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Simplicial complexes are increasingly used to understand the topology of complex systems as different as
brain networks and social interactions. It is therefore of special interest to extend the study of percolation to
simplicial complexes. Here we propose a topological theory of percolation for discrete hyperbolic simplicial
complexes. Specifically, we consider hyperbolic manifolds in dimension d = 2 and d = 3 formed by simplicial
complexes, and we investigate their percolation properties in the presence of topological damage, i.e., when
nodes, links, triangles or tetrahedra are randomly removed. We show that in d = 2 simplicial complexes
there are four topological percolation problems and in d = 3 there are six. We demonstrate the presence of
two percolation phase transitions characteristic of hyperbolic spaces for the different variants of topological
percolation. While most of the known results on percolation in hyperbolic manifolds are in d = 2, here we
uncover the rich critical behavior of d = 3 hyperbolic manifolds, and show that triangle percolation displays a
Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, we provide evidence that topological percolation can
display a critical behavior that is unexpected if only node and link percolation are considered.
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I. INTRODUCTION

Simplicial complexes uncover the topology and geometry
of interacting systems such as brain networks [1–3], granular
materials [4,5], and social interaction networks [6]. Simplicial
complexes are able to capture higher-order interactions that
cannot be encoded in a simple network. In fact, they are not
just formed by nodes and links but also by higher-dimensional
simplices such as triangles, tetrahedra, and so on.

Simplicial complexes, built by geometrical building
blocks, are natural objects to study network geometry [7,8].
In particular, hyperbolic simplicial complexes [9–12] reveal
emergent functionalities of complex networks [13] and pro-
vide a major avenue to explore the very active area of network
hyperbolicity [14–18].

Percolation theory [19–22] studies the properties of the
connected components when nodes or links are damaged with
probability q = 1 − p, fully capturing the network robustness
to failure events. However, in simplicial complexes, topolog-
ical damage can be directed not just to nodes and links but
also to higher-dimensional simplices. In this respect a major
question is how to characterize the robustness of simplicial
complexes to topological damage. Given the large variety of
systems that can be described by simplicial complexes, this
is a challenging theoretical problem of primary importance
also for applications. Here we explore the robustness of hyper-
bolic simplicial complexes by introducing the framework of
topological percolation and find that the response to damage
of higher-dimensional simplices can be unexpected if one
considers exclusively node or link percolation.

Percolation theory [19–22] of complex networks has been
widely studied in the past 20 years. While in uncorrelated
random networks percolation is well known to give a single,
continuous second-order phase transition in hierarchical net-
works, it is possible to observe a discontinuous phase transi-
tion [23] or a Berezinkii-Kosterlitz-Thouless (BKT) [24,25]
transition [26–28]. Additionally, a BKT percolation transition
is found also on percolation on growing networks [29–31].
Finally, there is growing interest in investigating generalized
percolation problems such as explosive percolation [32–34]
and percolation on interdependent multiplex networks [35–
38] that have been recently shown to display anomalous
critical behavior.

On hyperbolic networks, percolation theory has been
shown to display not one but two percolation transitions [39]
at the so-called lower pl and upper pu percolation thresholds.
Below the lower percolation threshold (for p < pl) there is
no infinite cluster, above the upper percolation threshold (for
p > pu) an extensive infinite cluster exists, and for pl < p <

pu the average size of the largest cluster is infinite but subex-
tensive. Interestingly, it has been shown [23], using a renor-
malization approach, that for hyperbolic d = 2-dimensional
manifolds called Farey graphs [40,41] the transition at the
upper critical dimension is discontinuous. Several works have
studied percolation [26–28,42–45] and the Ising and Potts
models [46,47] on other hierarchical networks, finding both
continuous and discontinous phase transitions. However,
most of the results on percolation in hyperbolic networks
[48,49] are restricted to d = 2 spaces. Here we explore how
the scenario change in dimension d = 3 and we address the
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general question whether the nature of the transition changes
with the dimension of the manifold. We consider a class of
“holographic” hyperbolic simplicial complexes in d = 2 and
d = 3 that can be extended naturally in higher dimensions.
If one only focuses on the nodes and links these simplicial
complexes reduce to Farey graphs [40,41] and to Apollonian
networks [50] for dimension d = 2 and d = 3, respectively.

To study the robustness of these simplicial complexes we
propose the general framework of topological percolation that
includes for each network several percolation problems and
is able to capture for each simplicial complex its response
to different types of topological damage. Topological per-
colation expands on previously known types of percolation
transitions (node, link, and k-clique) percolation. In fact,
while in node and link percolation random damage is directed
either to the nodes or to the links of a network, in topo-
logical percolation damage can be directed also to higher-
dimensional simplices like triangles, tetrahedra, and so on.
The topological percolation problems in higher dimensions
are very closely connected to k-clique percolation [51,52] or
equivalently (using the topology term) k-connectedness [53]
where two k-cliques are considered connected if they share
a (k − 1)-clique. However, the topological k-connectedness
as well as k-clique percolation have been studied only for
nondamaged networks while topological percolation consider
the effects of topological damage.

Topological percolation for d = 2 simplicial complexes
reduces to four percolation problems and for d = 3 simplicial
complexes reduces to six percolation problems. Topological
percolation on the considered hyperbolic simplicial com-
plexes is naturally studied on generalized line graphs which
take the form either of single or multiplex networks [35].
Taking advantage of these line graphs here we show that topo-
logical percolation in both the d = 2 and d = 3-dimensional
hyperbolic manifolds under consideration displays in general
two percolation thresholds (except the trivial case of link
percolation on the d = 3 hyperbolic manifold). We show,
however, that the nature of the phase transition at the upper
percolation threshold can change significantly. In particular,
our investigation of triangle percolation in the d = 3 hyper-
bolic manifold displays a BKT transition not observed for any
of the topological percolation problems in the Farey simplicial
complex.

This paper is structured as follows. In Sec. II we define
topological percolation on simplicial complexes, in Sec. III
we characterize the hyperbolic manifolds under consideration
in this work, in Sec. IV we define the general percolation
properties of hyperbolic manifolds, in Sec. V we discuss
topological percolation in the d = 2 hyperbolic manifold, in
Sec. V study topological percolation in the d = 3 hyperbolic
network, in Sec. VI we compare topological percolation for
d = 2 and d = 3 hyperbolic manifolds. Finally, in Sec. VII
we give the conclusions.

II. TOPOLOGICAL PERCOLATION ON HYPERBOLIC
SIMPLICIAL COMPLEXES

Simplicial complexes are not just formed by nodes (0-
simplices), and links (1-simplices) but also by higher-
dimensional simplices such as triangles (2-simplices), tetra-
hedra (3-simplices), and so on. Simplicial complexes are the

natural objects used in topological data analysis and they
are also particularly useful to investigate network geometry
because they are formed by geometrical building blocks.
Let us now give a more formal definition of simplices and
simplicial complexes.

A simplex of dimension d (d-simplex) is formed by a set of
d + 1 nodes. The δ-faces of a d-simplex μ are the δ-simplices
(with δ < d) that can be constructed by taking a subset of δ +
1 of the nodes of μ. A simplicial complex K of dimension d is
formed by a set of δ-dimensional simplices with δ � d glued
along their faces (where d is the maximum of all dimensions
δ of the simplices belonging to K) with the two properties:

(a) if the simplex μ belongs to the simplicial complex
(i.e., μ ∈ K) all its faces μ′ ⊂ μ also belong to the simplicial
complex (i.e., μ′ ∈ K).

(b) if two simplexes μ,μ′ belong to the simplicial com-
plex (i.e., μ ∈ K and μ′ ∈ K) their intersection is either empty
(i.e., μ ∩ μ′ = ∅) or belongs to the simplicial complex (i.e.,
μ ∩ μ′ ∈ K).

Note that the skeleton of a simplicial complex is the
network formed by its nodes and links.

Simplicial complexes are related to hypergraphs [54]—in
fact, they can be both considered as sets of sets of nodes.
However, simplicial complexes satisfy both condition (a) and
(b) not satisfied by the hypergraphs. Simplicial complexes
are therefore closed under the operation of taking nonempty
subsets of each set and this allows for the study of topological
properties as a function of the dimensions of its simplices [53].

Here we introduce topological percolation which extends
and generalizes node and link percolation to simplicial com-
plexes. In node percolation the properties of the connected
components are monitored as a function of the probabil-
ity q = 1 − p to remove nodes, in link percolation the
same properties are studied when links are removed with
probability q.

