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Soft random geometric graphs (SRGGs) have been widely applied to various models including those of
wireless sensors, communication, and social and neural networks. SRGGs are constructed by randomly placing
nodes in some space and making pairwise links probabilistically using a connection function that is system
specific and usually decays with distance. In this paper we focus on the application of SRGGs to wireless
communication networks where information is relayed in a multihop fashion, although the analysis is more
general and can be applied elsewhere by using different distributions of nodes and/or connection functions.
We adopt a general nonuniform density which can model the stationary distribution of different mobility
models, with the interesting case being when the density goes to zero along the boundaries. The global
connectivity properties of these nonuniform networks are likely to be determined by highly isolated nodes, where
isolation can be caused by the spatial distribution or the local geometry (boundaries). We extend the analysis to
temporal-spatial networks where we fix the underlying nonuniform distribution of points and the dynamics are
caused by the temporal variations in the link set, and we explore the probability that a node near the corner is
isolated at time T . This work allows for insight into how nonuniformity (caused by mobility) and boundaries
impact the connectivity features of temporal-spatial networks. We provide a simple method for approximating
these probabilities for a range of different connection functions and verify them against simulations. Boundary
nodes are numerically shown to dominate the connectivity properties of these finite networks with nonuniform
measure.
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I. INTRODUCTION

Since the seminal paper by Gilbert in 1961 [1] where
random geometric graphs (RGGs) (originally labeled random
plane networks) were first introduced, they have been applied
to model the spread of diseases, fires, and information; in fact
even in the original paper wireless networks were proposed as
a relevant application. More recently, RGGs have been used
to help model how devices are deployed, and subsequently
interact, in wireless sensor networks [2], for example, with
a mesh architecture where there is no fixed infrastructure
and information is transferred in a multihop fashion. In the
classical RGG points are randomly placed in some space and
two points form a link if their distance is less than some
critical distance r0 [3,4].

The original RGG model was extended by Waxman in
1988 [5], focusing on packet routing in wireless networks
to include probabilistic connections, more recently coined
soft random geometric graphs (SRGGs) [6–8]. The addi-
tional source of randomness produced by the probabilistic
connection functions generates a wider array of applications
including neural and social networks [9–12] and a wider range
of communication networks.

Even for a spatial network where the node locations are
fixed, the set of edges can vary with time due to random
link failures [13], which themselves can often be spatially
correlated [14]. For example, in a wireless sensor network
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where the location of nodes remains unchanged, a node may
go from being connected to disconnected in consecutive time
slots due to fluctuations in the communication channel. Thus,
it makes sense to talk about both the temporal and spatial
features of these networks, herein referred to as temporal-
spatial networks. High mobility can help mitigate the impact
of random node failures as nodes will be isolated for very
short times [15,16]; equivalently one can think of the time
needed to transmit information and the time for a node to
change its location as having a similar time scale. However,
in reality retransmissions in smart devices occur on a much
smaller time scale compared with human mobility, say; so
to accommodate these different time scales we assume the
locations of nodes are fixed throughout time, but connections
are made during each time step according to a connection
function H independent of the past. In particular we focus
on the local property of node isolation near a corner where
the distribution of points is nonuniform (and can go to zero at
the boundary) over multiple time slots and explore how these
local properties impact the global picture of connectivity.

The connectivity of SRGGs is closely related to that of
continuum percolation where, unlike its classical counter-
part, the locations of nodes in the graph are random. Early
bounds were given in Ref. [1] on the conditions needed for
there to exist a connected component of infinite size (giant
component) in a RGG in R2 by relating the problem to a
branching process (lower bound) and bond percolation on
the square lattice (upper bound). For a fixed r0 there exists a
percolation transition where a node goes from belonging to a
component of finite size almost surely, to being connected to
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the giant component with positive probability. Various work
has focused on improving these bounds discussed in Ref. [4],
while others have looked at different regimes; for example, in
sparse communication networks no additional infrastructure is
required in two dimensions when devices are well scattered,
and this is true in one dimension [17]. More recent work
has focused on local power management (vary the connection
range r0) to achieve connectivity [18–20], a result extended
to Poisson hole networks (the holes represent regions where
nodes cannot be; see Ref. [21]), which model competing
cognitive radio networks [22,23]. Percolation on SRGGs is
less well studied, with some of the more notable work being
done on networks where interference is included so a link
between any two nodes also depends on the location of other
nodes in the network [24,25].

For networks in a finite domain a more natural and stronger
condition than that of percolation is one of full connectivity,
Pf c, i.e., when is there a multihop path between any two nodes
in the network. Understanding the bottleneck to Pf c is of great
importance in applications of wireless mesh networks, for
example, where disconnected nodes may represent isolated
sensors which hold important information or else dissatisfied
customers. Much of the work on this transition considers the
limiting case when the number of nodes goes to infinity as
the typical connection range goes to zero, which mitigates
the impact of boundaries. Indeed, Ref. [26] shows that for
the RGG the transition from disconnected to fully connected
occurs when there are no more isolated nodes in the graph,
which are located far from the boundary, a result which was
later extended to SRGGs [27]. Interestingly, this work high-
lights how the local effects of isolation probabilities determine
the macroscopic behavior of Pf c. Similar work has been done
on the RGG with a large class of densities in two dimensions
by Hsing and Rootzén [28], in higher dimensions when nodes
are normally distributed [29] and when the connection range
is location dependent [19].

In finite networks it is likely that border effects will dom-
inate. A cluster expansion approach was utilized by Coon,
Georgiou, and one of the present authors to show that Pf c

can be decomposed into contributions from the bulk and the
different types of boundary, where the latter tend to dominate
[30]. This result was extended to a more general class of
connection functions showing that boundaries can obstruct
Pf c in dense networks [31].

A feature of wireless mesh networks is that they have no
fixed infrastructure as the locations of nodes may vary with
time as they move according to some mobility model. Simply
put, mobility models are a set of rules (usually probabilistic in
nature) that describe the movement of nodes. The complexity
of the mobility model is inversely correlated to its mathemat-
ical tractability. For example, one of the simplest mobility
models is a random walk (RW), or Brownian motion, where
a new direction of travel is chosen at random at each time
step, with trajectories of paths being reflected off any bound-
aries [32]. The RW is recurrent in two or fewer dimensions,
meaning that a single node explores the whole of the domain
[33]; consequently, a uniform spatial distribution can be used
to approximate the mobility of a dense mesh network in this
case [34].

However, the spatial distribution of nodes is unlikely to be
uniform as people tend to congregate around popular places

such as city centers and this behavior can be captured by
the stationary distribution of the random waypoint mobility
(RWP) model [35]. In the RWP model each node moves
independently from one another, so it suffices to describe
the process of a single node. A single node is placed in
the domain uniformly at random, chooses a waypoint uni-
formly at random, and travels toward it in a straight line
with a speed taken also from a uniform distribution. Once at
the destination, the node pauses for some time, taken from
some appropriate distribution, with probability pT and then
selects its next waypoint, independently from the past. If
pT = 0 then the density goes to zero along the boundary.
The RWP converges to a stationary distribution, with the
majority of nodes found within the bulk due to the traveling
paths [35].

