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Computing transition rates for rare events: When Kramers theory meets the free-energy landscape
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Computing reactive trajectories and free-energy landscapes associated with rare-event kinetics is key to
understanding the dynamics of complex systems. The analysis of the free-energy landscape on which the
underlying dynamics takes place has become central to compute transition rates. In the overdamped limit,
most often encountered in biophysics and soft condensed matter, the Kramers theory and its multidimensional
extension derived by Langer have proved to be quite successful in recovering correct kinetics. However, the
additional calculation to obtain rate constants in complex systems where configurational entropy is competing
with energy is still challenging conceptually and computationally. Building on the Kramers theory and the
metadynamics framework, we propose an expression for the rate in terms of the height of the free-energy barrier
measured along the minimum free-energy path and an auxiliary measure of the configurational entropy in terms
of the joint probability distribution of the reactive and nonreactive coordinates representing the slow modes of
the system. We apply the formalism to three different problems where our approach shows good agreement with
simulations and experiments and can present significant improvement over the Kramers-Langer’s framework
when slow entropic contribution, such as configurational entropy, predominates over enthalpic contribution.
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I. INTRODUCTION

Since the seminal work of Hendrik A. Kramers in 1940
[1], the study of rare events has been a subject of considerable
interest to several scientific communities [2–10]. These events
are rare because the systems of interest have to overcome
some barriers, which can either be of an energetic or an en-
tropic nature. From a theoretical viewpoint, rate theories, such
as transition-state theory [11] and Kramers theory [1,2] (KT),
have been successful in providing the language, the intuition,
and the foundation for the development of computational tools
for studying barrier-crossing events. What is most attractive
about rate theory is its simplicity. It states basically that to
move from the reactant state to the product state, the system
has to navigate itself to the transition state, which is a saddle
point on the potential or free-energy (FE) surface. In many
cases, one can also define the most probable transition path for
the reaction, which for overdamped systems of interest here is
simply the minimum FE path (MFEP).

Molecular dynamics (MD) simulations are now used on
a regular basis to study the statistical properties of barrier-
crossing events in the long-time limit [4–8]. In the context
of rare events, the systems can present different FE minima,
each one trapping the dynamics for a time that can be long
compared to fast bond vibrations, until a thermally activated
jump is eventually performed toward another metastable or
global minima. Ideally, a complete understanding of an ac-
tivated process would encompass all of its kinetic aspects.
However, there is often a wide gap between the timescale of
the transition of interest and the timescale accessible with sim-
ulations, and one is content with reconstructing the geometric
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pathways and their FE profiles [12,13]. To do so, a number
of different computational approaches were introduced in the
past few decades, sometimes designed for the purpose and
sometimes borrowed from different disciplines [10]. Never-
theless, it remains necessary to asses the reliability of these
methods with comparison to appropriate rate theory [14].

In the present work, we consider the overdamped limit
most often encountered in biophysics and soft condensed
matter [8,15], for which the Kramers theory and its multi-
dimensional extension derived by Langer [16] have proved
to be quite successful in recovering correct kinetics. Focus-
ing on complex systems characterized with metastable states
where entropy is competing with energy, we introduce a new
approach to evaluate transition rates when configurational
entropy [15,17,18] associated with slow nonreactive modes
in the metastable basins makes the Kramers theory and its
multidimensional extension fail. Building on KT and the
metadynamics [19,20] (metaD) framework, the rate is first
expressed in terms of the height of the FE barrier measured
along the MFEP. We then define an auxiliary measure of
the configurational entropy in terms of the joint probability
distribution of the reactive and nonreactive coordinates rep-
resenting the slow modes of the system along which the FE
landscape is sampled [21].

II. THEORY

The starting point in the theory of barrier crossing under
the influence of friction initiated by Kramers is the inertial
Langevin equation with Markovian friction and random forces
coupled to reaction coordinate motion [22]:

mq̈ = −∂V

∂q
− γ q̇ + R(t ). (1)
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In Eq. (1), q represents the reaction coordinate, m is the
reduced mass for the reaction coordinate, γ is the friction
coefficient, and V (q ) is a potential of mean force (PMF). R(t )
is a random force with zero mean that satisfies the fluctuation-
dissipation theorem [23]. Without loss of generality, we set
m = 1 in the following. In principle, the Langevin equation
can be constructed from MD simulations. For instance, the
PMF can be computed using metaD or umbrella sampling
simulations. KT is a valid approximation for real solvent as
encountered in polymer physics and classic theories of nu-
cleation and provides a unified framework for understanding
how dynamics influence reaction rates [14]. In particular,
the strong friction limit of interest here is where quanti-
tative results from KT are most reliable. In this limit, the
time evolution of the probability density P (x, t ) is governed
by the Smoluchowski equation [1]

∂P (q, t )

∂t
= − 1

γ

∂

∂q

[
∂V

∂q
P (q, t ) + 1

β

∂P (q, t )

∂q

]
, (2)

where the right-end term in Eq. (2) corresponds to the gradient
of the probability flux J over the barrier

J = − 1

γ
e
− V (q )

kB T
∂

∂q

[
e

V (q )
kB T P (q, t )

]
, (3)

considering the system is thermalized near the bottom of the
well [1]. Following the original reasoning of Kramers [1],
we assume a steady-state escape rate, kKT, by considering a
stationary situation for the the probability flux J , ∂P

∂t
= 0.

