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We investigate the phenomenon of first-order transition [explosive synchronization (ES)] in an adaptively
coupled phase-frustrated bilayer multiplex network. We consider Sakaguchi-Kuramoto dynamics over the top
of multiplex networks and we establish that ES can emerge in all layers of a multiplex network even when
one of the layers may not exhibit ES in the absence of the interlayer connections. We clearly identify the regions
of the parameter space in which the multiplexity wins over the frustration parameter and network structure for
the emergence of ES. Based on the mean-field analysis around the coherent state and a perturbative approach
around the incoherent state we analytically derive the synchronization transition points (backward and forward)
of all layers of the multiplex network as well as its monolayer counterpart satisfying a close agreement with the
numerical results.
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I. INTRODUCTION

It had been widely accepted that transition to synchroniza-
tion in networks of coupled oscillators is a continuous process
[1–5] until the discovery of the irreversible or discontinuous
synchronization transition [6]. Subsequently, a discontinuous
or first-order transition to synchronization [also known as ex-
plosive synchronization (ES)] has been extensively explored
in networks of coupled oscillators [7–10]. The practicality
of ES has been tested in acoustical signal transduction in
the cochlea (modeling the hair cell) [11], hypersensitivity
in fibromyalgic brains [12], and experimentally verified in
mercury beating-heart (MBH) oscillators [13]. Researchers
reported that ES can be achieved by correlating the natural
frequencies with the degrees of the networks [9,14] or by
designing a frequency-based weighted coupling [15–17].

However, these preconditions for the emergence of ES in a
network of oscillators can be waived by setting an adaptive
factor in the coupling term where adaptation is extracted
from the global order parameter of the phase oscillators [18].
Recently, the adaptive strategy has also been extended in
complex networks (including multiplex networks) of phase
oscillators [19,20], where it has been shown that a partial
fraction of nodes controlled by their adaptively coupled local
order parameter can induce ES in a network of Kuramoto
dynamics for arbitrary frequency distribution. The strategy
has been found to be general in nature and tested in multiplex
networks irrespective of the diversion of frequency distribu-
tions between the layers. The growing interest among the
researchers to investigate dynamical processes in multiplex
networks [21,22] may be attributed to the fact that diverse
complex systems ranging from engineering to transportation
or to ecology can be mapped to multiplex networks [23].
Moreover, due to the presence of layer-layer interaction in
multiplex networks, some nontrivial effect on different dy-
namical phenomena is expected. For instance, the role of
layer-layer interaction in multiplex networks on the dynamical
process of diffusion [24] can be faster in multiplex network
than its monolayer counterpart due to layer-layer interaction.

Here we have focused on an adaptively coupled phase-
frustrated multiplex network, expecting that the presence of
layer-layer interaction may induce unexpected effect on the
synchronization transition. We have considered either (1) each
layer is structurally different than the other, i.e., heterogeneity
of the degree distributions are not identical although both
layers consist of the same dynamics (identical frustration and
frequencies are drawn from the same distribution), or (2)
both the networks are structurally equivalent but dynamically
different (frustration terms are not identical). Note that for
both cases, one of the layers shows continuous transition in
the absence of interlayer interaction.

The key question we ask here is whether ES can be
established in all layers of a multiplex network in which
one of the layers may not exhibit ES in the absence of
interlayer connections. We have tried to answer the question
by exploring a multiplexed (bilayer) phase-frustrated system
[25] called Sakaguchi-Kuramoto (SK) dynamics. We have
shown that an adaptive multiplex network can indeed exhibit
ES in all phase-frustrated layers. More precisely our paper
establishes that fact (with proper analytical treatment) that
depending on the network structure and frustration parameter,
a monolayer may not exhibit ES but it does guarantee ES in
a multilayer structure if at least one of its layers is in the
regime of ES, an interesting phenomena not explored earlier in
frustrated environments. To validate our numerical results we
have used an annealed network based approximation [26–28]
to construct coupled equations of order parameter and group
angular velocity. The backward transition point is numerically
calculated from these two coupled equations. We have also
used perturbative approach around the incoherent state [29] to
find the forward transition point of the hysteresis loop.