Networks with other nonuniform measures have been stud-
ied, with more recent work focusing on their fractal nature
[36], where it was shown that the approximation of isolated
nodes causing disconnectivity improves in this case [37]. This
in essence suggests isolated nodes in networks with nonuni-
form measures are “more isolated” than their counterparts in
uniform networks.

To date there has been little focus on temporal-spatial
networks where the dynamics on the network are caused
by the probabilistic nature of links, node mobility, or both.
One approach is to assume the nodes have infinite mobility
resulting in no spatial correlation between time slots, or alter-
natively to fix the underlying distribution of nodes; either way,
this has largely been focused on the uniform case [37,38].
When the node locations are fixed, uniformly distributed on
the torus (mitigating edge effects by using periodic bound-
ary conditions), and links are drawn during each time slot,
connectivity is determined by those nodes which are “highly
isolated” [37]. When the nodes are mobile, and follow a RW
in Rd , Ref. [39] obtained asymptotic results for how long a
node takes to connect to any other node in the graph when the
connection model is that of the RGG.

In this work we address the question of how boundary and
nonuniform densities impact the local and global connectivity
properties of temporal spatial networks. Of particular interest
in this paper are wireless communication networks, where the
random location of points represents mobile smart devices,
and the connection functions represent different channel con-
ditions. For example, a wireless sensor network is likely to
have close range connections due to power constraints and so
will be closer to the classical RGG, whereas communication
networks will have longer (“softer”) connections derived from
an information theoretic standpoint. The impact of human mo-
bility is approximated by a fixed nonuniform distribution of
users, where we assume that the time scale for transmissions
is much smaller than that of human mobility. An interesting
example, which is so far unexplored in the context of full
connectivity with the exception of Ref. [37], is when the
density goes to zero along the boundaries, with a motivating
example being the stationary distribution of the RWP with no
pause time.

Although the connection functions are motivated from a
wireless networks perspective our analysis is general enough
to incorporate connection functions from other literature. Fi-
nally, we make comparisons between how long one node near
the corner is isolated and how long any node in the network is
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isolated, which provides an approximation of Pf c in temporal
spatial networks.

The paper is structured accordingly: in Sec. II we define
the model and introduce the tools required for the analysis,
Sec. III A calculates the isolation probabilities for functions
with compact support, Secs. III B and III C provide different
methods for calculating isolation probabilities for connection
functions with infinite support, Sec. IV compares approxima-
tions with computer simulations, and Sec. V concludes the
paper.

II. MODEL

A. Network model

The aim is to understand how boundaries and nonunifor-
mity impact the global connectivity properties of temporal-
spatial networks. With this in mind we use a nonuniform
Poisson point process (PPP) in a triangular region to model the
random locations of nodes in the network which represent the
locations of people with mobile smart devices. In particular
we focus on a point ξ located near the corner of the region
and study how long it remains isolated from the rest of the
network.1 The distribution of nodes is generally taken to be
nonuniform, which is assumed to be a consequence of human
mobility. In our calculations we assume the node locations
remain fixed throughout the process; this can be interpreted
as the system having two different time scales: that of human
mobility, and sending a wireless packet, with the latter being
assumed to be much smaller.

Another important assumption is that there is no temporal
dependence between time slots; that is to say the probability a
node is isolated at time T is independent from the past.

The main metric for discussion is PCT
(ξ ), which is the

probability a node ξ has made at least one link to another
node in the network in any of the previous time steps. For
brevity our formulas are written in terms of the complement of
the connection probability PT

iso(ξ ) = 1 − PCT
(ξ ); that is, the

probability ξ does not make a single connection in any of the
previous time slots t = 1, 2, . . . , T − 1, T .

We now proceed by discussing the point process, distribu-
tion of nodes, and the connection functions we adopt in the
subsequent sections.

B. Point process

Let � be a Poisson point process in a region A with
nonuniform measure � with density λ(r, θ ); thus the measure
�(A) of a set A is given by �(A) = ∫

A
λ(r, θ )r dr dθ . The

PPP is defined by the following two properties [40]:
(1) For all measurable A ⊂ Rd , the number of points from

� in A (denoted �(A)) is Poisson distributed with mean
�(A).

(2) �(Ai ) are independent random variables if Ai are
mutually disjoint compact subsets of Rd .

1ξ is not in the point process since this would break some of our
later assumptions. For example, we will sometimes want to choose
ξ such that it is on the boundary, but often we will also choose the
density such that it goes to zero at the boundary.

Therefore, the probability the number of points in A is k is

P[�(A) = k] = e− ∫
A

λ(r,θ )r drdθ
(
∫
A

λ(r, θ )r dr dθ )k

k!
. (1)

In this paper the region A is a right angled triangle determined
by A = {(x, y) : 0 � x � L, 0 � y � x tan φ}.

C. Distribution of points in �

In order to investigate the impact a nonuniform distribution
of nodes has on network performance, we choose a general
density that grows away from the corner,

λ(r, θ ) = N̄crαgφ (θ ), α � 0, (2)

where N̄ is the mean number of nodes in the PPP, c is a
normalization constant such that

∫
A

λ(r, θ )r dr dθ = N̄ , and
gφ (θ ) can be suitably chosen such that the density goes to zero
on one, both, or none of the boundaries near the corner. One
particular example is when α = 2 and gφ (θ ) = sin(θ ) sin(φ −
θ ), which approximates the stationary distribution of the RWP
model near a corner.

To approximate the RWP near a corner of a triangle we
assume the spatial distribution can be calculated from three
independent one-dimensional processes. The exact expression
for the RWP on the line is provided in Ref. [35]:

f1d (x) = − 6

L3
x2 + 6

L2
x, 0 � x � L. (3)

Thus, making use of the above, the approximation following
the relevant transformations can be written as

f
approx
� (x, y)

= f1d (y)f1d

(
x cos
(π

2
− φ
)

− y sin
(π

2
− φ
))

× f1d

(
(x − L) cos

(π
2

+ φ
)

− y sin
(π

2
+ φ
))

. (4)

Since we concern ourselves with what happens near the corner
for a large domain, we take the leading order expansion for
small r =

√
x2 + y2,

f
approx
� (r, θ ) ∼ sin(θ ) sin(θ − φ)r2 + O(r3). (5)

So we see that when gφ = sin(φ) sin(φ − θ ) and α = 2,
Eq. (2) models the RWP model, and when α = 0, gφ = 1, we
have the uniform case.

When α > 0, even when the domain is taken to be infinite,
discussed later, the expected number of isolated nodes is finite
whereas for α � 0 this may not be so [37]. Regardless, we are
concerned with the isolation probability of a node near the
corner, so approximating the domain to be infinite has little
impact and only improves tractability; this is discussed further
in the following section.