In network science standard percolation has been leveraged
by the notion of k-clique percolation [51,52] called also by
the topologists k-connectedness [53] where cliques of nodes
are connected if they share (k − 1)-cliques. Therefore, k-
connected clusters are formed by the sets of k-connected
k-cliques. However, so far the properties of the k-connected
clusters have not been studied in the presence of random
topological damage.

Here we consider topological percolation that studies the
properties of the k-connected clusters [51–53] of the simpli-
cial complexes in presence of topological damage that is not
only directed to nodes or links but also to higher-dimensional
simplices.

The choice of the term topological percolation is due
to the fact that in topology it is usually the case that the
properties of a network (or of a graph) are leveraged to the
properties of higher-dimensional simplices. For instance, the
graph Laplacian is leveraged to the concept of higher-order
Laplacian [55]. Similarly, topological percolation includes
standard node and link percolation but leverage these two
problems also to higher dimensions. Moreover, topological
percolation characterizes the connectivity of a simplicial com-
plex in presence of topological damage that can produce
nontrivial Betti numbers (“holes”) in the simplicial complex
[56,57].
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In topological percolation we consider percolation among
δ-dimensional faces (with δ < d) of the simplicial complex
connected through (δ + 1)-faces removed with probability q.
For instance, in topological percolation in d = 3 hyperbolic
manifolds includes the distinct percolation problems:

(1) Link percolation (also known as bond percolation). In
this case nodes are connected to nodes through links that are
removed with probability q.

(2) Triangle percolation. In this case links are connected
to links through triangles that are removed with probability q.

(3) Tetrahedron percolation. In this case triangles are con-
nected to triangles through tetrahedra that are removed with
probability q.

Moreover, topological percolation includes the percolation
among δ-dimensional faces (with 0 < δ < d) of the simpli-
cial complex connected through (δ − 1)-faces removed with
probability q. For simplicial complexes in d = 3, therefore,
topological percolation includes also the distinct percolation
problems:

(1) Node percolation (also known as site percolation). In
this case links are connected to links through nodes that are
removed with probability q.

(2) Upper-link percolation. In this case triangles are con-
nected to triangles through links (at the edges of the triangles)
that are removed with probability q.

(3) Upper-triangle percolation. In this case tetrahedra are
connected to tetrahedra through common triangles that are
removed with probability q.

Therefore, for d = 3 simplicial complexes topological per-
colation includes six percolation problems. For d = 2 simpli-
cial complexes clearly there are only four percolation prob-
lems including link percolation, triangle percolation, node
percolation and upper-link percolation. In general, topological
percolation on a d-dimensional simplicial complex includes
2d percolation problems.

Note that in node percolation it is customary to indicate that
if a node is removed all its links are also removed while for
link percolation only the links are removed. This difference is
actually redundant if one focuses exclusively on the property
of the connectivity of the simplices, as in node percolation
a link can be connected to a link only through a node so if
we remove that node all the links connected to it will not be
part of the percolating cluster automatically. Therefore, our
definition of the first class of topological percolation problems
(including link percolation) is symmetric to the definition of
the second set of problems (including node percolation) and
there is no need of a distinction between the two cases.

III. HYPERBOLIC NETWORKS UNDER CONSIDERATION

Here we study topological percolation on two classical
examples of hyperbolic lattices in dimension d = 2 and d = 3
and we describe them using simplicial complexes. The first
simplicial complex under consideration is the Farey simplicial
complex (whose skeleton is the Farey graph [40,41]). This is
an infinite d = 2 hyperbolic simplicial complex constructed
iteratively starting from a single link [see Fig. 1(a)]. At itera-
tion n = 1 we attach a triangle to the initial link. At iteration
n > 1 we attach a triangle to every link to which we have not
yet attached a triangle. The number of nodes N (0)

n , links N (1)
n ,

FIG. 1. Panel (a) shows the d = 2 skeleton of the Farey simpli-
cial complex at iteration n = 3 skeleton (in blue) together with the
Cayley tree constituting its generalized line graph (in red). Panel (b)
shows the d = 3 hyperbolic manifold skeleton (in blue) at iteration
n = 2 together with the Cayley tree constituting one of its general-
ized line graphs (in red). Panel (c) shows the Apollonian network at
iteration n = 1. Panel (d) shows that the Sierpinski gasket simplicial
complex (in blue) is a generalized line graph of the Apollonian
network (both graphs are shown at iteration n = 1).

and triangles N (2)
n at iteration n are given by

N (0)
n = 1 + 2n,

N (1)
n = 2n+1 − 1,

N (2)
n = 2n − 1. (1)

The second simplicial complex under consideration is the d =
3 hyperbolic simplicial complex that generalizes the Farey
simplicial complex in dimension d = 3. This is an infinite
three-dimensional hyperbolic lattice constructed iteratively
starting from a single triangle [see Fig. 1(b)]. At iteration n =
1 we attach a tetrahedron to the initial triangle. At iteration
n > 1 we attach a tetrahedron to each triangle to which we
have not yet attached a tetrahedron. The number of nodes
N (0)

n , links N (1)
n , triangles N (2)

n , and tetrahedra N (3)
n at iteration

n are given by

N (0)
n = (5 + 3n)/2,

N (1)
n = (3 + 3n+1)/2,

N (2)
n = (3n+1 − 1)/2,

N (3)
n = (3n − 1)/2. (2)

If one focuses exclusively on its skeleton the d = 3 hyperbolic
simplicial complex we consider in this paper reduces to the
Apollonian network [50], so at the network level the two are
equivalent. The Apollonian network [50] is a planar network
constructed iteratively according to the following algorithm.
At iteration n = 0 the Apollonian network is formed by a
single triangle. At each iteration n > 1 each triangle in the
d = 2 plane is tessellated into three triangles by inserting a
node in its center and connecting each of its nodes to the
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central node [see Fig. 1(c)]. Note, however, that even though
this construction generates the same network skeleton of the
d = 3 hyperbolic simplicial complex described above, the two
models differ if one considers simplices of dimension d =
2 (triangles) because in the planar description the triangles
are naturally defined exclusively as the faces of the planar
representation of the network and they are therefore a subset
of the triangles included in the d = 3 hyperbolic manifold.
Moreover, while the d = 3 manifold contains tetrahedra, the
Apollonian network does not.

Interestingly, the Apollonian network is closely related to
the Sierpinski gasket [44]. In fact, if we construct a net-
work whose nodes correspond to the links of the Apollonian
network and two nodes are connected if the corresponding
links share a triangle, we obtain the Sierpinski gasket [see
Fig. 1(d)].

We note here that the considered hyperbolic manifolds
have “holographic” properties [10–13]. In fact, if we define
the boundary as the set of all (d − 1)-faces arrived at the last
generation and all their faces, we observe that the considered
hyperbolic manifolds in dimension d = 2 and dimension d =
3 have all the nodes at the boundary. Moreover, also all the
links are at the boundary therefore at the network level no
node or link is lost if we consider the projection of the network
on the boundary of the simplicial complex. It follows that
the network skeleton of the hyperbolic manifold in dimension
d = 2 reduces to a hierarchical d = 1 network [23] and the
one of the hyperbolic manifold in dimension d = 3 reduces to
the planar (d = 2) Apollonian network [50]. This is a peculiar
property of these hyperbolic structures shared with the models
of emergent geometry in Refs. [9–13] but not shared by other
hyperbolic manifolds with a bulk such as the ones studied in
Refs. [48,49].

To uncover the equations for topological percolation in
these lattices it is opportune to define a suitable generalization
of line graphs to simplicial complexes. A line graph of a
network is constructed by placing a node for each link of
the original network and connecting these nodes if the cor-
responding two links are connected by a node in the original
network.