We consider two complex networks of same size N which
form a multiplex network if there are intralayer connections.
A schematic diagram of a multiplex network in the presence
of a special type of intralayer connection is shown in Fig. 1.
Thick black lines (shown in two surfaces) represent intralayer
interaction and layer-layer interaction (interlayer) is described
by the dashed lines. Note that the connectivity between layer I
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FIG. 1. Schematic diagram of a multiplex network consisting of
two layers of different network topologies.

and layer II is chosen in such a way that coupled pairs of nodes
have the same index; i.e., node 1 of layer I will be connected to
node 1 of layer II and so on. The layers are controlled by cross
adaptive feedback [19] to each other through the interlayer
(dashed lines) interaction.

The phase θi,σ (t ) of the ith oscillator (i = 1, . . . , N ) of the
layer σ (= I, II) is evolved by the differential equation

dθi,σ

dt
= ωi,σ + λfi,σ

N∑
j=1

Aσ
ij sin(θj,σ − θi,σ − α), (1)

where (Aσ
ij )N×N and ωi,σ respectively denote the adjacency

matrix and natural frequency of the ith oscillator of the
layer σ (= I, II), while λ and α denote the uniform cou-
pling strength and phase-lag parameters, respectively. The
parameter fi,σ = ri,σ ′ or ri,σ according to whether there is
an interlayer connection or not, where σ ′ = I, II and σ �=
σ ′; i.e., if σ = I, then σ ′ = II and vice versa. The local
order parameter ri,σ of the layer σ (= I, II) is defined by
ri,σ eiφσ = (1/ki,σ )

∑N
j=1 Aσ

ij e
iθj,σ , where ki,σ and φσ are the

degree of ith node and average local phase of the layer σ (=
I, II). Now Rσeiψσ = (1/N )

∑N
j=1 eiθj,σ describes the global

order parameter of the layer σ with 0 � Rσ � 1 and average
phase ψσ .

II. NUMERICAL SIMULATION IN MULTIPLEX
NETWORK

At the outset, we take an Erdös-Rényi (ER) network of size
N = 2000, mean degree 〈k〉 ∼ 12 in layer I and a heteroge-
neous scale-free (SF) network of the same size (N = 2000),
scaling exponent γ = 2.5, and mean degree 〈k〉 ∼ 16 in the
second layer (II) in absence of interlayer interaction. In this
case, the layers are separated and controlled by their self local
order feedback (fi,σ = ri,σ , i = 1, 2, . . . , N ). The natural fre-
quencies of both the layers (ωi,σ ; σ = I, II) are drawn from a
random homogeneous distribution spread over the range −1 to
1. We now numerically integrate the system (1) using a fourth-
order Runge-Kutta scheme (RK4). For forward (backward)
continuation we adiabatically increase (decrease) the coupling
strength λ with an increment (decrement) of δλ = 0.01. The
adaptively coupled ER network in layer I is found to exhibit
ES in the presence of weak frustration [see Fig. 2(a)]. The
frustration parameter has no impact on the forward critical
point λf where the ensemble transits from incoherence to
coherence during forward continuation. The λf for all α

is shown by the black arrow in Fig. 2(a). However, during
backward continuation, the critical point λb of transition from
coherence to incoherence is found to move towards higher λ
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FIG. 2. Global order parameters of two layers as a function of
coupling parameter λ for different values of α. Synchronization
transitions in different layers in the absence of interlayer interactions
are shown in panels (a) and (b), while those in the presence of
interlayer interactions are shown in (c) and (d) for three different
values of α.

as α is increased and as a result, the width of hysteresis loop
decreases. Next the transition is examined in layer II (SF) in
the absence of interlayer interaction. The frustrated dynamics
used on top of the scale-free network (γ = 2.5 and 〈k〉 ∼ 16)
does not exhibit ES [see Fig. 2(b)], although the transition
looks like a hybrid [26], or the ES, if it exists, is negligibly
small [20]. The critical transition point for the onset of the
second-order/continuous phase transition is also independent
of α; a peculiar but generic behavior is found to occur for all
types of adaptive networks.

