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Conduction delays can enhance formation of up and down states in spiking neuronal networks
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We study dynamics of a spiking network of synaptically connected bistable neuronal oscillators. We find that
delays in axonal conduction result in the emergence of coexisting states with high and low activity levels (up and
down states). In the network, where cellular bistability is present, propagation delays and noise play a crucial
role in the emergence of transitions between the states.

DOI: 10.1103/PhysRevE.98.052401

I. INTRODUCTION

The spontaneous transition between up and down states
characterized by high and low firing rates in cortex and
striatum is a well-known phenomenon [1–3]. Many theoretical
models have been developed to explain the dynamics of this
kind of transition [4–8]. This phenomenon still continues to
attract the attention of theoreticians [9–11].

Typically, transitions from up to down states cannot be
achieved without inhibition. The inhibitory population sta-
bilizes a self-sustained up state by preventing the system
from over-excitation [7,12,13]. If inhibition is not present,
the continuously growing excitation can be prevented by a
short-term depression [6].

In stochastic models, noise induces switches between sta-
ble attractors in the network. However, apart from stochastic
transitions, there is also another mechanism of switching
between up and down states. In the up state, a slow potassium
current deactivates the system and switches it to the down
state. After a while, the network restores its activity and
switches again to the up state [5].

In addition to these known scenarios, in the present work
we suggest a mechanism for the appearance of up and down
states. We show that up and down states can emerge even with-
out any inhibition, short-term depression, or slow inactivating
currents. The key factors in our model, apart from noise, are
axonal conduction delays and cellular bistability.

Networks consisting of type-I excitable neurons, whose dy-
namics can be described by a leaky integrate-and-fire model,
in some circumstances allow mean-field approximation and
were studied in detail [11,14,15]. The influence of delays on
neural dynamics was studied previously [16–22]. For exam-
ple, in a simple rate model it was shown that delays can signif-
icantly enrich the repertoire of dynamical regimes in neuronal
networks [16]. In addition, the delays in neuronal networks
can lead to the appearance of so-called polychronous groups
[17]. It should be noted that delayed dynamical systems
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with single-unit bistability and simple potential wells were
extensively studied in many papers [18–20]. Moreover, it was
also shown that increasing delays leads to the same effect
as increasing the synaptic current decay constant; namely,
it stabilizes self-sustained persistent activity [11]. However,
to the best of our knowledge, the mechanism of transitions
between up and down states appearing from the influence of
delays in networks of type-II excitability excitatory neurons
was not previously considered.

The second important feature of our model is single-neuron
bistability. Cellular bistability in neurons was previously re-
ported in many theoretical and experimental works [23–26],
as well as bistability at the network level [6,27–31]. Since
noise is always present in real neuronal networks [32], its in-
fluence on the network dynamics is of great importance, espe-
cially in the presence of multistability [33,34]. In multistable
systems, noise often leads to multistate intermittency [35,36].
In many cases, noise plays a constructive role resulting in
well-known phenomena, such as stochastic and coherence res-
onances, found in the standard Hodgkin-Huxley neuron model
[37,38] and in neuronal networks [39]. Interestingly, two
bistable neurons subjected to noise can exhibit synchronous
episodic discharges [28]. In a large noisy network, bistability
can contribute to stabilization of neuron clusters [29,40,41].

In this paper, we develop a mathematical model to describe
the formation of up and down states. Our model includes the
following key factors: conduction delays, cellular bistability,
and noise. In contrast to previous studies, our model is free
from inhibitory neurons, short-term plasticity, and slow inac-
tivation currents.

II. MODEL

Let us consider a recurrent network of synaptically coupled
bistable Hodgkin-Huxley (HH) neurons [42]. The membrane
potential of a single neuron evolves according to the following
ionic current balance equation:

C
dV (i)

dt
= I

(i)
channel + I (i)

app +
∑

I (ij )
syn + I

(i)
P , (1)
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where the superscripts (i) and (j ) denote the indices of
post- and presynaptic neurons, respectively. Ionic currents
(e.g., sodium, potassium, and leak currents) are expressed as
follows:

Ichannel = −gNam
3h(V − ENa )