Line graphs can be clearly extended to higher dimen-
sions when studying simplicial complexes. For instance, in
Fig. 1(a) we show a network whose nodes correspond to the
triangles of the Farey simplicial complex and whose links
connect nodes corresponding to adjacent triangles in the Farey
simplicial complex. Interestingly, this network is a Cayley
tree of coordination z = 3 and will be particularly useful
as a reference to study triangle percolation and upper-link
percolation on the Farey simplicial complex. For the d = 3
hyperbolic network it is possible to construct a Cayley tree of
coordination z = 4 whose nodes correspond to tetrahedra and
links connect nodes corresponding to adjacent tetrahedra [see
Fig. 1(b)]. This Cayley graph will be particularly useful to
study tetrahedron percolation and upper-triangle percolation.
The generalized line graph whose nodes are links of the
d = 3 hyperbolic manifold and nodes are connected if the
corresponding links share a triangle in the original hyperbolic
network is a multiplex network with n + 1 number of layers
in which each layer is formed by a Sierpinski gasket (for a
definition of multiplex network see Ref. [35]). To show this

FIG. 2. Panel (a) shows the multiplex network description of the
d = 3 hyperbolic manifold. Panel (b) show the multiplex Sierpinski
gasket that describes a generalized line graph of the d = 3 hyperbolic
manifold.

let us observe that the d = 3 hyperbolic manifold at iteration
n can be described as a multiplex network of n + 1 layers
where each layer nα = 0, 1, . . . , n is an Apollonian network
at iteration nα [see Fig. 2(a)]. This construction allows one
to take explicitly into account the simultaneous presence
of triangles entering the d = 3 manifold at each iteration.
Using the relation between the Apollonian network and the
Sierpinski gasket discussed above it is natural to realize that
the generalized line graph of this multiplex network whose
nodes are the links of the d = 3 manifold and two nodes are
connected if the corresponding links of the d = 3 manifold are
incident to the same triangle, can be described as a multiplex
Sierpinski gasket of n + 1 layers. In this multiplex Sierpinski
gasket each layer nα = 0, 1, . . . , n is a Sierpinski gasket at
iteration nα [see Fig. 2(b)]. This is the structure on which
triangle percolation can be naturally studied.

We note that the different topological percolation problems
have very different natures. For instance, both link percolation
and upper link percolation investigate the effect of damage
directed to links; however, while the first one is the tradi-
tional link percolation problem the second one studies the
3-connected clusters when links are randomly removed. How-
ever, all the topological percolation problems can be mapped
into node or link percolation in a suitably chosen generalized
line graph. For instance, upper-link percolation can be recast
into a node percolation problem in the generalized line graph
in which the links of the original simplicial complex are the
nodes and nodes are connected if the corresponding links of
the original simplicial complex belong to the same triangle.

IV. GENERAL PROPERTIES OF TOPOLOGICAL
PERCOLATION ON THE STUDIED HYPERBOLIC

MANIFOLDS

Node and link percolation on hyperbolic manifolds [39]
and in general nonamenable graphs [58,59] are known to have
not just one but two percolation thresholds: the lower pl and
the upper pu percolation thresholds. In particular, it is found
that the phase diagram of percolation include three regions.
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TABLE I. Lower pl and upper pu percolation thresholds for
topological percolation on the d = 2 and d = 3 hyperbolic mani-
folds under consideration. The section of the paper in which each
percolation problem is treated is also indicated.

Section pl pu

d = 2
Link percolation (V A) 0 1

2
Triangle percolation (V B) 1

2 1
Node percolation (V C) 0 1
Upper-link percolation (V D) 1

2 1

d = 3
Link percolation (VI A) N/A 0
Triangle percolation (VI B) 0 0.307981 . . .

Tetrahedron percolation (VI C) 1
3 1

Node percolation (VI D) 0 1
Upper-link percolation (VI E) 0 1
Upper-triangle percolation (VI F) 1

3 1

(1) For p < pl no cluster has infinite size.
(2) For pl < p < pu the network has an infinite but

subextensive maximum cluster of average size R,

R ∼ Nψ, (3)

with 0 < ψ < 1. Here N indicates the number of nodes of the
network and ψ is called the fractal critical exponent.

(3) For p > pu the network has an extensive cluster, i.e.,
the fraction M of nodes in the giant component scales like

M � R

N
= O(1). (4)

Here we find that these general properties of node and
link percolation on hyperbolic lattices remain valid also for
the higher-dimensional problems for topological percolation
on simplicial complexes (see Table I). However, we find that
the value of the thresholds, the critical fractal exponent, and
the nature of the transition can change significantly for the
different versions of the topological percolation and with the
overall dimension d of the manifold as will be detailed in the
next sections.

V. TOPOLOGICAL PERCOLATION ON d = 2
HYPERBOLIC MANIFOLD

In this section we will consider topological percolation
on the d = 2 Farey simplicial complex in detail. We will
summarize known results on link percolation [23] and we will
show the critical behavior of node, triangle, and upper-triangle
percolation.

A. Link percolation

In link percolation, links are removed with probability q

and the connected component are formed by nodes connected
to nodes through intact links. This transition in the d = 2
Farey simplicial complex has been studied by Boettcher,
Singh, and Ziff in Ref. [23].

The probability T̂n+1 that the two nodes which appeared in
the simplicial complex at iteration n = 0 are connected at the

generation n + 1 is given by [23]

T̂n+1 = p + (1 − p)T̂ 2
n . (5)

In fact, they are either directly connected (event which occurs
with probability p) or if they are not directly connected
(event which occurs with probability q = 1 − p), they can be
connected if each node is connected to the node arrived in the
network at iteration n = 1 (event which occur with probability
T̂ 2

n ). In the limit n → ∞ this equation has the steady-state
solution

T̂∞ =
{ p

1−p
for p < 1

2

1 for p � 1
2

.

Since we have T̂∞ > 0 for any p > 0 and T̂∞ = 1 for p � 1
2 ,

the lower pl
1 and the upper pu

1 critical thresholds are given by

pl
1 = 0, pu

1 = 1
2 . (6)

To investigate the nature of the phase transition, Boettcher,
Singh, and Ziff in Ref. [23] have proposed a theoretical ap-
proach based on the generating functions Tn(x) and Sn(x, y).
In a Farey simplicial complex at iteration n the function
Tn(x) is the generating function of the number of nodes in
the connected component linked to both initial nodes. The
function Sn(x, y) is the generating function for the sizes of
the two connected components linked exclusively to one of
the two initial nodes. These generating functions are given by

Tn(x) =
∞∑

�=0

tn(�)x�,

Sn(x, y) =
∑
�,�̄

sn(�, �̄)x�y�̄. (7)

Here we consider the d = 2 hyperbolic manifold at iteration
n, and we indicate with tn(�) the distribution of the number of
nodes � connected to the two initial nodes and with sn(�, �̄)
we indicate the joint distribution of the number of nodes �

connected exclusively to a given initial node and the number
of nodes �̄ connected exclusively to the other initial node.

The recursive equations for Tn(x) and Sn(x, y) start from
the initial condition T0(x) = p and S0(x, y) = 1 − p and read
[23]

Tn+1(x) = p
{
xT 2

n (x) + 2xTn(x)Sn(x, x)

+ Sn(1, x)Sn(1, x)
} + (1 − p)xT 2

n (x)

Sn+1(x, y) = (1 − p){xTn(x)Sn(x, y) + ySn(x, y)Tn(y)

+ Sn(1, x)Sn(1, y)}, (8)

with

T̂n = Tn(1) = 1 − Sn(1, 1). (9)

The size Rn of the connected component linked to the initial
two nodes at iteration n is given by

Rn = dTn(x)

dx

∣∣∣∣
x=1

. (10)

By explicitly deriving Rn from Eq. (8) in Ref. [23] it has been
proven that for n � 1, Rn scales like

Rn ∼ [
N (0)

n

]ψ
, (11)
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with

ψ = 1

ln 2
ln

⎡
⎣1 + 3p − 4p2

2q
+

√
1 − pq2

4q

⎤
⎦, (12)

where q = 1 − p, for p � 1
2 . Moreover, in Ref. [23] it is also

found that

M∞ = lim
n→∞

Rn

N
(0)
n

(13)

has a discontinuous transition at pu
1 = 1

2 with Mu
∞ =

0.609793 . . .. Interestingly, this model is also very closely
related to percolation in one-dimensional lattices with long-
range links [60,61].

B. Triangle percolation

In triangle percolation, triangles are removed with proba-
bility q and the connected components are formed by links
that are connected to links through intact triangles. This is
node percolation on the Cayley tree network of degree z = 3
where nodes are triangles and links connect two adjacent
triangles.