D. Connection model

In this paper we consider a range of connection functions
controlling the link probabilities, which we assume to have
no temporal dependence.2 In general our analysis holds for a

2In a more realistic interference model this cannot be assumed [41].
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FIG. 1. A realization of � for the different connection functions in Table I, and a representation of how the link probability behaves as a
function of distance. In each wedge, the locations of each node are the same, but the links vary. The color (grey scale) represents the size of the
connected components of the corresponding graphs with the red (dark grey) representing large clusters; the parameters are N̄ = 100, L = 10,
r0 = 0.5, η = 4, β = 1, r− = 0.5, r+ = 0.8, and ℘ = 0.75, 0.5, and 0.25 for the SDM, SAM, and QDM respectively. Clearly the Waxman
model is the most well connected due to its long range connections, whereas the connectivity in the MIMO model is better than the Rayleigh
case due to multiple antennas.

wider range of connection functions that are nonincreasing,
but we focus on those used predominantly in the wireless
literature (see Fig. 1).

Let r be the Euclidean distance between two nodes in the
point process �, and thus let H(r ) be the probability these two
nodes connect. Let r0 be the typical connection range, which
is implicit in H(r ) and can be seen in Table I. For connection
functions with compact support, it is typical that only devices
that are closer than r0 can form a link; however, we also
provide variations on this in terms of the soft annulus and
quasi-disk models (see below). For connection functions with
global support, r0 represents how the signal decays resulting
in long range connections becoming increasingly unlikely.
Moreover, r0 can be thought of as a power constraint on
transmitting devices and as such we assume the system size to

TABLE I. Connection functions that are discussed in Sec. II D.
Parameters: r0 is the typical connection range, ℘ ∈ (0, 1] is the
probability a node is active, η ∈ [2, 6] is the path loss exponent,
μ > 0 defines how fast the function decays with distance, q > 0 is
the threshold signal quality, and the noise in the channel is given
by σ 2.

Model H(r )

SDM ℘1r�r0

SAM ℘1r−�r�r+

QDM

⎧⎨
⎩

℘, 0 � r � r−
℘ − ℘
(

r−r+
r+−r−

)μ
, r− � r � r+

0, otherwise

Rayleigh e
−( r

r0
)η

Waxman βe
− r

r0

Interference e−qσ 2rη
e

− ∫W qζ rη

|z|η+qζ rη
�(d z)

MIMO e
−( r

r0
)η (2 + ( r

r0

)2η − e
−( r

r0
)η )

be much larger than the typical connection range, L � r0. As
we consider functions that are nonincreasing, the significant
contributions come from close by which allows us to take the
dimension of the triangle to be infinite, referred to as a wedge
(W) and exploited in Secs. III B and III C, without losing
much accuracy. To investigate the impact of boundaries we
assume the node ξ is located near the corner, and that |ξ | < r0.

This is to simplify calculations involving connection func-
tions with finite support. More general calculations are
straightforward but cumbersome, and do not provide greater
insight.

We define the following seven connection functions in
Table II and discuss the connection functions with compact
and infinite support separately below (see Ref. [31] for more
background).

1. Connection functions with finite support

The soft-disk model (SDM) is a variation on the RGG,
introduced in Ref. [1]. Two nodes form a link with probability
℘ ∈ (0, 1] if their Euclidean separation r � r0. The probabil-
ity ℘ is used throughout this paper to incorporate a temporal
aspect into the models with compact support; with ℘ = 1 we
have a deterministic model and no temporal aspect, and the
case ℘ = 0 is excluded as every node is isolated. The nodes
in � (equivalently links) can be thought of as becoming active
with probability ℘.

The soft-annulus model (SAM) is a modified version on
the SDM where links can only be formed in the interval
r ∈ [r−, r+]. Intuitively this exclusion region can be seen as
a simple channel access scheme ensuring two nodes in close
proximity transmit on different channels (and thus cannot
connect to each other) in order to mitigate interference effects.

The quasi-disk model (QDM) is the first model we dis-
cuss that models the connection probability decaying with
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TABLE II. Table of approximations for a range of different connection functions H calculated from Eq. (8); see Table I for definition of
connection functions and symbols. Recall that ξ = (ξx, ξy ) is in Cartesian coordinates whereas ξ = (x, ω) is in polar coordinates. Refer to
Sec. II D for definition and explanation of parameters used.

Model Approximations for the probability that a node ξ is isolated at time T

SDM exp
(−N̄c(1 − (1 − ℘)T )

( rα+2
0
α+2 Gφ + Gc(ω)rα+1

0 x + rα
0 G2(ω)x2

))
SAM exp

(−N̄c(1 − (1 − ℘)T )
( (rα+2

+ −rα+2
− )

α+2 Gφ + Gc(ω)(rα+1
+ − rα+1

− )ξx + G2(ω)(rα
+ − rα

−)x2
))

QDM exp
(−N̄c(1 − (1 − ℘)T )

( rα+2
0
α+2 Gφ + Fcr

α+1
0 ξx

)+Ir(α + 1)Gφ + (α + 1)Ir(α)Gc(ω)x
)

Rayleigh exp
(−N̄c

rα+2
0
η

�
[

2+α

η

]
H

2+α
η

T ,1 Gφ + rα+1
0 �
[

1+α

η
+ 1
]
H

1+α
η

T ,1 xGc(ω) + · · · )
Waxman exp

(−N̄cr2+α
0 �[2 + α]H̄ 2+α

T ,β Gφ + rα
0 �[α + 1]H̄ 1+α

T ,β Gc(ω)x + · · · )
Interference exp

(−N̄c HT

(2+α)cI
+ (cN̄ )

1
2+α

(cIGφ )
1+α
2+α

�
[

3+2α

2+α

]
H

1+α
2+α

T xGc(ω) + O(x2)
)

MIMO exp
(−N̄c

rα+2
0 Gφ

η
I1

(
α+2

η

)+ (α+1)rα+1
0 Gcξx

η
I1

(
α+1

η

))

distance. The QDM is a piecewise connection model that has
support on r ∈ [0, r+] and combines the SDM and one which
decays with r; for r ∈ [0, r−] the connection probability is ℘,
whereas for r ∈ (r−, r+] the connection probability decays to
zero. The factor ℘ is included throughout to ensure H(r ) is
continuous at r−, while the parameter μ is used to tune how
“fast” the connection probability decays to zero, with it doing
so faster for small values of μ. Notice that by taking r− = 0
the connection probability decays to zero with r , whereas it
reduces to the SDM when r− = r+. Intuitively the reader can
think of the QDM as representing a connection environment
which is clutter free within the ball B(ξ , r−), while the signal
decays between r− and r+ due to the appearance of obstacles.
Alternatively, the inner ball could model a region where all
transmissions are done on separate channels while channels
are shared in the outer ball, creating interference.