− gKn4(V − EK ) − gleak (V − Eleak ),

dx

dt
= αx (1 − x) − βxx, x = m, n, h, (2)

where αx and βx are nonlinear functions for gating variables
taken as the ones in the original HH model with the exception
that the membrane and reversal potentials are shifted by
65 mV. Throughout this paper, we use the following parameter
values: ENa = 55 mV, EK = −77 mV, Eleak = −54.5 mV,
gNa = 120 mS/cm2, gK = 36 mS/cm2, gleak = 0.3 mS/cm2,
and C = 1μF/cm2. The applied currents I (i)

app are fixed to
control the depolarization level and dynamical regimes, which
can be excitable, oscillatory, or bistable [28,43]. The synaptic
current Isyn simulating interactions between neurons obeys the
following equations:

dIsyn

dt
= c − Isyn

τsyn
,

dc

dt
= − c

τsyn
+ wsyne

τsyn
δ(t − tsp − d ), (3)

where τsyn = 0.2 ms is the synaptic time, wsyn is the synaptic
weight (in μA/cm2), the normalizing coefficient e is the Euler
number, c is a synaptic variable (in μA/ms cm2), wsyn is the
peak value of the excitatory postsynaptic current (EPSC), δ is
the Dirac delta function, tsp is the presynaptic spike timing,
namely, the time when the membrane potential reaches its
peak value (∼25 mV), and d is the conduction delay. Upon
arriving at the presynaptic terminal, the spike evokes EPSC
with the peak amplitude wsyn at the postsynaptic neuron in the
form of an α function given as

Isyn(t ) = wsyn

(
t − tsp − d

τsyn

)
+

(
e
− t−tsp−d

τsyn

)
, (4)

where (x)+ = max(0, x) are Macaulay brackets to cut off
negative values.

Each neuron is stimulated by a Poisson pulse train mim-
icking external spiking inputs I

(i)
P of a certain rate λ. Similar

to inter-neuron communication, each Poisson spike evokes a
response in the form of the α function refined by Eq. (4), but
with amplitude wP .

First, let us consider the dynamics of a single neuron.
The applied current I (i)

app controls neural excitability, i.e.,
its dynamical mode, which can be excitable, oscillatory, or
bistable. The neuron in the excitable mode exhibits a single
stable steady state. If an external perturbation exceeds a
threshold value, the neuron responds with a short excitation
pulse (spike) and returns back to the stable steady state. In
the oscillatory mode, the neuron generates a periodic spike
sequence forming a stable limit cycle, being the only attractor
in the phase space. In the parameter region between excitable
and oscillatory modes, Hodgkin-Huxley neurons are known to
exhibit bistability [23,28]. In this region, a stable fixed point
coexists with a limit cycle and their basins of attraction are

FIG. 1. (a) Membrane potential (solid blue line) and synaptic
current (dashed red line) of the bistable neuron response to several
incoming spikes for Iapp = 5.27 μA/cm2. (b) Spiking frequency as
a function of depolarizing current. The bistability area is shaded.
(c) Minimal weight required for switching the bistable neuron from
quiescent to active state as a function of depolarizing current.

separated by an unstable manifold. Transitions between these
two coexisting states can be triggered by a sufficiently strong
external stimulus.

Figure 1(a) shows the response of a single neuron to sev-
eral incoming spikes of different strengths. Depending on its
weight and phase, a spike can evoke subthreshold excitatory
postsynaptic potential (EPSP), switch the neuron to an oscil-
latory state of regular spiking, or switch the neuron from the
oscillatory to the steady state. The spiking frequency depends
on the applied current as shown in Fig. 1(b), where the
bistability area is shaded. For the set of parameters used in this
paper, bistability appears at Iapp = [5.270, 8.416] μA/cm2.

One can see from Fig. 1(c) that the minimal threshold
weight wtrig of a single incoming spike required for turning
the neuron to the oscillatory state decreases as applied current
Iapp is increased. This can be qualitatively explained in the
following way. A pair of limit cycles appears when the system
in Eq. (1) undergoes a fold limit cycle bifurcation. Near the
border of the excitable mode, the state separating manifold
is closer to the stable limit cycle, and the attraction domain
of the stable steady state is much larger than that of the stable
limit cycle. Therefore, the smaller the external current Iapp, the
greater the weights of the external events required for turning
the neuron to the active state, and the easier to turn the neuron
back to the silent state. In the latter case, in addition to the
weight it is also important to consider a relative phase of the
stimulus application time [28,44].