Now we connect both the layers with cross-adaptive in-
terlayer interaction (fi,σ = ri,σ ′, i = 1, 2, . . . , N) and we ob-
serve that ES is fully established in both the layers. The
transition points and hysteresis loops are clearly shown in
Figs. 2(c), 2(d) for layer I and layer II, respectively due to the
presence of cross-adaptive feedback, i.e., interlayer interac-
tion. We also observe that forward critical transition points do
not depend on the frustration parameter present in the systems
although it shrinks the ES width if we increase α. Note that
the value of the order parameter of the second layer II is
also slightly increased due to the impact of multiplexity. We
now present a detailed and rigorous analytical description of
these numerically observed results. We start with an analytical
treatment of the monolayer counterparts of the multiplex in
the absence of interlayer connections.

III. MEAN FIELD ANALYSIS

In the absence of the interlayer connections, the layers of
the multiplex are separated. Here we perform the mean-field
analysis of the isolated layers of the multiplex following the
approach proposed in [27]. Let the density of the nodes at
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time t with phase θ for a given degree k and frequency ω be
given by the function ρ(k, ω, θ, t ) with a proper normalization
condition ∫ 2π

0
ρ(k, ω; θ, t )dθ = 1. (2)

Avoiding the degree-degree correlation of a network we ob-
tain the probability that a randomly chosen edge attached to a
node with degree k and phase θ at time t is

kP (k)g(ω)ρ(k, ω; θ, t )∫
kP (k)dk

. (3)

Then in the continuum limit, time evolution of the phases of
the oscillators of a layer is given by

dθ (t )

dt
= ω + λf k

〈k〉
∫

dk′
∫

dω′
∫

dθ ′k′P (k′)g(ω′)

× ρ(k′, ω′, θ ′, t ) sin(θ ′ − θ − α), (4)

where 〈k〉 = ∫
kP (k)dk is the mean degree of the network. To

maintain the conservation of the oscillators [4,27] in a layer,
the density function ρ satisfies the continuity equation

∂ρ

∂t
+ ∂

∂θ
(ρv) = 0, (5)

where v comes from the right-hand side of Eq. (4).
To measure the macroscopic behavior of the oscillators, in

the thermodynamic limit we consider the order parameter R

given by [27]

Reiψ = 1

〈k〉
∫

dk

∫
dω

∫
dθkP (k)g(ω)ρ(k, ω, θ, t )eiθ ,

(6)

where ψ is the average phase of the oscillators and the value
of R varies in the range 0 � R � 1. Therefore, inserting (6)
into (4) we obtain

dθ

dt
= ω + λrkR sin(ψ − θ − α). (7)

In our present study we consider fi = ri (i = 1, . . . , N ),
where ri is the local order parameter. Now we derive the self-
consistent equations by setting the global phase ψ (t ) = �t ,
where � is the group angular frequency. Further we introduce
a new variable φ with φ(t ) = θ (t ) − ψ (t ) + α. In this rotating
frame the equation can be written as

dφ

dt
= ω − � − λrkR sin(φ). (8)

Inserting Eq. (8) into (5) and using the integral expression
of order parameter (6) we get the steady state solution of
ρ(k, ω; φ) by setting ∂

∂t
ρ(k, ω, φ) = 0. Therefore, the steady

state solution for the density function ρ is given by

ρ(k, ω; φ) = δ

(
φ − arc sin

(
ω − �

λrkR

))
;

∣∣∣∣ω − �

λrkR

∣∣∣∣ � 1

= A(k, ω)

|ω − � − λrkR sin(φ)| ;

∣∣∣∣ω − �

λrkR

∣∣∣∣ > 1,

where δ is the Dirac delta function and A(k, ω) is the nor-
malization constant. The first solution corresponds to the
synchronous state (a locked version) and the second solution
is due to the desynchronous state (a drift version). Hence the
order parameter can be rewritten as