We evaluate the percolation properties of this network by
measuring the average number of triangles Rn that at iteration
n are connected to the triangle added at iteration n = 1. At
iteration n = 1 we have clearly R1 = p. For any n � 1 Rn+1

is given by the recursive equation

Rn+1 = p(z − 1)Rn, (14)

for arbitrary coordination number z with explicit solution

Rn = [p(z − 1)]n−1R1. (15)

Asymptotically, for n � 1 we Rn scales like

Rn ∼ [
N (2)

n

]ψ
, (16)

where

ψ = ln[p(z − 1)]

ln 2
= ln[2p]

ln 2
(17)

for z = 3. Therefore, there are two percolation transitions at

pl
2 = 1

z − 1
= 1

2
, pu

2 = 1. (18)

The lower percolation threshold pl
2 is found by imposing

ψ = 0 and the upper percolation threshold pu
2 is found by

imposing ψ = 1. We denote the fraction of triangles in the
largest connected component in an infinite Farey simplicial
complex as M∞, defined by

M∞ = lim
n→∞

Rn

N
(2)
n

. (19)

This order parameter has a discontinuous transition at pu
2 with

M∞ =
{

0 if p < pu
2

1 if p = pu
2
. (20)

C. Node percolation

In node percolation nodes are removed with probability q and
the connected components are formed by links connected to
links through intact nodes.

To study this percolation problem we consider a Farey
simplicial complex at iteration n and we calculate the average
number of nodes R[++]

n and R[+−]
n connected to the initial link

given that its end nodes are either both intact (case [++]) or
one intact and one removed (case [+−]). Starting from the
initial condition R

[++]
0 = R

[+−]
0 = 0 the values of R[++]

n and
R[+−]

n are found by iteration of the equations,

Rn+1 = BRn + p1, (21)

where

Rn =
(

R[++]
n

R[+−]
n

)
, 1 =

(
1
1

)
. (22)

The matrix B is given by

B =
(

2p 2(1 − p)

p 1

)
(23)

and has maximum eigenvalue

λ = 1
2 + p + 1

2

√
1 + 4p − 4p2. (24)

The solution of Eq. (70) is

Rn = p

n−1∑
r=0

Br1. (25)

Therefore, the leading term for Rn is

Rn ∼ pλn ∼ [
N (0)

n

]ψ
, (26)

with

ψ = ln λ

ln 2
. (27)

By imposing ψ = 0 we get pl
3, and by imposing ψ = 1 we

get pu
3 , whose numerical values are

pl
3 = 0, pu

3 = 1. (28)

At pu
3 the fraction M∞ of nodes in the largest component of

an infinite Farey simplicial complex, defined as

M∞ = lim
n→∞

Rn

N
(0)
n

, (29)

has a discontinuous jump, i.e.,

M∞ =
{

0 if p < pu
3

1 if p = pu
3
. (30)

D. Upper-link percolation

In upper-link percolation links are removed with probability
q and one considers the connected components formed by
triangles connected to triangles through intact links. This is
link percolation on the Cayley tree network of degree z = 3
where nodes are triangles and links connect two adjacent
triangles.
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By indicating with Rn the average number of triangles
connected to the initial link at iteration n we have R1 = p

and

Rn = p(1 − z)Rn−1. (31)

These are the same equations found in triangle percolation
Eq. (15). Therefore, we find that the lower and upper percola-
tion thresholds are given by

pl
4 = 1

2 , pu
4 = 1, (32)

with the same critical behavior found for triangle percolation.
Therefore, Rn for n � 1 obeys the scaling in Eq. (16) with
the fractal critical exponent ψ given by Eq. (17). Moreover,
at pu

4 the order parameter M∞ defined as in Eq. (19) has a
discontinuous jump described by

M∞ =
{

0 if p < pu
4

1 if p = pu
4

. (33)

VI. TOPOLOGICAL PERCOLATION ON d = 3
HYPERBOLIC MANIFOLD

The characterization of all the topological percolation prob-
lems for the d = 2 Farey simplicial complex has shown the
ubiquitous presence of two percolation transitions typical of
hyperbolic networks and a consistent presence of a discontin-
uous phase transition at p = pu. Here our aim is to explore
how this critical behavior extends to the d = 3 hyperbolic
simplicial complex under consideration. Although the con-
struction of the d = 3 manifolds is a obvious extension of
the construction of the d = 2 Farey simplicial complex, we
need to note that the degree distribution of the Farey graph
is exponential while the degree distribution of the Apollonian
graph is power-law. Interestingly, this major difference of the
skeleton of the two simplicial complexes under consideration
is responsible for the differences in link percolation between
these two structures. In fact, in the Apollonian network link
percolation [45] has a single continuous percolation threshold
pu = 0 with a critical scaling characteristic of scale-free net-
works. However, the other topological percolation problems
behave very differently for this d = 3 hyperbolic manifold.
In particular, here we show that all the other five topological
percolation problems show the ubiquitous presence of two
percolation thresholds. Moreover, the nature of the transition
at the upper percolation threshold pu can vary. Particularly
interesting is the study of triangle percolation that here is
shown to display a continuous BKT percolation transition at
the upper percolation threshold pu. This critical behavior is
not observed at the level of node and link percolation. There-
fore, the response to topological damage can be unpredictable
if only node and link percolation are considered.

A. Link percolation

Given the equivalence between the skeleton of the d = 3
hyperbolic simplicial complex and the Apollonian network,
link percolation on the d = 3 hyperbolic manifold reduces to
link percolation in the Apollonian network. This percolation
problem has been studied in Refs. [45] and [44]. This is
a particular case in which pu

1 = 0 and therefore pl
1 is not

FIG. 3. Examples of how the three initial links of the d = 3
hyperbolic manifold (indicated in red) can be connected in triangle
percolation: (a) through the presence of the initial triangle, (b), (c)
in absence of the initial triangle, through the presence of triangles
entered at later iterations.

defined. The percolation transition at p = pu
1 is continuous

[45] and close to this phase transition, for p � 1 the fraction
of nodes R∞ in the giant component of an infinite network
obeys the scaling [45]

R∞ ∼ e−c/p, (34)

where c > 0 is a constant. Therefore, in this case the fractal
critical exponent is ψ = 1 for every p > 0.

B. Triangle percolation

In triangle percolation triangles are removed with proba-
bility q and the connected components are formed by links
connected to links through intact triangles. For instance, the
initial three links of the triangle at iteration n = 0 can be
connected if the initial triangle is not removed or, if it is
removed, if they are connected through triangles added at a
later iteration (see Fig. 3).

To study triangle percolation on the d = 3 hyperbolic
manifold we consider three variables T̂n, Ŝn, Ŵn indicating,
at iteration n, the probability that the three initial links are
connected, that only two of the initial links are connected and
that none of the initial links are connected, respectively. In
terms of the multiplex Apollonian network with n + 1 layers
(n iterations), T̂n is the probability that each pair of the three
original links is connected (through triangles) in at least in
one layer. Ŝn is the probability that two links are connected
in at least one layer (through triangles) and the other link
is not connected to the other two in any layer. Ŵn is the
probability that no pair of links among the three initial nodes
is connected in any layer. The recursive equations for the
probabilities T̂n, Ŝn, and Ŵn start from the initial condition
T̂0 = p, Ŝ0 = 0, and Ŵ0 = 1 − p and read

T̂n+1 = p + (1 − p)
(
T̂ 3

n + 6T̂ 2
n Ŝn + 3T̂nŜ

2
n

)
,

Ŝn+1 = (1 − p)
[
T̂ 2

n (Ŝn + Ŵn) + T̂nŜn(7Ŝn + 2Ŵn)

+ Ŝ2
n (4Ŝn + Ŵn)

]
,

Ŵn+1 = 1 − 3Ŝn+1 − T̂n+1. (35)

The first equation for T̂n+1 indicates that the three links of the
original network are connected if the triangle that connects
the three links is there in the layer nα = 0 of the multiplex
Apollonian network, and if the triangle is not there they must
be connected through a chain of triangles in the layers nα > 0.
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The second equation for Ŝn+1 indicates that out of the three
links of the original network only two are connected by paths
passing through triangles. This can occur only if the triangle
connecting the three links directly in the layer nα = 0 of the
multiplex Apollonian network does not exist and two given
links are connected by triangles in the layer nα > 0. Finally,
the last equation is a normalization condition. By using the
vector V̂n = (T̂n, Ŝn, Ŵn), the Eqs. (35) can be written as

V̂n+1 = G(V̂n), (36)

admitting the asymptotic solution V̂∞ for n → ∞ satisfying

V̂∞ = G(V̂∞). (37)

This equation admits a solution T̂∞ > 0 for every p > 0 so the
lower critical threshold is pl

2 = 0. Moreover, this equation has
a singular discontinuity at the point pu where the maximum
eigenvalue �G of the Jacobian of G satisfies

�G|V̂=V̂∞ = 1. (38)

In fact, for p > pu the only stable solution is T̂∞ = 1, Ŝ∞ =
Ŵ∞ = 0. By imposing Eqs. (37) and (38) we get that pu

2 =
0.307981 . . . and V̂u

∞ = (0.509801, 0.0934843, 0.209745).
Therefore, the lower and upper critical thresholds are

pl
2 = 0, pu

2 = 0.307981 . . . . (39)

The emergence of the discontinuity in T̂∞ can be clearly ap-
preciated from Fig. 7. For details on the numerical calculation
see Supplemental Material [62].