Let us now construct a network of spiking neurons de-
scribed by Eq. (1). We assume that each of N = 100 neurons
operates in the bistable mode (Iapp = 5.27 μA/cm2). We also
assume that the action potentials propagate with a constant
velocity. Then, we calculate the values of the conduction
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FIG. 2. Schematic view of the network topology. All neurons are
located in a cubic volume of a 1-mm side.

delays as dij = sij /Vap, where sij is the physical distance
between the neurons and Vap = 0.05 m/s is the velocity of
action potential propagation. The resulting delays hit the phys-
iological range 0–20 ms [45,46]. In geometrical space, the
neuron’s position is chosen randomly within a cubic volume
shown in Fig. 2. The connection probability for each pair of
neurons is fixed to pcon = 0.2.

III. RESULTS

A. Synchronization and time-locked clusters of activity

Let us now consider spiking dynamics of the neuronal
network without delays (d = 0) and without any noise (I (i)

P =
0). As expected [47], in this case the system demonstrates

FIG. 3. Synchronization in the neuronal network without delays
and without external input for wsyn = 1.3 μA/cm2. Bottom: Mem-
brane potentials of three randomly chosen neurons with indices 9,
40, and 92.

FIG. 4. Formation of time-locked patterns in the presence of
delays. Simulations in (a) and (b) have different initial conditions.

synchronous dynamics with a spiking frequency close to the
values of the isolated neuron (as seen from Fig. 3). In the
figure, the upper panel shows a raster plot of the network
activity, where each dot represents a spike. The examples of
membrane potential traces of three randomly chosen neurons
are shown in three subsequent graphs below the raster.

After including conduction delays, the network dynamics
dramatically changes. Depending on the initial conditions,
the network exhibits distinct stable activity patterns, where
only a part of the neurons oscillate (Fig. 4). The figures
illustrate highly multistable network dynamics. Such time-
locked patterns have millisecond precision, as illustrated in
Fig. 5.

Note that without coupling delays, different time-locked
patterns disappear and the network activity converges either
to synchronous oscillations or to an equilibrium state.

To examine the stability of the time-locked patterns,
we add small noise to the network (wP < 0.5 μA/cm2).
Due to the robustness of the patterns to noise, this small
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FIG. 5. Time-locked patterns from Fig. 4(b) when the network is
fed by weak noise wP = 0.4 μA/cm2. Noise is turned on starting
from 2.5 s.

perturbation of the membrane potential does not destroy the
neural dynamics, so that all observed spiking patterns preserve
their shapes (see Fig. 5). However, higher intensity noise
destroys the time-locked patterns [Fig. 6(a)]. Note that the
probability to knock out a single neuron to an equilibrium
state is higher than in the case of wP � 0.5. This leads to a
faster noise-induced deactivation of the whole network when
wP is increased [Fig. 6(b)]. For smaller noise, the duration
of the deactivation stage increases and tends to infinity for
vanishing noise. Because the simulation time is finite, we do
not consider here the details of the deactivation process for
low noise intensities (wP < 0.5 μA/cm2).

B. Up and down states

Let us now stimulate the network by higher intensity noise
(wP > 1.5 μA/cm2). In this case, noise can turn a single
neuron from equilibrium to an oscillatory state. Interestingly,
in this case the network dynamics exhibits only two specific
dynamical modes of asynchronous spiking with high and low
mean firing rates of the whole network (up and down states),
as shown in Figs. 7 and 8.

To illustrate this situation, we take the amplitude of Poisson
spikes, wP , as a control parameter and vary it within a certain
range. The right-hand panel in Fig. 8 shows traces of the
firing rate for different values of wP . For each trace, the
system starts from initial conditions corresponding to the up
state, and after a transient process the dynamics converges
to a certain stationary state. In the first case, the network
is in the deactivated down state [Fig. 8(a)]. In this state,
however, the neurons are not completely silent, exhibiting rare
spiking with a relatively low level of firing rate. The rare
asynchronous spikes appear due to the Poisson pulse drive.
The opposite situation is characterized by the active up state
with a relatively high level of firing rate [Fig. 8(e)].