2. Connection functions with infinite support

One of the most widely used connection functions in wire-
less communications (which has a similar analog in neural
networks [10]) is the probability that the signal-to-noise ratio
(SNR) is greater than some threshold q. By modeling the
signal as the product of channel gain |h|2 (an exponential
random variable with mean 1 which models the small scale
fluctuations in the channel) and path-loss function r−η (which
models how the signal decays with distance) and taking the
noise to be σ 2, one can show that the connection function
behaves like a stretched exponential, with a scaling r

−η

0 =
1

qσ 2 . More specifically,

H = P[SNR > q] = P

[ |h|2r−η

σ 2
> q

]
= exp

(
−qσ 2

r−η

)
.

Empirical observations have shown that typically η ∈ [2, 6] in
urban environments [31] (when η = 2 the signal decays like
that in free space), whereas in cities there are less likely to
be long range connections due to obstacles and thus η will
generally be larger. In highly reflective mediums η < 2.

The Waxman case (see Table I) is closely related to
the Rayleigh model, where connections are very soft. The
Rayleigh model reduces to the Waxman model for η = 1, and
assuming β = 1.

The multiple input and multiple output (MIMO) connec-
tion function models the case when the receiver and transmit-
ter have multiple antennas. Due to the limited battery power
of mobile devices, the number of antennas is unlikely to be
large so we focus on the case when each device has two
input and two output antennas, and the channels are assumed
to be independent and identically distributed (i.i.d.) Rayleigh
channels. Work on a more general array of antennas can be
found in Refs. [31,42].

Finally, the last connection function we consider is one that
includes interference, where the noise σ 2 is negligible. Due to
links being dependent on the number and locations of other
nodes in �, the network can become highly directional unlike
the other models previously discussed; the probability a node
ξ can successfully transmit a message to y is distinct from
the probability it can receive a message from y. For simplicity
we consider the latter as the interference is measured at the
receiver ξ .

We proceed by giving the general definition for the connec-
tion probability between a transmitter in �, XT = (XT , θT ),
and receiver, XR = (XR, θR) (the receiver is assumed not
to be in �), with r = |XT − XR| being the point-to-point
distance of the link. We denote the interfering nodes in � as
XI = (XI , ωI ):

H(r ) = P[SINR > q]

= E

[
P

[
|hτ |2r−η

ζ
∑

XI∈�\XT
|hk|2|XI − XR|−η

> q|�
]]

= exp

⎛
⎝−N̄

∫
W

λ(z, ω)z

1 + (z2+X2
R−2zXR cos(θR−ωI ))

η
2

qζ rη

dz dω

⎞
⎠.

(6)

In the third equality we have used that the channel gain |hk|2
is an i.i.d. exponential random variable, and we used the
probability generating functional to average over all possible
locations of the interferers [40]. It is often the case that Eq. (6)
cannot be given in closed form for an arbitrary location of
ξ in finite domains with nonuniform measure. In Sec. III B
we make several approximations to allow for a more tractable
analysis.
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The interference model is the only connection model that
depends on the underlying point process. The other connec-
tion models can be thought of as having networking protocols
which mitigate the impact of interference, hence the restric-
tion that r0 � L due to a finite amount of network resources.

III. ISOLATION PROBABILITIES

In this section we provide three methods for computing the
probability that a node ξ is isolated for T consecutive time
slots near a corner. The first method is applied to connection
functions with compact support, while the other two are used
for connection functions with global support. The last two
methods can also be applied to those connection functions
with compact support and the corresponding discontinuities
can be handled separately, although these contributions can
often be ignored in the small parameter expansions [37]. We
proceed by giving the initial formulation of the analysis, and
then we consider each method separately in the subsequent
sections.

The probability that a user ξ is isolated from all other points
in �, conditioned on �, for T consecutive time steps is

PT
iso(ξ |�) =

∏
y∈�

(1 − H(|ξ − y|))T . (7)

By averaging over all possible realizations of �, and using the
probability generating functional for Poisson point processes
[40],

G(v) = E

⎡
⎣∏

ζ∈�

v(ζ )

⎤
⎦ = exp

(
−
∫

(1 − u(ζ ))�(dζ )

)
,

we can write Eq. (7) as

PT
iso(ξ ) = exp

(
−
∫

A

(1 − (1 − H(|ξ − y|))T )�(d y)

)
, (8)

where the integral is over the triangular region, and � is
the intensity measure of �. For a single time slot Eq. (8)
reduces to

PT =1
iso (ξ ) = exp

(
−
∫

A

H(|ξ − y|)λ( y)d y
)

= e−M (ξ ), (9)

where M (ξ ) is the usual connectivity mass [30,31].
As an aside, it turns out that if mobility is included between

time slots, the average time it takes for ξ to connect decreases
[16,38]. For example, as a crude lower bound we can consider
the case where each node in � has infinite mobility (i.e.,
there is no spatial correlation in the location of nodes from
one time step to another); then the probability that a node
is isolated for T consecutive time steps is simply e−T M (ξ ).
The probability that a node ξ is connected at time T is
the cumulative distribution function of a geometric random
variable with mean M (ξ ); therefore, ξ can always transmit in
finite time provided M (ξ ) > 0. In this model the number of
points in � during each time slot is a random variable with
mean N̄ and can be thought of as nodes randomly turning on
or off. Alternatively, one could condition on the number of
points in each time step by using the binomial point process.

For a fixed stationary distribution of nodes we return to
Eq. (8). Consider the limit as T → ∞ for any H(r ) > 0 with

infinite support, in a finite domain A,

PT
iso(ξ ) =T →∞ exp

(
−
∫

A

λ(r, θ )r dr dθ

)
= e−N̄ > 0.

(10)

The probability that a node ξ is isolated is always positive,
since the probability that the point process � is empty (e−N̄ )
is also positive, a finite domain effect. A similar analysis holds
for connection functions with compact support, but instead
PT

iso(ξ ) equals the probability that the region where links can
be made is empty. Consequently, the local mean in/out delay
(the average time it takes for a node to transmit a packet)
is infinite for finite networks. This can also be the case for
infinite networks where the connection function is H(r ) =
e
−( r

r0
)η , which is a result of the appearance of arbitrarily large

voids in the network [43]. This behavior can be mitigated in
both cases by conditioning on a point being a distance d < ∞
away, or in the case of a finite network and unbounded support
fixing the number of points.

We proceed by using Eq. (8) to calculate the isolation
probabilities for different connection functions expressed in
Sec. II D, starting with those with compact support.

A. Connection functions with compact support

The method used for calculating the isolation probability
(and thus the connection probability) for ξ is very similar for
all models (with the exception of the quasi-disk case, which
is discussed in Sec. III C) so we proceed by deriving it for the
soft-disk model and give the results for the SAM in Table II.