R = 1

〈k〉
∫ [ ∫ ∫ ∞

kmin

kP (k)g(ω)ρ(k, ω, φ)

× ei(φ−α)H1dkdω +
∫ ∫ ∞

kmin

kP (k)g(ω)

× ρ(k, ω, φ)ei(φ−α)H2dkdω

]
dφ, (9)

where H1 ≈ H (1 − |ω−�
λrkR

|) and H2 ≈ H (|ω−�
λrkR

| − 1). Here H

is Heaviside function. Note that the first part of the right-hand
side of Eq. (9) gives the contribution of locked oscillators
and the second part corresponds to the contribution of drift
oscillators to the order parameter R.

Decomposing Eq. (9) (see the Appendix for more detailed
calculation) we can eventually reach two coupled equations

R〈k〉 = cos α

∫ ∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2

H1dkdω + sin α

λrR
(〈ω〉 − �)

− sin α

∫ ∫
kP (k)g(ω)

ω − �

λrkR

√
1 −

(
λrkR

ω − �

)2

H2dkdω (10)

and

〈ω〉 − � = λrR tan α

∫ ∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2

H1dkdω

+
∫ ∫

P (k)g(ω)(ω − �)

√
1 −

(
λrkR

ω − �

)2

H2dkdω. (11)

These two coupled equations describe the behavior of the macroscopic order parameter (R) and common frequency (�)
emerged from the coupled network. To solve these coupled equations (10) and (11) we use the information of the network
structure (the degree sequences) and the frequency distribution. Note that in the uncorrelated configuration model, the local
order parameter behaves similarly to the global order parameter (ri ∼ R) in the thermodynamic limit.
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Next, we extend the annealed network approximation approach in a multilayer network [Eq. (1)] where each layer is controlled
by an adaptive feedback from the other layer. The mathematical formalism leads us to four coupled equations for two layers in
which the first two equations contain the information of two global frequencies of two layers whereas the other two equations
contain the information of order parameters. Based on Eqs. (10) and (11) we may write

〈ωσ 〉 − �σ = λrσ ′Rσ tan α

∫ ∫
kσP (kσ )g(ωσ )

√
1 −

(
ωσ − �σ

λrσ ′Rσkσ

)2

H1σ dkσ dωσ

+
∫ ∫

P (kσ )g(ωσ )(ωσ − �σ )

√
1 −

(
λrσ ′Rσkσ

ωσ − �σ

)2

H2σ dkσ dωσ (12)

and

Rσ 〈kσ 〉 = cos α

∫ ∫
kσP (kσ )g(ωσ )

√
1 −

(
ωσ − �σ

λrσ ′Rσkσ

)2

H1σ dkσ dωσ + sin α

λrσ ′Rσ

(〈ωσ 〉 − �σ )

− sin α

∫ ∫
kσP (kσ )g(ωσ )

ωσ − �σ

λrσ ′Rσkσ

√
1 −

(
λrσ ′Rσkσ

ωσ − �σ

)2

H2σ dkσ dωσ , (13)

where H1σ ≈ H (1 − | ωσ −�σ

λrσ ′Rσ kσ
|), H2σ ≈ H (| ωσ −�σ

λrσ ′Rσ kσ
| − 1),

and σ, σ ′ = I, II (σ �= σ ′).
Figure 3 shows how the system changes from coherent

state to incoherent state as obtained both from numerical
simulation of the full system (1) and the self-consistent equa-
tions (10)–(13) in the absence of phase frustration (α = 0).
The red lines display the order parameter obtained from
numerical simulation of the full system and blue lines show

0
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FIG. 3. Comparison of synchronization transition of two layers
for the numerical result with the analytical by setting the phase-
frustration parameter α = 0. The red line indicates the numerical
simulation and blue lines are drawn from the coupled equations (10)
and (11) for (a) and (b). Equations (12) and (13) are used for panels
(c) and (d). The left panels show the synchronization phenomenon
in the absence of interlayer interaction and the right panels show the
same when the layers are connected through adaptive links.

the order parameter obtained from semianalytical simulation
using Eqs. (10) and (11) in Figs. 3(a) and 3(b) in the absence
of interlayer interaction, while Figs. 3(c) and 3(d) show the
same in the presence of interlayer interaction. Note that in
Figs. 3(c) and 3(d), the blue lines are computed from the
self-consistent equations (12) and (13). The critical backward
transition points are then computed from the extreme left end
of the blue curves.