The most interesting case is observed when the network
displays spontaneous transitions between the high and the low
firing rates, which we call up and down states [Figs. 8(b)–

FIG. 6. Network activity in the presence of low noise. The firing
rate is estimated as the number of spikes in the 20-ms time window.
After a transition process, stable time-locked patterns are formed
and noise is turned on at 4 s. (a) wP = 0.5 μA/cm2. During the
simulation time, the noise knocks out only a part of the neurons.
(b) wP = 0.7 μA/cm2. After 11 s, the noise knocks almost all
neurons to an equilibrium state.

8(d)]. Note that the histograms of firing rate have two apparent
peaks [Figs. 8(b)–8(d)]. Depending on the noise level, the net-
work stays during certain time intervals in the neighborhood
of up and down states.

The formation of up and down states could be explained
as follows. Noise of sufficiently high intensity can induce
switches in neuron dynamics from a quiescent steady state to
an oscillatory state or vice versa. The activation of a sufficient
part of the network can also induce a transition to the up
state. This process occurs in an avalanche manner because
the more neurons are active, the easier new neurons enter
an active phase. Conversely, the deactivation of a sufficient
part of the network can induce a transition to the down state.
This stochastic process depends on the phases of Poisson
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FIG. 7. Network transition to the state with high mean firing rate
when Poisson noise is sufficiently strong, wP = 1.97 μA/cm2.

noise spikes which affect neurons. Thus, in the presence of
sufficiently strong noise, the network states with intermediate
firing rates (Fig. 6) become unstable, and the network dy-
namics becomes bistable with pronounced up and down states
(Figs. 7 and 8).

Since in our case all synaptic currents are excitatory,
due to cellular bistability an incoming postsynaptic potential
with an appropriate phase may switch a single neuron to a
quiescent state. Therefore, each time interval, the number of
active and inactive neurons may change depending on the
time of spikes and axonal conduction delays. This process
compensates for the lack of inhibition, short-term depression,
and slow inactivating currents. To the best of our knowledge,
this mechanism of switches was never examined, though the
coexistence of two attractive states was previously observed in

FIG. 8. Examples of population activity driven by noise of dif-
ferent intensities wP . Firing rate traces (right) and their histograms
(left) for λ = 185 Hz and wsyn = 1.3 μA/cm2.

FIG. 9. Dependence of ISI variation on noise amplitude wP for
λ = 185 Hz and wsyn = 1.3 μA/cm2. Each point represents the
result of 40 simulations with 104 s duration.

recurrent networks [48]. Our results demonstrate that sponta-
neous jumps between up and down states are only possible if
type-II excitatory neurons are present in the network without
inactivating currents and short-term depression.

The transitions between the up and down states are found
in a narrow range of the synaptic weights wsyn ∈ [1.8, 2.0] for
fixed values of other parameters. However, the variation of
connection probability pcon can shift this range.

C. Statistics of inter-spike intervals

The statistics of inter-spike intervals (ISIs) of neurons in
the network is very important for correct interpretation of the
obtained results. The ISI variation coefficient was calculated
as the standard deviation to the mean ratio. Interestingly,
unlike other typical excitable systems stimulated by noise
[37–39,49], our model does not exhibit coherence resonance.
In our case, the ISI variation coefficient has an apparent
maximum with respect to wP (see Fig. 9). The position of
this maximum corresponds to the value of wP at which the
histograms of firing rate distributions (Fig. 8, left) contain two
peaks with approximately the same amplitudes. In this case,
the system spends approximately the same amount of time in
the neighborhood of each metastable state.