Example: Soft-disk model. From Eq. (8) it is not possible
to obtain an explicit expression not in terms of integrals for
PT

iso when ξ is located at an arbitrary location in A. However,
in this paper we concern our analysis with the particular
case when ξ = (x, ω) isolated near the corner, and r0 � x

which guarantees that the ball centered at ξ with radius r0,
Bξ (r0), intersects both boundaries and includes the vertex at
the origin. From these assumptions and Eq. (8) we have

PT
iso((x, ω)) = exp

(
−(1 − (1 − ℘)T )

∫ φ

0

∫ z

0
λ(r, θ )rdrdθ

)

=
(

exp

(
−
∫ φ

0

∫ z

0
λ(r, θ )rdrdθ

))(1−(1−℘)T )

= VB(ξ , r0)(1−(1−℘)T ), (11)

where z =
√

r2
0 + x2 − 2r0x cos(θ − ω), and VB(ξ , r0) is the

void probability, the probability there is no node in the ball
(B(ξ , r0)) of radius r0 centered at ξ in A which is directly
computed by setting k = 0 in Eq. (1). For the uniform case
(α = 0, gφ (θ ) = 1), the inner integral in Eq. (11) is propor-
tional to the size of the region. For the general case we expand
the integrand of Eq. (8) for small x(�r0) to provide a closed
form approximation,

PT
iso((x, ω)) = exp

(
−N̄c(1 − (1 − ℘)T )

(
rα+2

0

α + 2
Gφ

−Gc(ω)rα+1
0 x + G2(ω)rα

0 x2

))
, (12)
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where Gφ = ∫ φ

0 gφ (θ )dθ , Gc(ω) = ∫ φ

0 gφ (θ ) cos(θ )dθ , and

G2(ω) = ∫ φ

0
1
2gφ (1 + α cos2(θ − ω))dθ . At the corner the

above reduces to just taking the leading order term. See
Table II for a similar expression for the soft-annulus model.

In the limit as T → ∞ we return to the original void
probability; for the SAM it converges to the probability that
the annulus VA(ξ , r−, r+) is empty. We notice that this type
of connection function with compact support results in no
guarantee that ξ connects, even if the point process (PP) is
nonempty as the relevant connection region might be; trivially
this all or nothing type of connection means we need at least
the average number of nearest neighbors to be greater than
one [1].

B. User isolation: Method I

In this section we focus on connection functions with
global support and provide a method based on translating the
distance between points; since local behavior will dominate
(very long connections are unlikely), we approximate the
domain to be infinite for tractability.

We first start by writing Eq. (8) as

PT
iso(ξ ) = exp

(
−
∫ φ

0

∫ L
cos θ

0
H̄(z)λ(y, θ )y dy dθ

)
, (13)

where the node ξ is located (in polar coordinates)
at (x, ω), H̄T (z) = (1 − (1 − H(z))T ), and z =√

x2 + y2 − 2xy cos(θ − ω) is the corresponding
transformation using the cosine rule. By assuming discrete
time we can expand the integrand using the binomial
theorem, expand for small radial component x, and assume
the contributions come from nearby so the domain is assumed
to be infinite to give

PT
iso(ξ ) = exp

(
−cN̄

T∑
k=1

(−1)k+1

(
T

k

)(
Hk,α+1Gφ

− k
1

r0
H′

k−1,α+1xGc(ω) + O(x2)

))
, (14)

where Gφ,Gc(ω) are as before, H(n)
k,α = ∫∞

0 H(n)( y

r0
)Hk

( y

r0
)yαdy, and superscript (n) corresponds to the nth deriva-

tive.
We now proceed by calculating the isolation probabilities

for the Rayleigh and interference connection functions out-
lined in Sec. II D through direct application of Eq. (14).

Example: Rayleigh connection model. First we consider
the Rayleigh connection function defined in Table I and
through Eq. (14) we obtain

− logPT
iso(ξ )

cN̄
= rα+2

0

η
�

[
2 + α

η

]
H

2+α
η

T ,1 Gφ

+ rα+1
0 �

[
1 + α

η
+ 1

]
H

1+α
η

T ,1 xGc(ω) + · · · ,

(15)

where Hs
T,β =∑T

k=1(−1)k+1
(
T

k

)
k−sβk is the generalized ro-

man harmonic number given in Refs. [37,44]. Note that we

include the constant β for the Waxman case, the result of
which is given in Table II. Using an asymptotic approximation
provided in Ref. [37], we can approximate the isolation proba-
bilities for large T , where γ is the Euler-Mascheroni constant:

Hs
T ≈ (log T )s

s
+ γ (log T )s−1

+ (6γ 2 + π2)(s − 1)

12
(log T )s−2 + · · · . (16)

This provides a good match when s � 2, which implies for
more cluttered environments (higher value of η) that the
approximation improves; for s = 1 we obtain the standard
harmonic number. The above approximation can be rescaled
to include a constant β by replacing log T with log(βT ).

Conversely, when α+2
η

is large, we have

∫ ∞

0
(1 − (1 − e−z)T )z

α+2
η

−1
dz ∼ T �

[
α + 2

η

]
. (17)

This is a useful approximation for a very inhomogeneous
network (or a highly reflective environment) and suggests
that the isolation of nodes after time T slots behaves like
exp(−const T ). When η = 1 (Waxman model) the above
provides a good approximation, particularly for the RWP
distribution.

Remark. The exact transition behavior between the two
regimes is more subtle and not studied here.

Interference. In Sec. II D we introduce the interference
limited connection function for a node with a general location
in A. A tractable form of H (not expressed in terms of hyper
geometric functions) is only possible for the specific case
when ξ is located at the corner and the domain is assumed
to be infinite (wedge):

H(r ) = exp

(
−
∫ φ

0

∫ L
cos θ

0

(
1 − 1

1 + qζ rη

zη

)
λ(z, θ )zdzdθ

)

=(∗) cN̄s
2+α

η π

η
csc

(
(2 + α)π

η

)
Gφ

= cN̄GφcIr
2+α, (18)

where ∗ denotes that we have assumed an infinite wedge, cI =
(qζ )

2+α
η π

η
csc ( (2+α)π

η
), and we require α + 2 < η to hold. The

condition that α + 2 < η ensures that there is indeed positive
probability of connection; there exists a phase transition at
η = dimension such that for η � dim the global behavior
begins to dominate and the aggregate interference causes
disconnection. Since we assume an infinite wedge, which has
an infinite number of nodes, we need to ensure the local
behavior dominates, hence α + 2 < η. Consequently, for the
RWP case we need η > 4, i.e., a “very” urban environment
like a large city such as New York. Alternatively we can make
the approximation that all non-negligible interference comes
from all those devices within a distance rI which allows
for the relaxation of the α + 2 < η restriction, but yields a
connection function in terms of hyper geometric functions
which leads to an intractable calculation later (see Ref. [45],
among others, on approximating interference).
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When the node is located near the corner we can compute
the approximation through method I or II (outlined in the
next section). For method I we approximate the connection
probability at x to be the same as at the vertex at the origin
such that we can apply Eq. (14), noting r0 = 1, to get

− logPT
iso(ξ ) = HT

(2 + α)cI
+ (cN̄ )

1
2+α

(cIGφ )
1+α
2+α

�

[
3 + 2α

2 + α

]

× H
1+α
2+α

T xGc(ω) + O(x2), (19)

where Hs
T is the roman harmonic number defined earlier and

HT is the usual harmonic number with asymptotic expansion

HT = log T + γ + 1

2T
− 1

12T 2
+ O(T −4). (20)

The leading order term in Eq. (19) is independent of the den-
sity of users and the angle of the wedge. This is consistent with
the results in Ref. [46], which highlights how any increase
in signal power due to proximity is counterbalanced by an
increase in the interference field.