For sufficiently high FE barrier the probability density fol-
lows the equilibrium relation P (q ) = P (q0) exp {−[V (q ) −
V (q0)]/kBT }. Integrating Eq. (3) along the PMF and expand-
ing about the transition state, qT , yields

J = P (q0)

√|V ′′(qT )|
2πγ

e
− V (qT )−V (q0 )

kB T . (4)

Rewriting J = p kKT, with p the probability of the particle
being inside the metastable well and kKT the Kramers escape
rate, we consider that the system is confined to a small neigh-
borhood �q0 around the minimum q0 of the well. Expanding
about this point, the probability of finding a particle in the well
is

p =
∫

�q0

P (x)dx = P (q0)

√
2πkBT

V ′′(q0)
. (5)

This yields the Kramers escape rate

kKT =
√

V ′′(q0) × |V ′′(qT )|
2πγ

e−�V/kBT , (6)

where �V = V (qT ) − V (q0). The expression in Eq. (6) must
account for the symmetric or asymmetric nature of the FE
profile in the metastable states and the transition state. To do
so, the PMF V (q ) in Eq. (1) can either be fitted with Gaus-
sian or skew-Gaussian curve depending on the symmetric or
asymmetric nature of the FE profile either in the metastable

well bottom or the transition state [15,24], respectively

Vsym(q ) ∝ e−(q−q0 )2/2σ 2
, (7)

Vasym(q ) ∝ Vsym(q )

{
1 + erf

[
α(q − q0)√

2σ

]}
, (8)

with σ and α the parameters of the distributions. We can then
rewrite Eq. (6) in the form of the expression originally derived
by Kramers in the overdamped regime [1],

kKT = ωeff
0 ωeff

T

2πγ
e−�V/kBT , (9)

where ωeff
0 and ωeff

T represent the effective stiffnesses of the
well and the barrier, respectively, modeled with the symmetric
or asymmetric distributions in Eqs. (7) and (8). In Eq. (9),
�V = V (qT ) − V (q0) can either represent a potential energy
difference, as originally considered by Kramers [1], or a FE
difference, as considered thereafter.

The KT discussed above gives a physical derivation of
the reaction rate constant, kKT, in terms of the shape of the
FE profile, which includes the full enthalpic and entropic
contributions. This consideration comes closer to reality for a
reaction with a FE landscape containing a large energy barrier
and narrow valley between reactants and products, but it will
be a poor approximation in the presence of slow nonreactive
modes, such as configurational entropic contribution [14]. In
such a case the standard KT fails and the slow mode dynamics
must be treated explicitly on an equal footing with the mode
along the reaction coordinate, as addressed within the multi-
dimensional Kramers-Langer’s framework (KLT) [16,25–27]
with the escape rate

kKLT = 1

2π

[
det HV (q0)

| det HV (qT )|
]1/2

hT e−�V/kBT . (10)

In Eq. (10), HV (q0) and HV (qT ) are the Hessian matrices of
the potential energy function with respect to coordinates at the
well bottom and the transition state, respectively, and hT is a
single positive root of the equation det [m̂h + γ̂ h + V (qT )] =
0, where m̂ and γ̂ are the tensors of masses and friction
coefficients, respectively [16,25,26].

Eventually, the global convergence of the multidimen-
sional FE surface might even not be achieved within the
metaD framework when large entropic fluctuations come into
play and both KT and KLT fail. To overcome this limitation,
we propose an expression for the rate constant in terms of the
height of the free-energy barrier measured along the MFEP,
F , and an auxiliary measure of the configurational entropy,
Sconf, in terms of the joint probability distribution of the
reactive and nonreactive coordinates representing the slow
modes of the system.

Since its introduction in 1981 by Kushick and Karplus in
the context of macromolecules [17], a number of methods
have been proposed in the literature to estimate the con-
figurational entropy of complex systems [17,18,30–32]. We
consider here the definition of the FE difference between
two metastable basins Bi and Bj , �F ∗

ij , in terms of the
joint probability distribution of the collective variables (CVs)
representing the slow modes of the system along which the FE
landscape is sampled [21]. The entropic contribution of the FE
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surface can be assessed quantitatively,

�F ∗
ij = −kBT log

( Pi

Pj

)
, (11)

where Pi and Pj are the probabilities of states i and j ,
respectively. The probability of each state is computed as the
integral of the distribution within the FE basin it occupies on
the CV-space sampled within the metaD framework,

Pi =
∫∫

Bi

f (C1, C2, . . .) dC1 dC2 . . . , (12)

where f is the joint probability density distribution function
associated with the system FE, and {C1, C2, . . . } is the
subset of CVs associated with the slow reactive and nonre-
active coordinates. As the latter are predominantly associated
with entropic barriers, they are not necessarily used as CVs
within the accelerated MD framework considered to bias the
simulation. The FE difference defined in Eq. (11) is not, in
general, the exact FE difference between metastable states,
which is a well-defined quantity not dependent on any choice
of CV. Instead, it represents a surrogate expression, due to
integration of probability in a smaller region than that of
each metastable state, formally capturing the reactive and
nonreactive coordinates representing the slow modes of the
system.