D. Multiple time scales of metastable states

To characterize the network metastable dynamics, we also
calculate distributions of metastable lifetimes. The threshold
for separating intervals of active and quiescent states is 50
spikes/time bin. The time interval distributions in the active
state, Tup, and in the quiescent state, Tdown, are plotted in
Fig. 10 in logarithmic scale. The distributions are calculated
for 1920 simulations, each of which lasted 104 s. Interestingly,
the time interval distributions exhibit two characteristic time
scales. We use power-law and exponential-law approxima-
tions for the lower and higher ranges of the time intervals,
respectively. The probability density function approximating
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FIG. 10. Distributions of metastable state durations. (a) Exponential distribution for large durations and power law for small durations. (b),
(c) Zoomed fragments of the distributions: blue squares, up-state durations; green circles, down states. The parameters of the probability density
functions (PDF) approximating our data are the following: for up states, Tup n1 = 1.708, n2 = 0.006, n3 = 4.358, a1 = 0.072, a2 = 0.002, and
b = 1.318; for down states, Tdown n1 = 1.708, n2 = 0.006, n3 = 4.360, a1 = 0.072, a2 = 0.002, and b = 1.318. wP = 1.91 μA/cm2.

our data has the following form:

p(x) = (1 − p0(x))
a1

xn1
+ p0(x)a2e

−n2x,

p0(x) = 1

1 + e−n3(x−b)
, (5)

where the sigmoidal function p0 determines the weights of
the two distributions and separates them. It is parametrized
by the slope n3 and by the midpoint b. The other parameters
are n1, the power-law exponent, n2, the rate of the exponential
distribution, and a1 and a2, the normalization coefficients. We
use the least squares method to estimate the parameter values
of the weighted sum.

In contrast to the paper of Mejias et al. [9], where
the authors report a power-law distribution obtained with a
rate model under a noisy short-term depression, our results
demonstrate both the exponential- and the power-law statis-
tics. The main reason for this probably is that synapses in our
case are deterministic and moreover do not exhibit short-term
depression. More detailed study of this question may be the
subject of a future study.

IV. CONCLUSION

We conclude that up- and down-state dynamics can be
generated by a network of spiking bistable neurons with
axonal conduction delays. In contrast to previous studies, in
our case this effect is observed without any inhibitory neurons,
short-term synaptic plasticity, and slow inactivation currents.
The key factors that lead to the formation of the up and down
states are coupling delays, intrinsic cellular bistability, and
noise.

The transitions between up and down states were found
within a narrow range of parameters. In our model, the
transitions were observed in relatively small networks with a
size ranging from 50 to 120 elements. The connection weights
were adjusted for different network sizes. When the network
size was increased, the durations to stay in the up state also
increased, and finally the transitions did not appear during the
simulation time, when the network size became larger than

120. Interestingly, the network size is known to be comparable
to the size of cortical minicolumns [50].

While switching dynamics of a single bistable neuron
from the oscillatory state to the quiescent (Fig. 1) depends
on the relative times of incoming spikes [28], network dy-
namics is determined by connection delays. Our numeri-
cal simulations showed that the transitions occurred for the
conduction delay values within the following ranges: d ∈
[2, 2.75], [3.25, 4.25], [9.25, 10.5]. More detailed studies of
the dependence of neural switching dynamics on the coupling
delays can be a subject of further research.

The formation of persistent spike-timing patterns is another
interesting result of our work. A particular pattern profile is
determined by the connectivity matrix, the delays between
neurons, and initial conditions. As known from earlier model-
ing studies, the delay distribution pattern can encode a number
of dynamical states called polychronous groups [17]. These
groups are formed by a repeated sequence of spikes transmit-
ted from presynaptic to postsynaptic neurons. The number of
such patterns can be enormously large. Being robust to noise,
the patterns preserve their configurations if noise is relatively
small. However, an increase in the noise intensity leads to the
disappearance of states with small basins of attraction, which
means that stronger noise simplifies the system. A surprising
situation occurs in the case of relatively high noise intensities.
For certain noise intensities, the precise timing structure is de-
stroyed and the spike firing becomes asynchronous. We found
that within such asynchronous spiking, the whole network
firing can be described as the interplay of two states, one with
low and another with high average firing rate, i.e., up and
down states.

Notably, there is an optimal noise rate when the inter-spike
interval variation coefficient has an apparent maximum. In this
case, the network resides in the up and down states equally.

In this work, we have analyzed a relatively small set of pa-
rameters and regimes due to an extremely high computational
cost of the Hodgkin-Huxley model. More comprehensive
analysis of larger networks may be a subject of future research
using simplified models of type II or models which allow
mean-field approximation.
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