To investigate the nature of the upper percolation transi-
tion we define the generating functions Tn(x), Sn(x, y), and
Wn(x, y, z). These generating functions are defined as

Tn(x) =
∞∑

�=0

tn(�)x�,

Sn(x, y) =
∑
�,�̄

sn(�, �̄)x�y�̄,

Wn(x, y, z) =
∑
�,�̄,�̂

wn(�, �̄, �̂)x�y�̄z�̂, (40)

with

T̂n = Tn(1), Ŝn = 1− Sn(1, 1), Ŵn = Wn(1, 1, 1). (41)

Given a d = 3 hyperbolic manifold at iteration n, tn(�) indi-
cates the distribution of the number of links � connected to
the three initial links; sn(�, �̄) indicates the joint distribution
of the number of links � connected to two initial links and
the number of links �̄ connected exclusively to the third
initial link; finally, wn(�, �̄, �̂) indicates the joint distribution
of observing �, �̄, �̂ links connected to each of the initial
links. Note that given the definition above W (x, y, z) is left
unchanged by a permutation of its variables, while Sn(x, y) is
not.

The generating functions Tn(x), Sn(x, y),Wn(x, y, z) can
be expressed diagrammatically as shown in Fig. 4. This
description is taking advantage of the relation between the
multiplex Sierpinski gasket and the d = 3 hyperbolic man-
ifold. In particular, indicating with x, y, z the conjugated
variables to the number of links connected to the initial

(a) (b) (c) (d) (e)

FIG. 4. Schematic diagrams representing Tn(x ) (a), Sn(x, y ) (b),
Sn(x, z) (c), Sn(y, x ) (d), and Wn(x, y, z) (e). With x, y and z we
indicate the conjugated variables of the components connected with
the bottom left, bottom right and top node, respectively.

three links of the d = 3 hyperbolic manifolds, Figs. 4(a)–4(e)
represent Tn(x), Sn(x, y), Sn(x, z), Sn(y, x),Wn(x, y, z), re-
spectively. In fact, in this aggregated Sierpinski gasket where
nodes represent the links of the original aggregated d = 3
hyperbolic network, Tn(x) is the generating function of the
component connected to the three nodes of the triangle,
Sn(x, y) is the generating function of the two separate compo-
nent connected to two out of thee nodes and to the remaining
node, respectively, and Wn(x, y, z) is the generating function
of the three separate components connected to each node of
the aggregated Sierpinski gasket.

For Tn(x), Sn(x, y), and Wn(x, y, z) it is possible to write
down recursive equations implementing the renormalization
group on these structures (see the Appendix). These recursive
equations can be written down by using a long but straight-
forward diagrammatic expansion. In Figs. 5 and 6 we show
a few terms of these diagrammatic expression for calculating
Tn+1(x) and Sn+1(y, x). The terms that contribute to Tn+1(x)
are of two types:

(i) The terms in which the three initial nodes (of the Sier-
pinski gasket) are directly connected by a triangle at iteration
n = 0 and in addition they can be connected to other nodes if
one takes into account any other iteration [see, for instance,
Figs. 5(a) and 5(b)].

(ii) The terms in which the three initial nodes (of the
Sierpinski gasket) are not directly connected by a triangle
at iteration n = 0 but they are connected if one takes into

FIG. 5. Diagrammatic expression for some terms of the recursive
equation for Tn+1(x ) given in the Appendix. The different terms
indicate pW 3

n (x, 1, 1) (a), pT 2
n (x )Sn(x, x ) (b), (1 − p)T 3

n (x ) (c),
(1 − p)T 2

n (x )Sn(x, x ) (d), and (1 − p)Tn(x )Sn(x, x ) (e).
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FIG. 6. Diagrammatic expression for the recursive equation for
Sn+1(y, x ). The different terms indicate (1 − p)T 2

n (y )Sn(y, x ) (a),
(1 − p)Tn(y )Sn(y, y )Sn(y, x ) (b), (1 − p)Sn(1, x )S2

n (y, 1)(x ) (c),
(1−p)Sn(x, 1)Sn(y, 1)Sn(y, x ) (d), and (1−p)Sn(y, x )S2

n (y, 1) (e).

account any other iteration [see, for instance, Figs. 5(c)–
5(e)].

The terms that contribute to Sn+1(y, x) only include di-
agrams in which the three initial nodes (of the Sierpinski
gasket) are not directly connected (see Fig. 5).

To study triangle percolation our first aim is to calculate
the average size Rn of the component connected to each one
of the three initial links, i.e.,

Rn = dTn(x)

dx

∣∣∣∣
x=1

. (42)

and to evaluate the fractal exponent ψ characterizing its
asymptotic scaling for n � 1,

Rn = [
N (1)

n

]ψ
. (43)

Our second aim is to study the upper percolation transition
using the order parameter Mn given by

Mn = Rn

N
(1)
n

(44)

in the limit n → ∞.
To this end we note the both goals can be

achieved if we characterize Tn(x). From the recursive
equations valid for the generating functions, we
note that Tn+1(x) depends only on the variables
Sn(x, x), Sn(x, 1), Sn(1, x),Wn(x, x, x),Wn(x, x, 1), and
Wn(x, 1, 1). Therefore, Tn(x) can be found by solving a
recursive nonlinear system of equations for these variables
(see the Appendix and Supplemental Material [62]). If we
define vector Vn(x) whose components are given by

V 1
n (x) = Tn(x), V 2

n (x) = Sn(x, x),

V 3
n (x) = Sn(x, 1), V 4

n (x) = Sn(1, x),

V 5
n (x) = Wn(x, x, x), V 6

n (x) = Wn(x, x, 1),

V 7
n (x) = Wn(x, 1, 1), (45)

this system of equations can be written as a recursive equation
for Vn+1(x) given by

Vn+1(x) = F(Vn(x), x). (46)

Finally, this system of equations can be differentiated obtain-
ing

dVn(x)

dx
=

7∑
i=1

∂F(x)

∂V i
n (x)

dV i
n (x)

dx
+ ∂F(x)

∂x
, (47)

with initial condition V′ = (0, 0, 0, 0, 0, 0, 0) (the initial
nodes are not counted). Since the nonhomogeneous term
∂F(x)/∂x is subleading with respect to the homogeneous one,
for n � 1

V′
n(x) ∝ (λJ )n, (48)

with λJ indicating the maximum eigenvalue of the matrix

Jij = ∂F i (x)

∂V j (x)

∣∣∣∣
V(x)=V∞(1);x=1

. (49)

This implies that Rn for n � 1 scales like

Rn ∼ [
N (1)

n

]ψ
, (50)

with the fractal critical exponent ψ given by

ψ = ln λJ

ln 3
. (51)

This fractal critical exponent ψ is plotted in Fig. 7 where one
can note its discontinuity at p = pu

2 . Finally, by evaluating
recursively the system of Eq. (47) we can calculate

Mn = 1

N
(1)
n

dV 1
n (x)

dx

∣∣∣∣
x=1

. (52)

The dependence of Mn on p is plotted in Fig. 7 for increasing
values of n from which we can observe a very sharp but
continuous transition at pu

2 . A careful finite size analysis (see
Ref. [62]) of the critical behavior of Mn for �p � 1 (see
Fig. 8) reveals that the BKT nature of the transition at pu

2 with
a critical scaling valid for �p � 1,

M∞ = Ae−d|�p|−σ

, (53)

with A, d positive constants and σ = 0.50. This behavior is in
agreement with renormalization-group [28] general results on
hierarchical networks according to which a hybrid transition
in T̂∞ should result in BKT transition for M∞. Note the BKT
transition has been also observed for percolation [27] and for
the Ising model [63,64] in other hierarchical networks.