Denoting �Fij the FE difference between the two
metastable basins Bi and Bj measured along the MFEP,
the difference in configurational entropy, �Sconf

ij , would be
assessed as [32]

−T �Sconf
ij = �Fij − �F ∗

ij . (13)

Considering in Eq. (9) the auxiliary measure of the configu-
rational entropy, the ratio ki/kj between the rates associated
with the transition between two metastable basins Bi and Bj

can be written as

ki

kj

= k
(ij )
conf

(
ωi

ωj

γj

γi

e−�Fij /kBT

)
, (14)

with k
(ij )
conf = e�Sconf

ij /kB = e(�F ∗
ij −�Fij )/kBT a correction factor

accounting for the difference in configurational entropy be-
tween the metastable basins. Given the definition on the FE
difference in Eq. (11), the transition rate ratio assessed in
Eq. (14) would represent a surrogate of the correct ratio when-
ever �F ∗

ij is not the exact free-energy difference between
metastable states. Substituting in Eq. (14) the FE differences,
�Fij and �F ∗

ij , between the metastable basins Bi and Bj with
the FE difference, �FiT and �F ∗

iT , between the metastable
basin Bi and the transition state T in Eqs. (13) and (11), we
can rewrite Eq. (9) to assess the absolute transition rate as

ki = k
(iT )
conf

(
ωiωT

2πγi

e−�FiT /kBT

)
, (15)

with k
(iT )
conf = e(�F ∗

iT −�FiT )/kBT . Eventually, the direct estima-
tion of the absolute transition rate, ki , can be determined if
the reduced mass, m, and the effective friction coefficient, γ ,
defined in Eq. (1) are known [14]. As in standard KT, the
parameters m and γ can be obtained from the equipartition
theorem and clamped simulations, respectively, as discussed
in Ref. [14]. The computation of the absolute transition rates

derived in Eq. (15) would then be subject to the reliability
of Eq. (11), at least when configurational entropy is compet-
ing with energy, in the neighborhood of the transition state
[33,34].

III. RESULTS AND DISCUSSION

In the following, we proceed with three illustrative ap-
plications of our approach, each with different levels of
coarse-graining and entropic contribution. We focused our
analysis on the calculation of the ratio of transition rates
as it is encountered when comparing with equilibrium con-
stant measured in biophysical experiments [35]. The details
of the numerical simulations are given in the appendices.
The first two examples show that our approach is in close
agreement either with the standard Kramers theory or its
multidimensional extension when a truly converged FE profile
can be reconstructed within the metaD framework. In the last
example, where configurational entropy associated with slow
nonreactive modes competes significantly with the enthalpy of
the system, Kramers-Langer’s theory fails as the convergence
of the FE profile is not achievable. Nevertheless, our approach
based on a converged MFEP, even in highly entropic systems,
and an auxiliary measure of configurational entropy in the
vicinity of the MFEP could assess quantitatively the interplay
between the thermodynamics and kinetic characteristics of the
system.

A. Alanine dipeptide in water

The conformational transition between the different con-
formers of the solvated alanine dipeptide has been extensively
used as a case study for several theoretical and computa-
tional investigations [6,36–39]. We performed well-tempered
metaD (WT-metaD) atomistic simulations [40,41] using both
torsional angles � and � as CVs. The FE surface for this
molecule is shown in Fig. 1(a). The location of the metastable
basins and the height of the FE barriers are in agreement with
those found in the literature [36,37]. While the full analysis
of the transition rate ratio accounting for the competition
between the two transition states, TS1 and TS2, in Fig. 1,
can be achieved using Eq. (15), we focused our analysis
on the conformational transition between conformers α and
β over the lowest FE barrier (TS2 in Fig. 1). We deter-
mined the value of the FE difference along the MFEP shown
in Fig. 1(a), �F0

αβ = F (β ) − F (α) = −0.3 ± 0.1 kBT . The
nonlinear least-squares Marquardt-Levenberg algorithm [29]
was implemented to fit the effective stiffnesses ωm = 4.9 ±
0.1 and ω0 = 5.3 ± 0.1 at the bottom of the metastable (α)
and equilibrium (β) basins, respectively, along the MFEP.
Furthermore, the FE difference, �F ∗

αβ = −0.3 ± 0.1 kBT ,
defined in Eq. (11) in terms of the probability distribution
of � and �, was computed considering the successive iso-
surfaces in the FE basins depicted in Fig. 1(a) as integration
domains [cf. Eq. (12)]. Assuming that the effective friction
coefficient, γ , in Eq. (15) remains unchanged in the transitions
α ↔ β, one obtains the transition rate ratio, kβ→α/kα→β =
(6.0 ± 1.4) × 10−1. This result is in good agreement with
the numerical ratio obtained with the atomistic unbiased MD
simulations k