Now to validate the self-consistent equations rigorously we
tune both layers from the nonfrustrated regime (α = 0) to the
highly frustrated regime (α ∼ 1) in the absence as well as
in the presence of interlayer interactions. In the absence of
interlayer interactions, we perform numerical simulation of
the networks in both the layers and demarcate the coherent
and incoherent regimes in the α-λ plane. Note that in layers I
and II we have considered ER and SF networks of size N =
2000, respectively. Figures 4(a) and 4(b) show the impact
of phase frustration on layers I and II in the absence of
interlayer interaction. The cyan island (III) represents the co-
herent/synchronization regime and the green island (I) shows
the incoherent regime. The ES regime is shown by the red
island. From Fig. 4(a) we observe that the ER network exhibits
ES for a broad range of frustration (0 < α < 0.75), whereas
the SF network fails to exhibit ES for any value of α [see
Fig. 4(b)]. Now we consider interlayer interaction via cross-
adaptive feedback between the two layers and interestingly,
we observe that the multiplexity helps the emergence of ES in
both the layers as is evident from Figs. 4(c) and 4(d). A small
red island appears in layer II (SF) signifying the presence of a
metastable (ES or hysteresis) state which was missing in its
monolayer counterpart. Due to the impact of diffusion, the
hysteresis loop (width) is slightly reduced in the ER layer.
The black line (upper end of the green island) represents the
backward transition (λb), i.e., the changes from the coher-
ence state to incoherence state. These numerically computed
boundaries have also been validated using the self-consistent
coupled equations (10) and (11) for a monolayer and (12) and
(13) for multilayers shown with black lines at the upper end
of the green island [Figs. 4(a) and 4(b) and Figs. 4(c) and
4(d), respectively]. Note that these critical boundaries for the
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FIG. 4. Phase diagram on α-λ plane showing different regions in
two layers of the multiplex in the absence [(a) and (b)] and presence
[(c) and (d)] of interlayer interactions. Green (I), red (II), and cyan
(III) islands respectively represent asynchronous (R ∼ 0), hysteresis,
and synchronous (R ∼ 1) regions. These regions are separated by
solid black lines indicating the critical coupling strength for the
transition to synchrony during the forward (λf ) and backward (λb )
continuation.

backward points are computed from the extreme left end
points of the curves obtained numerically from the self-
consistent equations (10)–(13) for different values of α (e.g.,
for α = 0, backward transition points are computed from
the extreme left end points of the blue curves shown in
Fig. 3). The mean-field analysis also confirms the existence
of the metastable state (ES). However the forward transition
point (end of metastable state) cannot be predicted from this
analysis, a peculiar issue discussed earlier in [19,20] due to
the fluctuation in the order parameter.

In the next section, we derive the exact formula for forward
transition point to synchronization analytically.

IV. FORWARD TRANSITION

To determine the exact forward transition point (λf ) ana-
lytically, we proceed by perturbing the completely incoherent
state [29]. In the completely incoherent state ρ(k, θ, ω, t ) =

1
2π

and it is perturbed with small amplitude η as

ρ(k, θ, ω, t ) = 1

2π
+ εη(k, θ, ω, t ), where ε 	 1. (14)

Since
∫ 2π

o
η(k, θ, ω, t )dθ = 0, we have

R′eiψ = 1

〈k〉
∫ ∫ ∫

kP (k)g(ω)ρ(k, ω, θ, t )eiθdθdωdk

= ε

〈k〉
∫ ∫ ∫

kP (k)g(ω)η(k, ω, θ, t )eiθdθdωdk

= εReiψ , (15)

which imply R′ = εR and

Reiψ = 1

〈k〉
∫ ∫ ∫

kP (k)g(ω)η(k, ω, θ, t )eiθdθdωdk.