C. Tetrahedron percolation

In tetrahedron percolation, tetrahedra are removed with
probability q and triangles are connected to triangles through
intact tetrahedra. This is node percolation on the Cayley tree
network of degree z = 4 where nodes are tetrahedra and links
connect two adjacent tetrahedra along a triangular face. By in-
dicating with Rn the average number of tetrahedra connected
to the initial triangle at iteration n we have R1 = p and

Rn = p(1 − z)Rn−1 (54)

[identical to Eqs. (15) and (31)], with explicit solution

Rn = [p(1 − z)]n−1R1. (55)
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FIG. 7. We plot the statistical mechanics quantities characterizing triangle percolation in the d = 3 hyperbolic manifold as a function of p:
the probability T̂n that the three initial links are connected at iteration n = 10, 20, 40, 100 (a); the fraction Mn of links in the largest component
at iterations n = 10, 20, 40, 100 (b); the fractal critical exponent ψ (c).

Therefore, for n � 1, Rn scales as

Rn � [
N (3)

n

]ψ
, (56)

where the fractal critical exponent is given by

ψ = ln[p(z − 1)]

ln 3
= ln[3p]

ln 3
, (57)

taking z = 4. Therefore, we find that the lower and upper
percolation thresholds are given by

pl
3 = 1

3 , pu
4 = 1. (58)

The order parameter M∞ given by

M∞ = lim
n→∞

Rn

N
(3)
n

(59)

and indicating the fraction of tetrahedra in the largest compo-
nent has a discontinuous critical behavior, i.e.,

M∞ =
{

0 if p < pu
3

1 if p = pu
3
. (60)

D. Node percolation

In node percolation nodes are removed with probability q

and links are connected to links through intact nodes.

10-7 10-5 10-3 10-1
100

101

102

103

n=800
n=400
n=200
n=100

=0.50

FIG. 8. The BKT critical scaling of Mn versus �p = p − pc of
triangle percolation on the d = 3 hyperbolic network for n = 100,
200, 400, 800 is plotted together with the theoretical expectation
− ln M∞ � −d|�p|−σ with σ = 0.5 for �p � 1.

To study this percolation problem we consider the vari-
ables R[+++]

n , R[++−]
n , and R[+−−]

n indicating (at iteration
n) the average number of nodes of the component con-
nected to the initial triangle that has three intact nodes,
only two intact nodes, or only one intact node, respectively
(cases [+ + +], [+ + −], [+ − −]). Starting from the ini-
tial condition R

[+++]
0 = R

[++−]
0 = R

[+−−]
0 = 0 the values of

R[+++]
n , R[++−]

n , and R[+−−]
n are found by iteration of the

equations,

Rn+1 = BRn + p1, (61)

where

Rn =

⎛
⎜⎝

R[+++]
n

R[++−]
n

R[+−−]
n

⎞
⎟⎠, 1 =

⎛
⎝1

1
1

⎞
⎠ (62)

and

B =

⎛
⎜⎝

3p 3(1 − p) 0

p 2p + (1 − p) 2(1 − p)

0 2p p + 2(1 − p)

⎞
⎟⎠. (63)

The solution of Eq. (70) is given by

Rn = p

n−1∑
r=0

Br1. (64)

Therefore, by indicating with λ the maximum eigenvalue of
B, the leading term for n � 1 goes like

Rn ∼ pλn ∼ [
N (0)

n

]ψ
, (65)

with

ψ = ln λ

ln 3
. (66)

In Fig. 9(a) we plot ψ versus p.
By imposing that the maximum eigenvalue ψ = 1 we get

pu
4 (extensive cluster) and by imposing ψ = 0 we get pl

4. The
percolation thresholds are therefore found at

pl
4 = 0, pu

4 = 1. (67)
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FIG. 9. The fractal critical exponent ψ plotted versus p for
node percolation (a) and upper-link percolation (b) on the d = 3
hyperbolic manifold.

The order parameter M∞ given by

M∞ = lim
n→∞

Rn

N
(0)
n

(68)

and indicating the fraction of nodes in the largest component,
has a discontinuous critical behavior, i.e.,

M∞ =
{

0 if p < pu
4

1 if p = pu
4
. (69)

E. Upper-link percolation

In upper-link percolation links are removed with probability q

and triangles are connected to triangles through intact links.
To characterize this topological percolation problem we

consider the variables R[+++]
n , R[++−]

n , and R[+−−]
n indicating

(at iteration n) the average number of links of the component
connected to an intact link of an initial triangle given that the
initial triangle has three intact links, only two intact links,
or only one intact link, respectively (cases [+ + +], [+ +
−], [+ − −]). Starting from the initial condition R

[+++]
0 =

R
[++−]
0 = R

[+−−]
0 = 0 the values of R[+++]

n , R[++−]
n , and

R[+−−]
n are found by iteration of the equations,

Rn+1 = BRn + R1, (70)

where

Rn =

⎛
⎜⎝

R[+++]
n

R[++−]
n

R[+−−]
n

⎞
⎟⎠, R1 = (p3 + 6p2q + 2pq2)

⎛
⎝1

1
1

⎞
⎠

and

B =

⎛
⎜⎝

3p3 + 3p2q 4p2q + 6pq2 pq2 + q3

2p3 + 2p2q p3 + 5p2q + 3pq2 2p2q + pq2 + q3

p3 + p2q 2p3 + 2p2q + 2pq2 2p2q + pq2 + q3

⎞
⎟⎠, (71)

where q = 1 − p. The solution of Eq. (70) is given by

Rn =
n−1∑
r=0

BrR1. (72)

Therefore, by indicating with λ the maximum eigenvalue of B
given by Eq. (71), the leading term for n � 1 goes like

Rn ∼ pλn ∼ [
N (1)

n

]ψ
, (73)

with

ψ = ln λ

ln 3
. (74)

The numerically evaluated the fractal exponent ψ is plotted
versus p in Fig. 9(b). By imposing ψ = 0 we get pl

5; by
imposing ψ = 1 we get pu

5 . The percolation thresholds are
therefore found at

pl
5 = 0, pu

5 = 1. (75)

The order parameter M∞ is given by

M∞ = lim
n→∞

Rn

N
(1)
n

(76)

and indicating the fraction of links in the largest component
has a discontinuous critical behavior, i.e.,

M∞ =
{

0 if p < pu
5

1 if p = pu
5
. (77)

(78)

F. Upper-triangle percolation

In upper-triangle percolation triangles are removed with
probability q and tetrahedra are connected to tetrahedra
through intact triangles. This is link percolation on the Cayley
tree network of degree z = 4, where nodes are triangles and
links connect two adjacent triangles.

By indicating with Rn the average number of tetrahedra
connected to the initial triangle at iteration n we have R1 = p

and for n > 1 we have

Rn = p(1 − z)Rn−1. (79)

This is the same equation as Eq. (54) found in tetrahedron
percolation. Therefore, by taking z = 4, we find that the lower
and upper percolation thresholds are given

pl
6 = 1

3 , pu
6 = 1, (80)

with the same critical behavior found for tetrahedron perco-
lation. Therefore, Rn for n � 1 obeys the scaling in Eq. (56)
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with the fractal critical exponent ψ given by Eq. (57). More-
over, at pu

6 the order parameter M∞ defined as in Eq. (59) has
a discontinuous jump described by

M∞ =
{

0 if p < pu
6

1 if p = pu
6
. (81)

(82)

VII. COMPARISON BETWEEN TOPOLOGICAL
PERCOLATION IN d = 2 AND d = 3 HYPERBOLIC

SIMPLICIAL COMPLEXES

Our detailed study of topological percolation in the d = 2 and
d = 3 hyperbolic simplicial complexes (performed in Secs. V
and VI) can be summarized by considering the following
major points.

Topological percolation of the d = 2 hyperbolic manifold
displays the following major properties:

(1) All topological percolation problems have two perco-
lation thresholds pl and pu (given in Table I).

(2) All topological percolation problems are discontinu-
ous at the upper critical percolation threshold pu. However,
with the exception of the nontrivial link percolation problem
(paragraph V A) studied in Ref. [23] the upper critical perco-
lation threshold is pu = 1 and the discontinuity takes the form
of a trivial 0-1 law for the order parameter M∞ (see Eqs. (20),
(30) and (33).

Topological percolation of the d = 3 hyperbolic manifold
displays the following major properties:

(1) All topological percolation problems have two perco-
lation thresholds pl and pu (given in Table I) except link
percolation (paragraph VI A) studied in Ref. [45] for which
pu = 0 and pl cannot be defined.

(2) All topological percolation problems with the ex-
ception of link percolation (paragraph VI A) and triangle
percolation Eq. (B2) are discontinuous at the upper critical
percolation threshold pu = 1 obeying the trivial 0-1 law [see
Eqs. (60), (69), (78), and (82)].