(num)
β→α /k

(num)
α→β = (6.9 ± 1.1) × 10−1 (cf. details in

Appendix A).
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FIG. 1. (a) FE surface associated with the conformational transition between conformers α and β of solvated alanine dipeptide as a function
of the two dihedral angles � and � (see inset). The contour lines are every half kBT . The typical MFEP obtained within the steepest descent
framework [28] is shown in red along with the locations of the transition states (TS). (b) FE of solvated alanine dipeptide as a function of the
progression along the typical MFEP (normalized to unity). (c) FE profile of solvated alanine dipeptide reconstructed along the dihedral angle
� obtained within the WT-metaD framework. The nonlinear least-squares Marquardt-Levenberg algorithm [29] was implemented to fit the
effective stiffnesses ω0 and ωm, measured in the equilibrium (β) and metastable (α) states, respectively.

For comparison, the transition rate ratio, k
(KT)
β→α/k

(KT)
α→β , ob-

tained within the standard KT in Eq. (9) was estimated. Fig-
ure 1(c) shows the FE profile of the system projected along the
dihedral angle � reconstructed within the WT-metaD frame-
work. We determined the value of the FE difference along
the FE profile, �F 0

αβ = −0.6 ± 0.1 kBT , and the effective
stiffnesses ωm = 4.8 ± 0.1 and ω0 = 5.3 ± 0.1 at the bottom
of the metastable (α) and equilibrium (β) basins, respectively.
The standard KT yields k

(KT)
β→α/k

(KT)
α→β = (6.0 ± 1.0) × 10−1,

in close agreement with Eq. (14) and the numerical ratio
obtained with the atomistic unbiased MD simulations.

B. Linear DNA denaturation bubble

The cooperative opening and closure of a sequence of
DNA consecutive base pairs (bps) is central in biological
mechanisms [8,42–46]. From a theoretical point of view, the
double strand DNA (dsDNA) segments are considered to be
in a low-entropy state and to carry the enthalpic contribu-
tions from the bound bps, whereas the flexible single-strand
DNA (ssDNA) denaturation bubbles correspond to entropy
reservoirs [42]. We performed coarse-grained WT-metaD and
Brownian simulations using the width ρmax of the bubble de-
fined in Fig. 2(a) as CV. To explore the slow nonreactive mode
associated with the entropic evolution of the DNA bubble
within the metastable basin (op), we followed the evolution
of the minimal twist angle, �min, inside the bubble [8,47]
along with the reactive coordinate ρmax [cf. Fig. 2(b)]. The
analysis of the FE surface associated with the bubble closure
and opening mechanisms, as shown in Fig. 2(a), allowed us
to determine the value of the FE difference measured along
the MFEP (normalized to unity) depicted in Fig. 2(a), �F =
F (op) − F (cl) = 9.0 ± 0.1 kBT . The nonlinear least-squares
Marquardt-Levenberg algorithm [29] was implemented to fit
the effective stiffnesses ωm = 5.3 ± 0.2 and ω0 = 64.2 ± 2.1
at the bottom of the metastable (op) and equilibrium (cl)
basins, respectively, along the MFEP. Furthermore, to assess
the value of the FE difference defined in Eq. (11) in term
of the probability distribution of ρmax and �min, �F ∗ =

6.7 ± 0.1 kBT , we considered the successive isosurfaces de-
picted in Fig. 2(a) as integration domains.

Considering the Rouse model [42] valid for flexible poly-
mer chain, the effective friction coefficient, γ , in Eq. (15)
depends on the number of opened bps, Nbub, in the DNA
bubble. The typical size observed in the simulations, Nbub ≈
10 bps, yields the relation γop/γcl ≈ Nbub between the effec-
tive frictions in Eq. (14). We obtained the transition rate ratio,
kcl→op/kop→cl = (1.5 ± 0.6) × 10−3, as defined in Eq. (14), in
close agreement with the numerical ratio obtained within the
accelerated MD framework, k

(num)
cl→op/k

(num)
op→cl = (1.8 ± 0.4) ×

10−3 and the experimental times measured by Altan-Bonnet
et al. [48] (cf. details in Appendix B).

For comparison, the transition rate ratio, k
(KT)
cl→op/k

(KT)
op→cl,

obtained within the standard KT was estimated. Figure 2(c)
shows the FE profile of the system projected along ρmax re-
constructed within the WT-metaD framework. We determined
the value of the FE difference along the FE profile, �F 0 =
10.3 ± 0.1 kBT , and the effective stiffnesses ωm = 5.4 ± 0.4
and ω0 = 64.3 ± 1.9 at the bottom of the metastable (op) and
equilibrium (cl) basins, respectively. The standard KT defined
in Eq. (9) yields k

(KT)
cl→op/k

(KT)
op→cl = (4.0 ± 0.7) × 10−3, which

differs by a factor 3 from the expression derived in Eq. (14).
This overestimation would stem from the presence of slow
nonreactive modes that must be treated explicitly [26,27].