However, the second term (first order correction term)
scales like N̄

1
2+α and does in fact depend on both the geometry

of the wedge and the density of users, ultimately leading to
limN̄→∞ PT

iso(ξ ) → PT
iso(0). Intuitively this is because in the

high density limit,3 the local picture for each node looks the
same due to the scaling of power and interference, which
means connections are dominated by local nodes (assuming
α + 2 < η).

C. User isolation: Method II

In this section our aim is to give an alternative approach to
method I which provides greater tractability and is more suited
to more complicated connection functions H(r ). As such,
this method, method II, is more suited to more complicated
connection functions such as MIMO or those outlined in
Ref. [31] where closed form expressions cannot be obtained
via method I, or else the computation of the higher order
moments of the connection function are time consuming.
For a nonincreasing connection function H(r ) with global
support the approximation can be expressed as a combination
of one-dimensional integrals which are quick to numerically
compute. In this analysis we require the density to go to zero
along the top border, which is akin to the RWP case or other
mobility models where boundaries are left largely unexplored.

In this section we consider the user located on the bottom
boundary, ξ = (ξx, 0), and divide the domain into three re-
gions MA, MB , and MC (see Fig. 2), such that

PT
iso(ξ = (ξx, 0)) = exp ( − (MA + Mb + Mc )). (21)

To obtain an expression for a user located near the corner,
but not on either boundary, we can combine two triangular
domains together along the nonzero boundaries to obtain

3This is only true for our particular choice of path-loss model in
Sec. II D [47].

PT
iso[ξx, ω]. In general the two triangular regions are not iden-

tical, but we assume so merely for brevity. We now proceed
to calculate each of the contributions from these subregions
using Eq. (8), starting with MA.

1. Region MA

The region MA, as shown by the purple region in Fig. 2,
has a transformed polar coordinate system centered at (ξx, 0).
For this case we use the cosine rule to make the necessary
transformation of the density:

MA =
∫ φ

0

∫ (L−ξx )
cos θ

0
H̄T λ(z, ω̂)ydydθ̂

=
∫ ∞

0
H̄T (yα+1Gφ + (α + 1)yαGc(0)ξx + · · · )dy,

(22)

where z =
√

y2 + ξ 2
x − 2yξx cos(π − θ̂ ), ω̂ =

arcsin [ y sin θ̂√
y2+ξ 2

x +2yξx cos θ
], and H̄T = 1 − (1 − H(y))T . In

the above, we have expanded for small ξx and assumed an
infinite wedge.

In fact the main contribution arises from the region MA as
we will see in the following sections as the contributions from
other regions are of order ξ 2

x .

2. Region MB

The region MB is colored yellow in Fig. 2 and has a
translated and rotated coordinate system (x̂, ŷ ). Throughout
this section, since the function gφ (θ ) goes to zero near the
border, we approximate ŷ as small. The connection function
can therefore be approximated as

H(
√

x̂2 + ŷ2)k ≈ Hk (x̂) + k

x̂
H(x̂)k−1H′(x̂)ŷ2 + · · · .

(23)

Using this approximation, and assuming the discrete time
so we can rewrite the integrand as a sum, we have that the
contribution from the region MB is

MB =
∫

MB

H̄(|ξ − y|)T λ(y, θ )ydydθ

≈ N̄cg′
φ (φ)

2

T∑
k=1

(
T

k

)
(−1)k+1ξ 2

x

× sin2 φHk,α−1(x̂) + o
(
ξ 2
x

)
. (24)

We notice immediately that the leading order term is indeed
of order ξ 2

x , which we neglect from our final approximation.

3. Region MC

For the MC region, neighboring nodes are close by so we
approximate H(r ) ≈ 1, and we observe that the contribution
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FIG. 2. Left: Schematic of the wedge and the regions MA, MB , and MC . The x̂, ŷ correspond to the translated and rotated coordinate
system discussed in Sec. III C 2. Right: By combining two wedges together, along the boundary where the density is nonzero, we can calculate
the probability that a single user is isolated from the network near the corner.

is proportional to the size of the region:

MC =
∫ φ

0

∫ ξx cos φ

cos(φ+θ )

0
(1 − (1 − H(r ))T )λ(r, θ )r dr dθ

=
∫ φ

0

∫ ξx cos φ

cos(φ+θ )

0
H̄T (r )λ(r, θ )r dr dθ

≈ N̄c
ξ 2+α
x

2 + α

∫ φ

0
gφ (θ )( cos φ sec(θ − φ))2+αdθ.

(25)

In fact the best case scenario (in this particular model) is for
the uniform distribution, where α = 0, and gφ (θ ) = 1, leaving

MC = N̄c
sin(2φ)

4
ξ 2
x .

By combining the contributions from each region and taking
terms up to order ξx the probability that a point located along
the border is isolated can be written in terms of the following

simplified one-dimensional integral:

− logPT
iso[(ξx, 0)]

cN̄
≈
∫ ∞

0
H̄T (rα+1Gφ

+ (α + 1)Gcr
αξx + · · · )dr. (26)

We now have the integral in the form, with a change of
variables,

I (s) = rs+1
0

∫ ∞

0
(1 − (1 − H(r ))T )rsdr, (27)

and for the asymptotic approximations we need only expand
once for large T and we are done. This method provides
a greater tractability since it involves computing only one
integral (albeit with different parameters s), and for large
times often an asymptotic approximation can be found.

We now proceed by computing the isolation probabilities
for the MIMO and quasi-disk connection functions.

Example: MIMO. For the MIMO connection function we
applyEq. (26) directly:

− logPT
iso(ξ )

N̄c
= rα+2

0 Gφ

η

∫ ∞

0
H̄T rα+1dr + (α + 1)rα+1

0 Gcξx

η

∫ ∞

0
H̄T rαdr

= rα+2
0 Gφ

η
I1

(
α + 2

η

)
+ (α + 1)rα+1

0 Gcξx

η
I1

(
α + 1

η

)
, (28)

where the integral is I1(s) = ∫∞
0 (1 − (1 − e−x (2 + x2 − e−x )T )xs−1dx. First we consider the case when α is large (equivalently

s is large), and T small in comparison; we can get a simple expression for the asymptotic behavior:

I1(s) =
∫ ∞

0
(1 − (1 − e−x (2 + x2 − e−x ))T )xs−1dx

∼ 2T �[s] + T �[s + 2] − T 2−s�[s]. (29)

For s � 1, which will often be the case, we can do a similar asymptotic expansion to Ref. [37] by splitting the integral up at
ĉ log T , where ĉ is a constant:

I1(s) =
∫ ∞

0
(1 − (1 − e−x (2 + x2 − e−x ))T )xs−1dx

= ĉ logs T

s
+ (log[T 1−ĉ(ĉ log[T ])2] + γ )(ĉ log[T ])s−1 + (6γ 2 + π2 + 12γ log[T 1−ĉ(ĉ log[T ])2]

+ 6(log[T 1−ĉ(ĉ log[T ])2])2)
(s − 1)

12
(ĉ log[T ])s−2 + · · · . (30)
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This method provides a good approximation4 provided that s = α+2
η

� 1 and T > 10.
Example: Quasi-disk model. The quasi-disk model (Sec. II D) is a piecewise connection function which can model a change

in channel conditions, for example, transitioning from a clutter-free environment to a cluttered one. In general, assuming a
soft-disk model transitioning to a decay function one at r−, through application of Eq. (8) we obtain

− logPT
iso(ξ )

N̄c
= (1 − (1 − ℘)T )

∫
W∩Bξ (r− )

rα+1gφ (θ )drdθ +
∫
W∩Aξ (r−,r+ )

(
1 −
(

1 − ℘ + ℘

(
r − r−
r+ − r−

)μ)T
)

rα+1drgφ (θ )dθ.