(3) Link percolation (paragraph VI A) studied in Ref. [45]
is continuous at the upper percolation threshold pu = 0 with
an exponential critical behavior [see Eqs. (34)] typical of
scale-free networks.

(4) Triangle percolation (paragraph VI B) is continuous
at the upper percolation threshold pu. Moreover, it follows
an anomalous critical behavior displaying a BKT transition
[see Eqs. (53)]. We observe that the BKT transition is not
seen for any other topological percolation problem in the same
manifold or in the d = 2 hyperbolic manifold.

(5) In topological percolation on the d = 3 hyperbolic
manifold not even one topological percolation problem dis-
plays a nontrivial discontinuity, i.e., there is no percolation
problem with a critical behavior similar to link percolation
Eq. (A1) in the d = 2 hyperbolic manifold.

VIII. CONCLUSIONS

In this paper we have proposed topological percolation
which extends the study of percolation beyond node and
link (site and bond) percolation for simplicial complexes.
Topological percolation on a d-dimensional simplex refers

to a set of 2d percolation processes that reveal different
topological properties of the simplicial complex. As such this
approach can be used on any arbitrary simplicial complex
dataset and has relevance for the wide variety of applications
where simplicial complexes are used from brain research to
social networks. Here we have treated topological percola-
tion on two major examples of d = 2 and d = 3 hyperbolic
simplicial complexes describing discrete manifolds. The d =
2 hyperbolic manifold is the Farey simplicial complex, the
d = 3 hyperbolic simplicial complex has a skeleton given by
the Apollonian graph. We have emphasized the ubiquitous
presence of two percolation thresholds characteristic of hy-
perbolic discrete structures for each topological percolation
problem with the exception of the trivial link percolation for
the d = 3 manifold (see Table I). However, we have observed
that the nature of the phase transitions can vary and that
topological percolation reveals properties that are unexpected
if one just focuses on the robustness of the network skeleton.
In particular, here we show that triangle percolation in the
d = 3 hyperbolic manifold displays a BKT transition while
no similar critical behavior is observed at the level of link
percolation on the same simplicial complex. Moreover, we
observe an important dependence of topological percolation
with the dimension of the simplicial complex. In fact, while
the d = 2 Farey simplicial complex and the d = 3 hyperbolic
manifold considered here obey similar generation rules, the
BKT transition is only observed in topological percolation of
the d = 3 manifold. Additionally, the peculiar properties of
the nontrivial discontinuous link percolation on d = 2 hyper-
bolic manifold are not observed for any of the six topological
percolation problems in the d = 3 manifold.

In conclusion our work constitutes one of the few studies of
percolation on hyperbolic manifolds of dimension d = 3 and
shows the rich unexpected behavior of topological percolation
in higher-dimensional simplicial complexes.

This work can be extended in different directions. The
analytical investigation of topological percolation can be ex-
tended to hyperbolic cell complexes and higher-dimensional
hyperbolic simplicial complexes. Moreover, topological per-
colation can be explored on the increasing number of avail-
able simplicial complex datasets such a collaboration net-
works, social networks or protein interaction networks which
include an important interplay between randomness and
order.
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APPENDIX: d = 3 GENERATING FUNCTIONS

In this Appendix we write the recursive equations for
the generating functions solving triangle percolation in the
d = 3 hyperbolic manifold and we write explicitly the
Eqs. (46). Using the diagrammatic expansion discussed in
the main text it is possible to derive the following recursive
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equations for the generating functions. Starting from the ini-
tial condition T0(x) = p, S0(x, y) = 0 and W0(x, y, z) = 1 −

p (the initial nodes are not counted) the recursive equations
for Tn(x), Sn(x, y), and Wn(x, y, z) read

Tn+1(x) = p
{
x3T 3

n (x) + 9x2T 2
n (x)Sn(x, x) + 3x3T 2

n (x)W (x, x, x) + 24x3Tn(x)S2
n (x, x) + 3x2Tn(x)S2

n (x, 1)

+ 12x3Tn(x)Sn(x, x)Wn(x, x, x) + 6x2Tn(x)Sn(x, 1)Wn(x, x, 1) + 3x2Tn(x)W 2
n (x, x, 1)

+ 14x3S3
n (x, x) + 9x2Sn(x, x)S2

n (x, 1) + S3
n (1, x) + 3xS2

n (x, 1)Sn(1, x) + 3S2
n (1, x)Wn(x, 1, 1)

+ 6xSn(x, 1)Sn(1, x)Wn(x, x, 1) + 12x2Sn(x, 1)Sn(x, x)Wn(x, x, 1) + 3xS2
n (x, 1)W (x, 1, 1)

+ 3x2S2
n (x, 1)W (x, x, x) + 3Sn(1, x)W 2

n (x, 1, 1) + 6Sn(x, 1)Wn(x, 1, 1)Wn(x, x, 1) + W 3
n (x, 1, 1)

}
+ (1 − p)

{
x3T 3

n (x) + 6x3T 2
n (x)S(x, x) + 3x2Tn(x)S2

n (x, 1)
}

Sn+1(x, y) = (1 − p)
{
x3T 2

n (x)Sn(x, y) + x3T 2
n (x)Wn(x, x, y) + 4x3Tn(x)Sn(x, x)Sn(x, y)

+ 2x2yTn(x)Sn(y, x)Sn(x, y) + 2x2Tn(x)Sn(x, 1)Wn(x, y, 1) + xy2Tn(y)S2
n (x, y)

+ xS2
n (x, 1)Sn(1, y) + 2xySn(x, 1)Sn(x, y)Sn(y, 1) + xS2

n (x, 1)Wn(y, 1, 1) + x2S2
n (x, 1)Sn(x, y)

}
Wn+1(x, y, z) = (1 − p)

{
x3Tn(x)Sn(x, y)Sn(x, z) + x3Tn(x)Sn(x, z)Wn(x, x, y) + x2zTn(x)Sn(z, x)Wn(x, y, z)

+ x3Tn(x)Sn(x, y)Wn(x, x, z) + x2yTn(x)Sn(y, x)Wn(x, y, z) + x2Tn(x)Wn(x, y, 1)Wn(x, z, 1)

+ z3Tn(z)Sn(z, x)Sn(z, y) + z3Tn(z)Sn(z, x)Wn(y, z, z) + xz2Tn(z)Sn(x, z)Wn(x, y, z)

+ z3Tn(z)Sn(z, y)Wn(x, z, z) + yz2Tn(z)Sn(y, z)Wn(x, y, z) + z2Tn(z)Wn(x, z, 1)Wn(y, z, 1)

+ y3Tn(y)Sn(y, x)Sn(y, z) + y3Tn(y)Sn(y, x)Wn(y, y, z) + xy2Tn(y)Sn(x, y)Wn(x, y, z)

+ y3Tn(y)Sn(y, z)Wn(x, y, y) + y2zTn(y)Sn(z, y)Wn(x, y, z) + y2Tn(y)Wn(x, y, 1)Wn(z, y, 1)

+ Sn(1, x)Sn(1, y)Sn(1, z) + 2y3Sn(y, x)Sn(y, y)Sn(y, z) + Sn(1, x)Sn(1, z)Wn(y, 1, 1)

+ z3Sn(z, x)Sn(z, z)Sn(z, y) + yz2Sn(z, x)Sn(z, y)Sn(y, z) + z2Sn(z, x)Sn(z, 1)Wn(y, z, 1)

+ z3Sn(z, x)Sn(z, z)Sn(z, y) + y2zSn(y, x)Sn(z, y)Sn(y, z) + zSn(1, x)Sn(z, 1)Wn(y, z, 1)

+ Sn(1, x)Sn(1, y)Wn(z, 1, 1) + ySn(1, x)Sn(y, 1)Wn(y, z, 1) + y2Sn(y, x)Sn(y, 1)Wn(y, z, 1)

+ Sn(1, x)Wn(y, 1, 1)Wn(z, 1, 1) + x3Sn(x, x)Sn(x, z)Sn(x, y) + x2ySn(x, y)Sn(y, x)Sn(x, z)

+ x2Sn(x, 1)Sn(x, z)Wn(x, y, 1) + xz2Sn(x, z)Sn(z, x)Sn(z, y) + xyzSn(x, y)Sn(z, x)Sn(y, z)

+ xzSn(x, 1)Sn(z, x)Wn(y, z, 1) + xSn(x, 1)Sn(1, y)Wn(x, z, 1) + xySn(x, 1)Sn(y, 1)Wn(x, y, z)