To further assess the reliability of Eq. (14) when a
truly converged FE surface is reconstructed within the
WT-metaD framework, we estimated the transition rate ra-
tio k

(KLT)
cl→op/k

(KLT)
op→cl within the Kramers-Langer theory, which

takes explicitly into account the slow nonreactive coordi-
nate �min along with the reactive coordinate ρmax. Con-
sidering in Eq. (10) the FE difference measured along the
MFEP, �F = F (op) − F (cl) = 9.0 ± 0.1 kBT , and the ra-
tio {det HV (cl)/ det HV (op)}1/2 = 1.0 ± 0.4, we obtained the
transition rate ratio k

(KLT)
cl→op/k

(KLT)
op→cl = (1.3 ± 0.6) × 10−3 in

close agreement with Eq. (14) and the numerical ratio ob-
tained within the accelerated MD framework (cf. details in
Appendix B).
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FIG. 2. (a) FE surface associated with the DNA bubble closure and nucleation mechanism projected along the maximal distance between
paired bases ρmax and the minimal twist angle between successive paired bases, φmin (see inset). The contour lines are every two kBT . The
two stable basins associated with the opened (op) and closed (cl) states of the DNA bubble and the typical MFEP obtained within the steepest
descent framework [28] are shown (red). (b) FE of the DNA bubble as a function of the progression along the typical MFEP (normalized
to unity). (c) FE profile of the system projected along ρmax reconstructed within the WT-metaD framework. The nonlinear least-squares
Marquardt-Levenberg algorithm [29] was implemented to fit the effective stiffnesses ω0 and ωm, measured in the equilibrium (cl) and
metastable (op) states, respectively.

C. Circular DNA denaturation bubble

To conclude this analysis, we studied the cooperative open-
ing and closure of the denaturation bubble in a negatively
supercoiled DNA minicircle within the WT-metaD framework
and using the width ρmax of the bubble as CV. As discussed
in the previous example, we explore the slow nonreactive
mode associated with the entropic evolution of the DNA
bubble within the metastable basin (op), following the evo-
lution of the minimal twist angle, �min, inside the bubble.
Building on the recent work of Sicard et al. [47], we set
the parameters of the system so that neither the computation
of a truly converged FE profile, as shown in Fig. 1(c), nor
the direct numerical estimation of the transition rate, k

(num)
op→cl,

were achievable within an accelerated MD framework (cf.
details in Appendix C). Indeed, the flatness of the FE basin
associated with large configurational entropy contribution as-
sociated with slow nonreactive modes in the opened state of
the denaturation bubble significantly predominates over the

enthalpy contribution. In such a case, the shape of the original
FE surface could not be evenly maintained after the addition
of the bias potential [4] and Kramers-Langer’s theory fails.

Nevertheless, the convergence of the MFEP in Fig. 3(b)
along with the convergence of the FE surface in its vicinity
allowed us to determine the value the FE difference measured
along the MFEP, �F0 = F (op) − F (cl) = −4.4 ± 0.5 kBT ,
and the effective stiffnesses ωm = 69.5 ± 3.1 and ω0 = 3.7 ±
0.2 at the bottom of the metastable (op) and equilibrium (cl)
basins, respectively. Furthermore, we assessed the value of the
FE difference defined in term of the probability distribution
of ρmax and �min, �F ∗ = −8.6 ± 0.4 kBT , considering the
successive isosurfaces in the FE basins depicted in Fig. 3(a)
as integration domains.

Considering the typical size of the DNA bubble observed
in the simulations, Nbub ≈ 12 bps, we determined the pa-
rameter γop/γcl ≈ Nbub and obtained the transition rate ratio,
kcl→op/kop→cl = (1.0 ± 0.4) × 106. This result is consistent

FIG. 3. (a) FE surface associated with the circular DNA bubble closure or nucleation mechanism projected along the maximal distance
between paired bases ρmax and the minimal twist angle between successive paired bases, φmin. The contour lines are every two kBT . The
two stable basins associated with the opened (op) and closed (cl) states of the DNA bubble and the typical MFEP obtained within the steepest
descent framework [28] are shown (red). (b) FE of the circular DNA bubble as a function of the progression along the typical MFEP (normalized
to unity). The nonlinear least-squares Marquardt-Levenberg algorithm [29] was implemented to fit the effective stiffnesses ω0 and ωm, measured
in the equilibrium (op) and metastable (cl) states, respectively. (c) Temporal evolution of the FE profile of the system along ρmax reconstructed
in the WT-metaD simulation. The convergence of the FE profile could not be achieved due to large entropic fluctuations. The FE profiles are
shifted arbitrarily along the ordinate axis for clarity.
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with the inversion of the thermodynamic stability of the
system with respect to opened and closed DNA states, char-
acteristic of the predominant stability of the long-lived denat-
uration bubble in supercoiled DNA [47]. Furthermore, the di-
rect estimation of the transition rate k

(num)
cl→op = (204 ± 25) s−1,

obtained within the accelerated MD framework, along with
the computation of the ratio kcl→op/kop→cl allowed us to
assess the value of k

(num)
op→cl = (204 ± 106) μs−1 (cf. details in

Appendix C).