(31)

We can use the previous result for the soft-disk model (see
Table II) for the first term on the right hand side in Eq. (31).
The second term (denoting the inner radial integral as Iradial)
can only be given in semi-analytic form using the previously
outlined methods when ξ �= 0. That is to say we are left with
an integral of the form

∫ φ

0 gφ (θ )(· · ·2 F1(a, b; c; ξ cos θ ))dθ ,
where 2F1(a, b; c; z) is the Gauss hypergeometric function,
which cannot be computed. For simplicity we focus on the
case when μ = 1 and let r+ = κr−. From method II we need
to compute the radial integral

Ir(α + 1) =
∫ κr−

r−

(
1 −
(

1 − ℘ + ℘

(
r − r−
r+ − r−

)μ)T
)

× rα+1dr. (32)

Through direct calculation of the integral in Eq. (32),

Ir(α + 1) = r2+α
−

2 + α

(
κ2+α − 1 +

(
1

�(1 − κ )

)T

× (ψ (T , α, ℘�) − κ2+αψ (T , α, κ℘�))
)

,

(33)

where ψ (T , α,�) = 2F1(−T ; 2 + α; 3 + α; �), � =
1

1−κ (1−℘) , and κ �= 1
1−℘

so � �= 0. For the case when κ = 1
1−℘

we use the following limit:

lim
c→0

cT (−1)T2 F1

(
−T , a, b,

1

c

)
= �[b]�[a + T ]

�[a]�[b + T ]
. (34)

We now directly use the above result to give Iradial when κ =
1

1−℘
:

Ir(α + 1) = r2+α
−

(
κ2+α − 1

2 + α
+ ℘T (1 − κ2+α+T )

(2 + T + α)(κ − 1)T

)
Gφ.

(35)

We can now use method II to provide a general approximation
for Iradial(α + 1):

− logPT
iso(ξx )

cN̄
= (1 − (1 − ℘)T )

(
rα+2

0

α + 2
Gφ + Fcr

α+1
0 ξx

)

+ Ir(α + 1)Gφ + (α + 1)Ir(α)Fcξx. (36)

4This is used more as an illustrative example and a better approx-
imation can be found if more care is taken on how to split up the
integral, which will depend on both α and η.

In the limit as T → ∞ the probability of connection
converges to the void probability for the ball of radius κr−:

lim
T →∞

PT
iso(ξ ) → VB(ξ , κr−). (37)

We remark that the quasi-disk can be defined such that it
has an exponential decay function and the analysis is very
similar to that above, the major difference being that the in-
tegral Ir(α) is expressed in terms of roman harmonic numbers
rather than hypergeometric functions.

IV. NUMERICS

First, the approximations provided in the previous sections,
included in Table II, are a good fit for the simulated data points
(see Fig. 3). One general observation (all connection functions
except for the interference case) is that the probability of
connection tends to its maximum much faster for larger N̄

(similarly for larger r0 or smaller α) as the local neighborhood
becomes increasingly dense. For the interference model the
change in connection probability is much smaller as the den-
sity changes since only the second term depends on N̄ , a result
of the trade-off between connectivity and interference, and as
nodes are added to the network the probability of connections
is counterbalanced by the increase in interference field.

A. Connection functions with compact support

For connection functions with compact support the prob-
ability that ξ is connected tends to the complement of the
void probability and is represented by the dashed lines in
Fig. 3. That is to say, the limiting behavior is restricted to
there existing a node within the connection range, i.e., the
void probability which is characterized by the PPP � and
r0, r−, r+. Such connection functions are employed in the
modeling of wireless sensor networks, and an easy way to
ensure connectivity is to enforce an underlying structure to
the network (lattice) so that the maximum distance between
any two sensors is at most r0. However, in dense networks
(or equivalently when the typical connection range is large)
where devices are located predominantly within the bulk, it is
likely that a lattice structure is not needed and will only waste
resources. Our results highlight how the boundaries, along
with inhomogeneities, significantly decrease the connection
probability. For example, if r0 = 1, L = 10„ and φ = π/2
then the mean degree when α = 0 is ≈0.407 compared with
≈0.003 when α = 2. As a result, in networks that exhibit such
behavior it is likely that nodes need only to be added near the
boundary to ensure connectivity.
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FIG. 3. The probability that a node located near the corner at ξ = (0.2, φ/2) is connected, plotted for different connection functions. The
top and bottom panels have parameter α = 0 and 2, respectively, comparing the impact that the spatial distribution of nodes in the network has
on connectivity. The dashed lines represent the void probabilities, the solid lines are the approximations (given in Table II), and the markers
are simulated points. For the SDM and SAM cases the approximations are found from translating the densities (Sec. III A); the Rayleigh,
Waxman, and interference cases use method I (Sec. III B) and the relevant asymptotic approximations, whereas the MIMO case uses method
II (Sec. III C). Parameters are ℘ = 0.1, φ = π

4 , β = 0.5, r0 = 1.0, r− = 1.0, r+ = 2.5, L = 10, and η = 4, 4, 6 for the Rayleigh, MIMO, and
interference cases, respectively.

B. Connection functions with global support

For connection functions with infinite support we see that
the probability approaches the complement of the probability
the PPP is nonempty (see Sec. III B) and does so faster for
a larger r0 and N̄ and smaller α. This behavior is a finite
domain effect, and if we condition on there being at least one
point in the PPP (or else use a binomial point process), then
P[CT ] →T →∞ 1. For both the Rayleigh and MIMO cases the
asymptotic expansions work well for large T and improve
when the path-loss exponent η increases (the signal decays
faster), or the distribution of points becomes more uniform.
For the MIMO case a better approximation can be provided
for specific α and η but it is unclear how to improve it for
the general case. However, as the probability for long links
increases, such as in the Waxman case, the usefulness of the
large T approximation is limited to the uniform case, but for
the nonuniform case the approximation for very inhomoge-
neous networks works well.

The connectivity of infinite networks is obstructed by
corner nodes, provided some assumptions on the density that
it grows away from the corner, α > 0. If, however, the PP is
uniform, or even if α < 0, then the network may never con-
nect, and one may have infinitely many isolated nodes [37].