(16)

The flow velocity function v(t ) is defined by

v(t ) = dθ

dt
= ω(t ) + λrkR′ sin(ψ − θ − α)

= ω(t ) + ελrkR sin(ψ − θ − α). (17)

By substituting (14), (16), (17) into (5) and neglecting the
higher-order term of ε, we have

∂η

∂t
= −ω

∂η

∂θ
+ λrkR cos(ψ − θ − α)

2π
. (18)

Now the complex Fourier series of the function η(k, θ, ω, t )
is given by

η(k, θ, ω, t ) = c(k, ω, t )eiθ + c∗(k, ω, t )e−iθ

+ η⊥(k, θ, ω, t ), (19)

where η⊥ represents the higher-order Fourier harmonic terms.
Now,

Rei(ψ−θ−α) = e−i(θ+α)Reiψ = e−i(θ+α)

〈k〉
∫ ∫ ∫

kP (k)g(ω)

× η(k, x, ω, t )eixdωdxdk = 2πe−i(θ+α)

〈k〉
×

∫ ∫
kP (k)g(ω)c∗(k, ω, t )dωdk. (20)

Similarly we can write

Re−i(ψ−θ−α) = 2πei(θ+α)

〈k〉
∫ ∫

kP (k)g(ω)c(k, ω, t )dωdk.

(21)

Now combining Eq. (20) and Eq. (21) we can get

R cos(ψ − θ − α)

= π

〈k〉
[
e−i(θ+α)

∫ ∫
kP (k)g(ω)c∗(k, ω, t )dωdk

+ ei(θ+α)
∫ ∫

kP (k)g(ω)c(k, ω, t )dωdk

]
. (22)

Using Eqs. (19) and (22) in Eq. (18) and comparing the
coefficients of eiθ we arrive at

∂c(k, ω, t )

∂t
= −iωc(k, ω, t ) + λrk

2〈k〉e
iα

∫ ∞

kmin

∫
k′P (k′)

× g(ω′)c(k′, ω′, t )dω′dk′. (23)

We now assume c(k, ω, t ) = A(k)B(ω)eμt and substituting it
into Eq. (23) we get

μA(k)B(ω) = −iωA(k)B(ω) + λrk

2〈k〉e
iα

∫ ∞

kmin

∫ ∞

−∞
k′

×P (k′)g(ω′)A(k′)B(ω′)dω′dk′. (24)
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Finally, the equation looks like

1 = λr〈k2〉
2〈k〉 eiα

∫
(μ − iω)g(ω)

μ2 + ω2
dω. (25)

For symmetric uniform frequency distribution within an in-
terval [−a, a], g(ω) = 1

2a
for −a � ω � a and g(ω) = 0,

otherwise. In that case, from (25), we get

λf = 4a〈k〉 cos α

πR〈k2〉 , (26)

by taking the limit μ → 0 for marginal stability and r ∼ R

due to the annealed network approximation. Here λf gives
the forward transition point where the incoherent state loses
its stability. The expression of λf (26) combines the network
structure (〈k〉 and 〈k2〉), with the system parameters frequency
distribution g(ω) and the phase-frustration parameter α. Note
that the ratio of the first nonzero order parameter (R) and cos α

remains constant for a given network (numerical verification
is not shown here); therefore λf depends only on network
structure and frequency distribution. The approach fits with
our numerical result shown in Figs. 2(a) and 2(b) where the
forward point does not depend on α. The same behavior is also
shown with black lines (lower end of cyan island) in Figs. 4(a)
and 4(b). As expected, the black lines are almost parallel to the
x axis (α). In the absence of interlayer connection we calculate
the forward critical point from (26), in which the values for the
layer I and layer II are λf ∼ 0.12 and λf ∼ 0.04, respectively.
We have verified our result for several choices of initial states.
Note that the forward transition point of the scale-free layer
(II) is close to zero, as we consider γ = 2.5, where 〈k〉