IV. CONCLUSION

In this paper we discussed the theoretical background and
algorithmic details to compute the transition rates of complex
systems when slow nonreactive modes, such as configura-
tional entropy contribution, come into play and significantly
predominate over the enthalpy contribution. In such a case,
Kramers theory and its multidimensional extension can fail
when the convergence of the FE profile is not achievable
within the accelerated MD framework. To overcome this
limitation, we proposed an alternative expression for the rate
in terms of the height of the FE difference measured along a
truly converged MFEP and an auxiliary measure of the config-
urational entropy in terms of the joint probability distribution
of the reactive and nonreactive coordinates representing the
slow modes of the system.

We considered three illustrative applications presenting
different level of coarse-graining and entropic contribution.
Our approach appears to be in close agreement either with
the standard Kramers theory or its multidimensional extension
when a truly converged FE profile is reconstructed within
the metaD framework. In the limit where configurational
entropy associated with slow nonreactive modes competes
significantly with the enthalpy of the system, the shape of the
original FE landscape cannot be evenly maintained within the
accelerated MD framework. Nevertheless, our approach could
assess quantitatively the interplay between the thermodynam-
ics and kinetic characteristics of such complex systems.

Finally, let us comment on the dependence of the measure
of the configurational entropy contribution on the choice of
the auxiliary CVs associated with the slow nonreactive modes.
Similarly to the metaD framework used to explore the FE
landscape of complex systems, the reliability of our approach
is strongly influenced by the choice of the auxiliary CVs con-
sidered in Eq. (12). To overcome such limitations, one could
consider the potential energy of the system as an auxiliary CV
as recently explored by Salvalaglio and coworkers [49], within
the metaD framework, to break down FE surfaces into their
entropic and enthalpic components. Eventually, one would
compute rigorously the configurational entropy contribution
and identify a complementary measure along an arbitrary
chosen CV. This roadmap will be considered in the near
future.
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APPENDIX A: ALANINE DIPEPTIDE IN WATER

The metastable states of the solvated alanine dipeptide are
differentiated by the values of the backbone dihedral angles
� and �, as defined in the main text, and are separated by
activation FE barriers of ≈10 kJ/mol and ≈15 kJ/mol. We
used a Langevin thermostat to enforce the temperature [51],
a time step of 0.2 fs, AMBER03 forcefield [52] with TIP3P
water model [53], and GROMACS 5.1 molecular dynamics
code [54] patched with PLUMED 2.3 [55]. To reconstruct the
FE surface, we performed WT-metaD atomistic simulations
[40,41] using both torsional angles � and � as CVs and
a bias factor of 3 at 300 K. The initial Gaussian height
was 1.25 kJ/mol, the width was 0.25 rad, and the deposition
stride was 0.12 ps. A single alanine dipeptide molecule was
kept in a solvated periodic cubic box of edge ≈3 nm. The
LINear Constraint Solver (LINCS) algorithm [56] handled
bond constraints while the particle-mesh Ewald scheme [57]
was used to treat long-range electrostatic interactions. The
nonbonded van der Waals cutoff radius was 0.8 nm.

To estimate the mean transition times between the
metastable (α) and the equilibrium (β) states of the peptide,
we ran a free MD simulation of 10 ns. We focused our analysis
on the conformational transition between conformers α and β

over the lowest FE barrier, as discussed in the main text. The
statistics for τ

(num)
α→β and τ

(num)
β→α conformed to a Poisson distribu-

tion with means μα→β = (148 ± 6) × 10−3 ns and μβ→α =
(215 ± 10) × 10−3 ns and variance λα→β = 106 × 10−3 ns
and λβ→α = 176 × 10−3 ns, respectively. The statistics obey
a two-sample Kolmogorov-Smirnov test [7] with p values
equal to 0.96 and 0.88, respectively. This yields the numerical
ratio k

(num)
β→α /k

(num)
α→β = (6.9 ± 1.1) × 10−1.

APPENDIX B: LINEAR DNA DENATURATION BUBBLE

The characteristic times associated with cooperative open-
ing and closure of a sequence of DNA consecutive base pairs
(bps), composed of adenine (A), cytosine (C), guanine (G),
and thymine (T), measured experimentally by Altan-Bonnet
et al. [48] showed large bubble lifetimes of 20–100 μs and
nucleation time of several ms. We used the DNA model of
Refs. [8,46], where the mesoscopic DNA model consists in
two interacting bead-spring chains each made of N = 50
beads (of diameter a = 0.34 nm) at position ri , with an AT-
rich region of 30 bps in the middle and a GC region of 10 bps
at each extremity. The Hamiltonian is H = H(1)

el + H(2)
el +

Htor + Hint, where the first two contributions are elastic en-
ergies of the strands j = 1, 2 which include both stretching
and bending energies,

H(j )
el =

N−1∑
i=0

κs

2
(ri,i+1 − aref )

2 +
N−1∑
i=0

κθ

2
(θi − θref )

2. (B1)
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The stretching modulus, a2β0κs = 100, is a compromise be-
tween numerical efficiency and experimental values [58],
where β−1

0 = kBT0 is the thermal energy, T0 = 300 K is the
room temperature, and aref = 0.357 nm. The bending mod-
ulus is large, β0κθ = 600, to maintain the angle between
two consecutive tangent vectors along each strand θi to the
fixed value θref = 0.41 rad. Each strand is thus modeled as a
freely rotating chain [59]. The third and fourth terms of H
are the torsional energy and hydrogen-bonding interactions,
respectively. The torsional energy is modeled by a harmonic
potential

Htor =
N−1∑
i=0

κφ,i

2
(φi − φref )

2, (B2)

where φi is defined as the angle between two consecutive
base-pair vectors ρi ≡ r(1)

i − r(2)
i and ρi+1 (φref = 0.62 rad).

