sake of clarity, we provide
a further point of view on the structures in the remainder of
this paper: In addition to the unit cells that are marked red, we
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(b)

FIG. 6. Triangular (a), rhombic (b), and square (c) phases at T =
0 (left panels) as obtained by lattice-sum minimizations and 7' > 0
(right panels) as obtained by Brownian dynamics simulations. The
red lines on the left panels depict the unit cells of the structures. The
simulations contain N = 2000 particles.

show the characteristic prototiles of the corresponding tilings
by green lines in each figure. In this case, the prototiles are
either a hexagon or a hexagon together with one or two dis-
tinct triangles as indicated by the green lines in Fig. 7(a). One
of these structures corresponds to the well-known honeycomb
lattice [upper left in Fig. 7(a)], whereas the other four consist
of hexagons and triangles each in different stoichiometric
ratios. This group is indicated by shades of green in Fig. 2
including the green transparent region with n =5, 6. The
latter are shown in the lower panel of Fig. 7(a).

The honeycomb lattice coincides with one of the three Pla-
tonic (regular) tilings, namely the hexagonal tiling, whereas
the other two Platonic tilings are the trivial triangular and
square ones which are obtained from the triangular and square
lattice by connecting the nearest neighbors to each other
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FIG. 7. Schematic illustration of five stable hexagon-based struc-
tures with regular hexagons as their main repeating units at 7 = 0
as obtained by lattice-sum minimizations (a), and finite patches of
exemplary configurations with local hexagon formations at 7 > 0
as obtained from Brownian dynamics simulations (b). Different
prototiles of the corresponding tilings are indicated by green lines
in (a). These are either one hexagon or an hexagon with one or two
different triangles. Note that the upper left structure corresponds to
the honeycomb lattice. Red lines in (a) emphasize the unit cells with
n=2...,6.

to constitute the prototiles. The structure on the right hand
side in the lower panel of Fig. 7(a) corresponds to one of
the eight Archimedean tilings, namely to the so called snub
trihexagonal tiling.

3. Octagon-based structures (Oct)

Octagon-based structures occur in the first nontriangular
stability mode for xd > 1.5 and 1.2 < ,/pd < 1.4 and they
are colored gray in Fig. 2 including the gray transparent
region. We identify five different structures with a nonregular
octagon as the main repeating unit, where four of them tile the
space together with one or two different triangles (not neces-
sarily equilateral). Hence, the prototiles are an octagon and
one or two triangles as indicated by green lines in Fig. 8(a).
The red lines show a minimal unit cell for each structure.

4. Trimers (Tri)

The trimer phase is found at «d > 1.7 and ,/pd ~
0.9 with the corresponding phase structures involving two
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FIG. 8. Schematic illustration of five stable octagon-based struc-
tures with nonregular octagons as their main repeating units at 7 = 0
as obtained by lattice-sum minimizations (a), and finite patches of
exemplary configurations with local octagon formations at 7 > 0 as
obtained from Brownian dynamics simulations (b). The prototiles of
the corresponding tilings are either one octagon or an octagon with
one or two different triangles as indicated by green lines, whereas red
lines mark the unit cells with n = 3, 4, 5 in (a).

well-separated length scales per dimension. The larger one
dictates the periodicity of the overall lattice, whereas at the
smaller length scale, the particles are arranged in equilateral
triangles as a basis, see Fig. 9. The corresponding tiling
possesses four distinct triangles as indicated by the green
lines in the same figure, where also a unit cell with n = 6 is
demonstrated by red lines.

Note that, in our finite-temperature simulations, we do not
observe well-ordered trimers as shown in Fig. 9. We rather
observe randomly distributed local trimer clusters without any
orientational and translational long-ranged order. We have
further noticed that in the vicinity of the zero-temperature
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FIG. 9. Schematic illustration of a stable trimer structure at 7 =
0 as obtained by lattice-sum minimizations. The corresponding tiling
can be constructed by four different triangles as its prototiles which
are shown by green lines. Red lines mark the unit cell with n = 6.
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FIG. 10. Schematic illustration of four stable triangle-
rectangular structures at 7 =0 as obtained by lattice-sum
minimizations (a), and finite patches of exemplary configurations
with triangles and rectangles at 7 > 0 as obtained from Brownian
dynamics simulations (b). The corresponding tiling has a rectangle
and a triangle as its prototiles, whereas the ratio between them
differs in each structure. Red lines in (a) mark the unit cells with
n=2...,5.

density regime of trimers, our simulations also show dimers
reminiscent of the upper left structure in Fig. 10(a) as will be
discussed in the following.