〈k2〉
converges to zero for N → ∞ as the nodes with higher degree
(hubs) enhance the synchronization process [30]. Due to finite
network size we get a small nonzero λf value. Next we have
extended our forward transition calculation in the multilayer
network in the presence of interlayer interaction and obtain

λσc
= 4a〈kσ 〉 cos α

πrσ ′ 〈k2
σ 〉 ; σ, σ ′ = I, II (σ �= σ ′). (27)

Due to the diffusive interaction, critical points of both layers
remain close to each other; the total hysteresis areas of both
layers [shown in red color in Figs. 4(c) and 4(d)] remain
identical which is also confirmed by our analytical expression
(27). We would like to mention that, considering the SF
network in lower γ (γ < 3), the theoretical forward point
comes closer to the backward point, although a small width
of ES is confirmed for a different set of realizations.

Now we will show the impact of multiplexity over frustra-
tion. We consider a multiplex network in which ER networks
are used on both layers. In earlier literature, synchroniza-
tion has been examined in two identical networks connected
through interlayer links [31]. However, the impact of frustra-
tion in identically coupled networks has not been examined.
To realize ES, we consider a nonfrustrated environment in
layer I where α = 0. The change of order parameter (with
respect to λ) is shown in Fig. 5(a) with the red line and the
blue line shows a continuous transition in layer II due to the
presence of strong frustration (α = 1). Surprisingly, as the
interlayer interactions are switched on, both the layers exhibit
ES behavior as shown in Fig. 5(b). Note that the value of
the order parameter of layer II (blue color) is enhanced in

0 0.1 0.2 0.3 0.4
0

0.5

1

Layer-I
Layer-II

0 0.1 0.2 0.3 0.4

(a) (b)

FIG. 5. Order parameters of two layers are shown as a function
of λ in the absence (a) and presence (b) of interlayer interactions.
Vertical dashed lines represent critical points determined from the
self-consistent equations (10) and (11), (12) and (13), and from
Eq. (26).

the multilayer due to the impact of layer I, an interesting
phenomenon not discussed previously in a phase-frustrated
environment. The dashed vertical lines represent the criti-
cal coupling strengths calculated analytically. The backward
points are in close agreement with the numerical values;
however the forward points have small discrepancy (mainly
in multiplex structure) with the numerics. Although, the mul-
tiplexity wins over frustration by setting all layers to ES.

We have also extended our result and verified this feature
for SF-SF bilayer networks in which one layer is highly
frustrated (α = 1) whereas the other layer is not frustrated
(α = 0). Figure 6(b) shows that (1) ES can be established
for both layers if there is layer-layer interaction and (2) the
order parameter can be slightly enhanced with an emergence
of a short window of explosive synchronization in a multiplex
network (shown in blue color).

V. CONCLUSIONS

We found here that a network can impact or affect the sharp
transition of a frustrated system. For instance, an SF network
in lower γ cannot undergo a first-order transition. On the other
hand, for a given network, a strong phase frustration inhibits

0 0.1 0.2 0.3
0

0.5

1

Layer-I
Layer-II

0 0.1 0.2 0.3

(a) (b)

FIG. 6. Panel (a) indicates the order parameter evaluation as
a function of λ in the absence of interlayer interaction. The red
line shows hysteresis for α = 0 in layer I and the blue line shows
synchronization pattern of layer II when α = 1. There is no ES in
layer II. (b) Both of the networks reveal ES (shown by red and
blue lines) in the presence of multiplexity in which two layers are
connected through adaptive links. Both the layers are equipped with
a scale-free network of size N = 2000, 〈k〉 = 14, and γ = 3.5.
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ES by promoting a continuous transition to synchronization.
We have established that we can transform a continuous tran-
sition to a discontinuous transition by feeding them into a mul-
tiplex network in which each layer is adaptively controlled by
the other layer. We have numerically shown the emergence of
ES and our analytical approach predicts the accurate condition
of emergence of ES in a multilayer as well as in its monolayer
counter part. Using a mean-field analysis and a perturbative
approach around the incoherent state, we have calculated the
critical coupling strengths for the onset of synchronization

both for forward and backward transition. Our approach can
easily be extended to other frequency distributions.
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APPENDIX: DETAILED CALCULATION OF MEAN-FIELD ANALYSIS