The stacking interaction between base pairs is modeled
through a κφ,i that depends on the value of the bare dsDNA
torsional modulus κφ , and the distances between complemen-
tary bases, κφ,i = κφ[1 − f (ρi )f (ρi+1)], where

f (ρi ) = 1

2

[
1 + erf

(ρi − ρb

λ′
)]

, (B3)

and ρi = |ρi |. Hence, κφ,i = κφ in the dsDNA state and
κφ,i = 0 in the ssDNA state. The actual values in the dsDNA
state after equilibration, κ∗

φ,ds, are, however, different from
the prescribed values, κφ , due to thermal fluctuations and
nonlinear potentials entering the Hamiltonian. The hydrogen-
bonding interaction is modeled by a Morse potential

Hint =
N−1∑
i=0

A
(
e−2 ρi−ρref

λ − 2e− ρi−ρref
λ

)
, (B4)

where ρref = 1 nm, λ = 0.2 nm, and β0A = 8 and 12 for
AT and GC bonding, respectively, as in Refs. [8,46,60]. The
fitted values for the dsDNA persistence length and the pitch
are �ds 
 160 bps and p = 12 bps for the relevant range of
β0κφ we are interested in, which are comparable to the actual
dsDNA values (�ds 
 150 bps and p = 10.4 bps). The ssDNA
persistence length is �ss = 3.7 nm, compatible with experi-
mental measurement [61], even though in the upper range
of measured values. The evolution of ri (t ) is governed by
the overdamped Langevin equation, integrated using a Euler’s
scheme,

ζ
dri

dt
= −∇ri

H(rj ) + ξ (t ), (B5)

where ζ = 3πηa is the friction coefficient for each bead
of diameter a with η = 10−3 Pa s the water viscosity. The
diffusion coefficient, Ddiff ≡ kBT0/3πηa, thus takes into ac-
count the level of coarse-graining of the mesoscopic model
involved in the kinetics associated with the smoothed free-
energy landscape [62]. The random force of zero mean ξi (t )
obeys the fluctuation-dissipation relation 〈ξi (t ) · ξi (t ′)〉 =
6kBT ζδij δ(t − t ′). Lengths and energies are made dimen-
sionless in the units of a = 0.34 nm and kBT0, respectively.
The dimensionless time step is δτ = δtkBT0/(a2ζ ), set to
5 × 10−4 (δt = 0.045 ps) for sufficient accuracy [8,46,60].
This set of parameters induces zipping velocities v ≈ 0.2–
2 bp/ns, compatible with experimental measurements [63].

To reconstruct the FE surface, we performed WT-metaD
coarse-grained simulations with the width of the DNA bubble,
ρmax(t ), as CV using the version 2.3 of the plugin for free-
energy calculation, named PLUMED [55] According to the
algorithm introduced by Barducci et al. [40,64] a Gaussian is
deposited every 25 ps with initial height of 0.1 kBT and a bias
factor of 5 at T = 300 K. The resolution of the recovered free-
energy landscape is determined by the width of the Gaussians
σ = 0.1 in units of the CV. As described in previous work
[8], we put a wall at ρmax ≈ 4 nm to prevent the system
escaping from the metastable state (and therefore entering
in the zipping regime, i.e., a far from equilibrium process
[46,60]). To explore the slow entropic contribution associated
with the DNA bubble metastable basin we chose to follow the
evolution of the minimal twist angle �min inside the bubble
[8], as described in the main text, reconstructed afterwards
using the reweighting technique of Bonomi et al. [64].

To assess the reliability of our approach when a truly
converged FE surface is reconstructed within the WT-
metaD framework, we estimated the transition rate ratio
k

(KLT)
cl→op/k

(KLT)
op→cl within the Kramers-Langer theory, which takes

explicitly into account the slow nonreactive coordinate �min

along with the reactive coordinate ρmax [cf. Eq. (10)]. As
discussed in Ref. [27], we considered in Eq. (10) the FE dif-
ference measured along the MFEP, �F = F (op) − F (cl) =
9.0 ± 0.1 kBT . Considering the multidimensional elliptical
asymmetric function to fit the parameters det HV (cl) and
det HV (op),

V (q1, q2) ∝ {
1 + erf

[
α
(
q1 − q0

1

)]}
exp

{−[
a1

(
q1 − q0

1

)2

+ a2
(
q2 − q0

2

)2 + a12
(
q1 − q0

1

)(
q2 − q0

2

)]}
,

(B6)

we computed the ratio {det HV (cl)/ det HV (op)}1/2 = 1.0 ±
0.4. We obtained the transition rate ratio k

(KLT)
cl→op/k

(KLT)
op→cl =

(1.3 ± 0.6) × 10−3 in close agreement with our approach
and the numerical ratio obtained within the accelerated MD
framework.