5. Triangle-rectangular structures (TR)

Here, we reveal four different types of lattice structures,
where we choose to demonstrate the lattice points as arranged
in triangles and rectangles as basic constituents [prototiles
of the corresponding tilings, cf. green lines in Fig. 10(a)].
Each structure possesses a different ratio between these con-
stituents. The upper left structure of Fig. 10(a) occurs in the
first nontriangular stability mode (,/pd < 1.1), whereas the
others are identified for kd > 1.3 and 2.1 < ,/pd < 2.3. The
stability zones are shown by red areas in Fig. 2. As usual, the
red lines in Fig. 10(a) depict the unit cells withn =2, ..., 5.

6. Triangle-square structures (TS)

Triangle-square phase is indicated by the turquoise region
in the phase diagram in Fig. 2 with the phase structure
possessing four particles in the unit cell [cf. red lines in
Fig. 11(a)]. The corresponding tiling consisting of equilat-
eral triangles and squares as specified by the green lines in
Fig. 11(a) is revealed to be the snub square tiling, also known
as o- or H-phase, which corresponds to one of the eight
Archimedean tilings.
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FIG. 11. Schematic illustration of a stable triangle-square struc-
ture at 7 = 0 as obtained by lattice-sum minimizations (a), and a
finite patch of an exemplary configuration with triangle-square for-
mation at 7 > 0 as obtained from Brownian dynamics simulations
(b). It composes of a square and a triangle as the prototiles of the
corresponding tiling. Red lines in a) mark the unit cell with n = 4.

7. Pentagon-based structures (Pen)

In this group, we have four perfect ground-state lattice
structures possessing n =5 (n = 6) as shown in the upper

(a)
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FIG. 12. Stable pentagon-based structures at (a) 7 = 0 as ob-
tained by lattice-sum minimizations and (b) 7 > 0 with nonregular
pentagons being the main repeating unit as obtained by Brownian
dynamics simulations. The four crystalline ground-state structures
are schematically illustrated in (a), where green lines indicate the dif-
ferent prototiles of the corresponding tilings, and red lines emphasize
the unit cell in each structure. In (b), two characteristic simulation
snapshots are shown exhibiting high local pentagonal order and
resembling some of the pentagon-based structures from (a).

(lower) level of Fig. 12(a), with the red lines indicating
the corresponding unit cells. These structures are found in
a relatively broad regime in the first nontriangular stability
mode for 1.1 < /pd < 1.4 around « ~ 1 as well as in a
tiny regime for ,/pd ~ 2.15 and kd > 1.7. These regions are
indicated by the purple transparent areas in Fig. 2.

As seen in Fig. 12(a), the pentagon-based structures differ
in the type and number of prototiles, that is, some of them
tile the space periodically by just one nonregular pentagon,
whereas others need (beside the pentagon) one or two differ-
ent triangles or a triangle and a square.

In Fig. 12(b), we demonstrate two characteristic snap-
shots of finite-temperature simulations showing clear local
pentagonal orderings. Black dots represent particle positions,
whereas red lines have been introduced to connect the nearest
neighbors based on a distance criterion, and thus to highlight
a possible tessellation of the space with pentagons. The basic
difference between both snapshots in Fig. 12(b) is that the
left one comprises predominantly pentagons and rhombuses
as tiles, whereas in the right image there exists a considerable
amount of triangles beside the pentagons, suggesting a strong
resemblance to the ground-state structure shown on the upper
left in Fig. 12(a). We would like to mention that we have
undertaken different runs starting from random, triangular,
and square lattice configurations, and all runs lead to very sim-
ilar final configurations displaying the same local pentagonal
orderings at prescribed system parameters.

0256 0.8 1 12 1.4 1.6

FIG. 13. Ground-state phase diagram of colloid-polymer mix-
tures at fixed kd = 1. The nontriangular stability mode as determined
by lattice-sum minimizations is shown by the yellow region. The
actual determined phase points at the boundary are indicated by
the corresponding tokens. The red region indicates the theoretically
predicted stability zone where complex nontriangular structures with
two different length scales that are sufficiently distinct from the
triangular length scale are expected to become stable. The hatched
nontriangular subdomain comprises such stable complex phases as
obtained by lattice-sum minimizations where the closest-neighbor
distance deviates at least fifteen percent from the triangular lattice
constant.
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APPENDIX C: PHASE DIAGRAM IN (V,/W,, ./pd)-PLANE

In Fig. 13 we present the phase diagram as a function of the
ratio of the energy amplitudes 0.25 < V;/ Wy < 1.4 and the
reduced density 0.6 < ./pd < 1.8 at fixed «d = 1, focusing
thereby on the first nontriangular stability mode. The yellow
area indicates as usual the nontriangular phases as determined

by lattice-sum minimizations, whereas the red area shows the
theoretical prediction of the complex phases based on h(r).
Our theoretical approach is able to capture quite well the
stability of complex phases whose next-neighbour distances
deviates at least 15% from the triangular lattice constant at
the respective density (cf. the hatched area).
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