C. More general domains

The analysis has so far focused on the connectivity of a
node near the corner of a triangular region. However, this
analysis can easily be extended to different convex geometries
since the domain is assumed to be much larger than the typical
connection range; therefore, the contributions from different
corners can be assumed to be independent.

In addition, one can easily combine two wedges together
with different angles (see Fig. 2), provided they are joined
along the boundary with nonzero density. For example,

consider a node ξ near the corner of a square, where the
density goes to zero along the boundaries. Bisect the square
with a line going through the corner and the node ξ , forming
two wedges which may not be identical. The contributions
from each wedge can be calculated using the method outlined
in Sec. III C, with one of the wedges simply a reflected version
of that depicted in the left hand side of Fig. 2. This method
results in the right hand side of Eq. (26) having an additional
integral term with a similar form (just a different parameter φ)
from the second wedge. In fact, a particular example explored
in Ref. [37] is the case when the density is 4xy, where they
show for the SDM that all isolated nodes are found near
the corner; thus, we should expect the contributions from the
corner to determine network performance.

D. Full connectivity

In static networks Pf c is defined by the existence of a
multihop path between any two nodes in the network. In a
temporal network this is more complicated since there exists
a network with directional (causal) paths between nodes.
We introduce a weaker sense of full connectivity, that is, the
probability that every node in the network has made at least
one link to some other node at, or prior to, time slot T ; we
denote this as P T

f c. Analogous to other work, we want to
make use of there being no isolated nodes to approximate that
of P T

f c. Indeed, focusing on the idea that boundary nodes are
likely to be “more isolated” we see that nodes near the corner
are the last to connect when links are independent (see Fig. 4).
Naturally, when considering interference this behavior is not
necessarily true since nodes near the bulk may be in outage if
the interference field is too high; in fact the boundary may help
connectivity due to a decreased interference field. Essentially,
we have shown in Fig. 4 that the time for every node in the
network to form a link is determined by how long the highly
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FIG. 4. The probability that a node is connected at time T located at the corner (solid line) compared with simulations (markers) of the
probability every node in the network is connected at time T ; clearly the node near the corner is the last to connect. Parameters used are
L = 10, φ = π/4, η = 2, β = 0.5, ξ = (0.2, φ/2), and r0 = 1.

isolated nodes take to form a link. Furthermore, provided
the network is dense enough and α � 1 then it is likely that
the first causal path occurs from any node in the network to
a boundary node when the boundary node makes a single
connection.

For infinite networks with nonuniform measure, isolated
nodes are likely to play a more significant role for Pf c [37].
For example, if α � 0 then the number of isolated nodes is
infinite, and thus Pf c = 0 can never be achieved, whereas
when α > 0 the behavior is likely to be determined by highly
isolated nodes [37].

This work also highlights the need for flexible routing
algorithms in mesh networks. Most routing algorithms in
mesh networks fall between two extremal cases: proactive
and reactive routing. The former is the case when a node
periodically exchanges information with its neighbors, giving
it an awareness of paths to other nodes in the network, but as
a result has more drain on resources such as power and can
influence the connectivity of other nodes in its neighborhood
when interference is considered. Reactive routing, on the other
hand, only looks for a path between nodes in a network
when it is required, which helps to conserve resources but
delays the time of information transfer as it needs to find a
route. Naturally, most algorithms proposed fall somewhere
in between these two extremes. One example is PathDe-
tect, an example of a decentralized algorithm, discussed in
Ref. [48]. In this model, local messages are exchanged be-
tween neighboring nodes to achieve global knowledge of the
network, ultimately allowing it to track temporal fluctuations
in connectivity. The main problem is how to minimize the
overheads in obtaining this global picture, which can be
achieved through an understanding of the network topology,
for example, by employing an adaptive power scheme based
on the location of the user. Alternatively, one could employ
multipath routing with network coding. In multipath routing,
multiple paths are chosen between the source and destination
nodes, meaning it is less probable that all the chosen paths
will have broken links. In network coding, random linear
combinations of original packets are transmitted, so even if

one or two paths have broken links, the destination can still
recover the original packets. With this assumption, it can be
predicated that nodes near the boundary or sparse regions
being in proactive routing mode and nodes in the bulk being in
reactive routing mode will likely minimize the delay between
the source and destination [49].

V. CONCLUSIONS

In this paper we look at the impact that local geometries
and nonuniform densities have on wireless networks and show
that those nodes near the corners dominate the global con-
nectivity properties of the network, especially when the local
neighborhood is sparse. The locations of nodes were modeled
by a nonuniform Poisson point process in a triangular domain,
and links were formed during each time slot, independently
from the past, based on a probabilistic connection function
that depended on node separation. The time for information to
flow through the network was assumed to be much less than
the time scale for mobility; thus, we could assume the location
of nodes to be fixed (albeit not uniformly distributed). More
specifically, two methods were provided for calculating the
probability that a node near the corner was isolated at time
T for a general connection function, where some examples
were given from the wireless literature. The first method
was used to generate closed form expressions for general
densities rαgφ (θ ) (not necessarily vanishing at the borders),
which required calculating the higher moments of the con-
nection function. For more complicated connection functions
(where the higher order moments were not integrable, easy
to calculate, or did not provide closed form expressions), a
second method was proposed in order to reduce the number
of integrals that needed to be computed. The latter required
that the density went to zero along one of the boundaries,
which was not a requirement in the first method. For all
the connection functions discussed in this paper we provide
asymptotic approximations for large T and/or large α and
show they are a good fit compared with simulations. Further-
more, we also provided an approximation for full connectivity
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that it is those nodes near the corner (and with few close
neighbors) that are highly isolated that are the main obstacle.
This naturally assumes that nodes within the bulk have made
multiple connections in the previous time slots and thus any
information has flowed through the rest of the network.

Although the examples given in this paper are from the
wireless literature they can easily be extended to different
connection functions.

This work can provide insight into the demand for future
network design; for example, smaller access points (small
base stations such as those required for the deployment of 5G
networks) should be deployed near boundaries or regions of
low density to ensure connectivity. In general, the properties
of isolation near the boundaries in networks with nonuniform
measure could in theory be exploited to halt the spread of
forest fires, or disease, where border nodes represent a bridge
between networks with high betweenness centrality.

In this paper we assume a static distribution of nodes but it
would be interesting if the locations of receiver nodes vary
with time according to some mobility model and how this
impacts the global connectivity of the network. Future work
could also include finding an effective method to approximate

the number of connected subgraphs in finite networks with
nonuniform measure. This would allow a deeper understand-
ing into the transition from disconnected to a fully connected
network. A closed form expression involving multiple inte-
grals can be derived using the theory of point processes but
approximating the expected number of clusters of a particular
size remains open; even for the case of isolated nodes with
nonuniform measure. This is of particular interest since it
has been recently shown that the property of disconnection
is more heavily coupled with that of isolated nodes when the
density is nonuniform [37].
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