We extended the Metadynamics scope [4,6,7] to estimate
the mean transition times between the metastable (op) and
the equilibrium (cl) states of the DNA bubble. WT-metaD
was performed using the width ρmax as CV. Unlike in the
FE surface reconstruction, no wall was added along the
CV ρmax in that case. We denote by τ the mean transition
time over the barrier from the states and by τM the mean
transition time for the metadynamics run. The latter changes
as the simulation progresses and is linked to the former
through the acceleration factor α(t ) ≡ 〈eβV (s,t )〉M = τ/τM (t ),
where the angular brackets 〈. . . 〉M denote an average over
a metadynamics run confined to the metastable basin, and
V (s, t ) is the metadynamics time-dependent bias. To avoid
depositing bias in the transition state region, we increase the
time lag between two successive Gaussian depositions in the
WT-metaD framework [6,7] to 700 ps and decrease the bias
factor to 3. The statistics for τ

(num)
op→cl and τ

(num)
cl→op conformed

to a Poisson distribution with means μop→cl = 121 ± 12 μs
and μcl→op = 67 ± 8 ms and variance λop→cl = 110 μs
and λcl→op = 67 ms, respectively. The statistics obey a
two-sample Kolmogorov-Smirnov test [7] with p values
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equal to 0.86 and 0.65, respectively. This yields the numerical
ratio k

(num)
cl→op/k

(num)
op→cl = (1.8 ± 0.4) × 10−3.

APPENDIX C: CIRCULAR DNA DENATURATION BUBBLE

The circular DNA (cDNA) is described with the same
DNA model used for the linear DNA in Appendix B, where
the two single strands are modeled as freely rotating chains
of N = 246 beads of diameter a = 0.34 nm with a AT-rich
region of 30 bps clamped by a closed circular GC region of
(N − 30) bps. The size of these AT-rich regions was chosen
so that it is larger than the size of the representative long-lived
denaturation bubbles studied in this work. Based on the recent
work of Sicard et al. [47], the dsDNA minicircle is described
by a circular helix where a helical line of radius α coils around
a torus of radius R in the x-y plane. The centers of the beads
on each strand initially coincide with the surface of this torus
in Cartesian space according to the equations

x (j )
n =

{
α sin

[
n

2π

p
+ ψ (j )

]
+ R

}
× cos(nθ )

y (j )
n =

{
α sin

[
n

2π

p
+ ψ (j )

]
+ R

}
× sin(nθ ) (C1)

z(j )
n = α cos

[
n

2π

p
+ ψ (j )

]

with x
(j )
n , y

(j )
n , and z

(j )
n the Cartesian coordinates of bead n

on strand j . The parameter ψ (1) = 0 for the first strand and
ψ (1) = π for the second strand. The cross-sectional radius
α is set equal to half the equilibrium base-pair distance,

ρref = 1 nm, considered in previous work [8,46]. The twist
angle between two base pairs is defined as φ = 2π/p, where
p = 12.3 is the DNA pitch, i.e., the number of bps corre-
sponding to one complete helix turn. For purposes of gen-
erating the initial conformations, the bending angle per axis
segment between the centers of two consecutive bps is set
initially at θ = 2π/N . We constrained a sequence of 10 GC
bps on each extremity of the AT-rich region to be aligned
arbitrarily along the z axis. The superhelical densities σ =
Lk−Lk0

Lk0 = �Lk
Lk0 along with the sizes N of the minicircles was

specifically chosen to tune the value of the excess of linking
number �Lk < 1 [47]. The parameter Lk = 20 represents the
linking numbers of the cDNA molecule and Lk0 is defined as
Lk0 = N/p0, with p0 = 12.0 the equilibrium pitch measured
in the open linear states.

As discussed in Appendix B, we performed WT-metaD
coarse-grained simulations with the width of the DNA bubble,
ρmax(t ), as CV to reconstruct the FE surface and to estimate
the mean transition times between the metastable (op) and the
equilibrium (cl) states of the DNA bubble. We considered the
WT-metaD parameters used for the linear DNA, only increas-
ing the bias factor to 20 for the thermodynamic analysis. The
statistics for τ

(num)
cl→op conformed to a Poisson distribution with

means μop→cl = 4.9 ± 0.6 ms and variance λop→cl = 6.0 ms.
The statistics obeys a two-sample Kolmogorov-Smirnov test
[7] with a p value equal to 0.71. However, the numerical esti-
mation of the transition time τ

(num)
cl→op was not achievable within

the metaD framework, as the shape of the original FE surface
could not be evenly maintained after the addition of the bias
potential due to large entropic fluctuations. Nevertheless, our
approach allowed us to assess the transition rate ration and to
estimate τcl→op = 80 ± 40 min.
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