The contributions of locked oscillators and drift oscillators to the order parameter are

Rl = (cos α − i sin α)

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

⎡
⎣

√
1 −

(
ω − �

λrkR

)2

+ i
ω − �

λrkR

⎤
⎦dkdωH

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

, (A1)

Rd = (sin α + i cos α)

〈k〉
∫ ∞

kmin

∫
P (k)g(ω)

ω − �

λrR

⎡
⎣1 −

√
1 −

(
λrkR

ω − �

)2
⎤
⎦dkdωH

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)
. (A2)

Hence we get R = Rl + Rd , where Rl and Rd are given by Eq. (A1) and Eq. (A2), respectively. Now comparing the real and
imaginary parts separately we get the following.

Taking the real part:

R =
⎛
⎝cos α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2

+ sin α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR

⎞
⎠H

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

dkdω

+ sin α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR

⎡
⎣1 −

√
1 −

(
λrkR

ω − �

)2
⎤
⎦H

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)
dkdω

⇒ R〈k〉 = cos α

∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2

H

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

dkdω

+
{

sin α

∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR
H

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

+ sin α

∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR
H

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)}
dkdω

− sin α

∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR

√
1 −

(
λrkR

ω − �

)2

H

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)
dkdω. (A3)

Taking the imaginary part:

0 =
⎛
⎝cos α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR
− sin α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2
⎞
⎠H

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

dkdω

+ cos α

〈k〉
∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR

⎡
⎣1 −

√
1 −

(
λrkR

ω − �

)2
⎤
⎦H

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)
dkdω

⇒ cos α

∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

λrkR
dkdω = sin α

∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �

λrkR

)2

H

(
1 −

∣∣∣∣ω − �

λrkR

∣∣∣∣
)

dkdω

+ cos α

∫ ∞

kmin

∫
P (k)g(ω)(ω − �)

√
1 −

(
λrkR

ω − �

)2

H

(∣∣∣∣ω − �

λrkR

∣∣∣∣ − 1

)
dkdω.

(A4)
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Now from the above equation of the real part and imaginary part we get coupled equations of the order parameter and group
angular frequency in the form given by Eqs. (10) and (11). In the mean-field framework we can take ri = R. To simplify our
calculation we introduce a variable x = λR2 and substituting in Eq. (10) and Eq. (11) we obtain three sets of equations for the
unknown parameters �, R, and x in the following form. Here it is convenient to consider � and R as the functions of x:

〈ω〉 − �(x) = x tan α

∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �(x)

xk

)2

H

(
1 −

∣∣∣∣ω − �

xk

∣∣∣∣
)

dkdω

×
∫ ∞

kmin

∫
p(k)g(ω)[ω − �(x)]

√
1 −

(
xk

ω − �(x)

)2

H

(∣∣∣∣ω − �

xk

∣∣∣∣ − 1

)
dkdω, (A5)

R2(x) = x

λ
, (A6)

and

R(x)〈k〉 = cos α

∫ ∞

kmin

∫
kP (k)g(ω)

√
1 −

(
ω − �

xk

)2

H

(
1 −

∣∣∣∣ω − �

xk

∣∣∣∣
)

dkdω + sin α

x
(〈ω〉 − �)

− sin α

∫ ∞

kmin

∫
kP (k)g(ω)

ω − �

xk

√
1 −

(
xk

ω − �

)2

H

(∣∣∣∣ω − �

x

∣∣∣∣ − 1

)
dkdω. (A7)

Solving Eq. (A5) and Eq. (A6) we find x and the group angular frequency �. Inserting them into Eq. (A7) we can find the order
parameter R.
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