+ xySn(x, y)Sn(y, 1)Wn(x, z, 1) + xSn(x, 1)Wn(x, z, 1)Wn(y, 1, 1) + x3Sn(x, x)Sn(x, y)Sn(x, z)

+ xy2Sn(x, y)Sn(y, x)Sn(y, z) + xSn(x, 1)Sn(1, z)Wn(x, y, 1) + x2zSn(x, z)Sn(x, y)Sn(z, x)

+ xyzSn(x, z)Sn(y, x)Sn(z, y) + xzSn(x, z)Sn(z, 1)Wn(x, y, 1) + xzSn(x, 1)Sn(z, 1)Wn(x, y, z)

+ x2Sn(x, 1)Sn(x, y)Wn(x, z, 1) + xySn(x, 1)Sn(y, x)Wn(y, z, 1) + xSn(x, 1)Wn(x, y, 1)Wn(z, 1, 1)

+ Sn(1, y)Sn(1, z)Wn(x, 1, 1) + y2Sn(y, z)Sn(y, 1)Wn(x, y, 1) + ySn(y, 1)Sn(1, z)Wn(x, y, 1)

+ Sn(1, z)Wn(x, 1, 1)Wn(y, 1, 1) + zSn(1, y)Sn(z, 1)Wn(x, z, 1) + yzSn(z, y)Sn(y, 1)Wn(x, z, 1)

+ yzSn(z, 1)Sn(y, 1)Wn(x, y, z) + zSn(z, 1)Wn(x, z, 1)Wn(y, 1, 1) + z2Sn(z, 1)Sn(z, y)Wn(x, z, 1)

+ yzSn(z, 1)Sn(y, z)Wn(x, y, 1) + zSn(z, 1)Wn(x, 1, 1)Wn(y, z, 1) + Sn(1, y)Wn(x, 1, 1)Wn(z, 1, 1)

+ ySn(y, 1)Wn(x, 1, 1)Wn(y, z, 1) + ySn(y, 1)Wn(x, y, 1)Wn(z, 1, 1) + Wn(x, 1, 1)Wn(y, 1, 1)Wn(z, 1, 1)

We note that Tn+1(x) depends only on the variables Sn(x, x), Sn(x, 1), Sn(1, x),Wn(x, x, x),Wn(x, x, 1), and Wn(x, 1, 1).
Therefore, Tn(x) can be found [62] by solving the following recursive nonlinear system of equations for these variables referred
in the text as Eq. (46),

Tn+1(x) = p
{
x3T 3

n (x) + 9x2T 2
n (x)Sn(x, x) + 3x3T 2

n (x)W (x, x, x) + 24x3Tn(x)S2
n (x, x) + 3x2Tn(x)S2

n (x, 1)

+ 12x3Tn(x)Sn(x, x)Wn(x, x, x) + 6x2Tn(x)Sn(x, 1)Wn(x, x, 1) + 3x2Tn(x)W 2
n (x, x, 1)

+ 14x3S3
n (x, x) + 9x2Sn(x, x)S2

n (x, 1) + S3
n (1, x)

+ 3xS2
n (x, 1)Sn(1, x) + 3S2

n (1, x)Wn(x, 1, 1) + 6xSn(x, 1)Sn(1, x)Wn(x, x, 1)

052308-13



GINESTRA BIANCONI AND ROBERT M. ZIFF PHYSICAL REVIEW E 98, 052308 (2018)

+ 12x2Sn(x, 1)Sn(x, x)Wn(x, x, 1) + 3xS2
n (x, 1)W (x, 1, 1)

+ 3x2S2
n (x, 1)W (x, x, x) + 3Sn(1, x)W 2

n (x, 1, 1) + 6Sn(x, 1)Wn(x, 1, 1)Wn(x, x, 1) + W 3
n (x, 1, 1)

}
Sn(x, x) = (1 − p)

{
2x2Tn(x)Sn(x, 1)Wn(x, x, 1) + x3T 2

n (x)Sn(x, x) + 7x3Tn(x)S2
n (x, x)

+ xS2
n (x, 1)Wn(x, 1, 1) + 3x2S2

n (x, 1)Sn(x, x) + xSn(1, x)S2
n (x, 1) + x3T 2

n (x)Wn(x, x, x)
}

Sn(x, 1) = (1 − p)
{
2x2Tn(x)Sn(x, 1)Wn(x, 1, 1) + x3T 2

n (x)Sn(x, 1) + 4x3Tn(x)Sn(x, 1)Sn(x, x)

+ 2x2Tn(x)Sn(1, x)Sn(x, 1) + xTn(1)S2
n (x, 1) + xWn(1, 1, 1)S2

n (x, 1) + x2S3
n (x, 1)

+ 3xSn(1, 1)S2
n (x, 1) + x3T 2

n (x)Wn(x, x, 1)
}

Sn(1, x) = (1 − p)
{
2Tn(1)Sn(1, 1)Wn(1, x, 1) + x2Tn(x)S2

n (1, x) + 4Tn(1)Sn(1, 1)Sn(1, x) + T 2
n (1)Sn(1, x)

+ 2xTn(1)Sn(1, x)Sn(x, 1) + S2
n (1, 1)Wn(x, 1, 1) + 2S2

n (1, 1)Sn(1, x) + 2xSn(1, 1)Sn(1, x)Sn(x, 1)

+ T 2
n (1)Wn(1, 1, x)

}
Wn(x, x, x) = (1 − p)

{
12x3Tn(x)Sn(x, x)Wn(x, x, x) + 3x3Tn(x)S2

n (x, x) + 11x2Sn(x, 1)Sn(x, x)Wn(x, x, 1)

+ 4x2S2
n (x, 1)Wn(x, x, x) + 6xSn(1, x)Sn(x, 1)Wn(x, x, 1) + 6xSn(x, 1)Wn(x, 1, 1)Wn(x, x, 1)

+ 3Sn(1, x)W 2
n (x, 1, 1) + 3S2

n (1, x)Wn(x, 1, 1) + 14x3S3
n (x, x) + S3

n (1, x) + 3x2Tn(x)W 2
n (x, x, 1)

+W 3
n (x, 1, 1)

}
Wn(x, x, 1) = (1 − p)

{
4x3Tn(x)Sn(x, x)Wn(x, x, 1) + 2x3Tn(x)Sn(x, 1)Wn(x, x, x) + 2x2Tn(x)Sn(1, x)Wn(x, x, 1)

+ 2xTn(1)Sn(x, 1)Wn(x, x, 1) + 2Tn(1)Sn(1, x)Wn(x, 1, 1) + 2x3Tn(x)Sn(x, 1)Sn(x, x)

+ Tn(1)S2
n (1, x) + 3x2Sn(x, 1)Sn(x, x)Wn(x, 1, 1) + 3x2S2

n (x, 1)Wn(x, x, 1)

+ x2Sn(x, 1)Sn(x, x)Wn(x, x, 1) + 2xSn(x, 1)W 2
n (x, 1, 1) + 4xSn(1, x)Sn(x, 1)Wn(x, 1, 1)

+ 6xSn(1, 1)Sn(x, 1)Wn(x, x, 1) + 2xWn(1, 1, 1)Sn(x, 1)Wn(x, x, 1) + 3Sn(1, 1)W 2
n (x, 1, 1)

+Wn(1, 1, 1)S2
n (1, x) + 6Sn(1, 1)Sn(1, x)Wn(x, 1, 1) + 2Wn(1, 1, 1)Sn(1, x)Wn(x, 1, 1)

+ 6x3Sn(x, 1)S2
n (x, x) + 4x2Sn(1, x)Sn(x, 1)Sn(x, x) + 2xS2

n (1, x)Sn(x, 1)

+ 3Sn(1, 1)S2
n (1, x) + 2x2Tn(x)Wn(x, 1, 1)Wn(x, x, 1) + Tn(1)W 2

n (x, 1, 1)

+Wn(1, 1, 1)W 2
n (x, 1, 1)

}
Wn(x, 1, 1) = (1 − p)

{
2x3Tn(x)Sn(x, 1)Wn(x, x, 1) + 2x2Tn(x)Sn(1, x)Wn(x, 1, 1) + 2xTn(1)Sn(x, 1)Wn(x, 1, 1)

+ 2Tn(1)Wn(1, 1, 1)Sn(1, x) + 4Tn(1)Sn(1, 1)Wn(x, 1, 1) + x3Tn(x)S2
n (x, 1)

+ 2Tn(1)Sn(1, 1)Sn(1, x) + x2S2
n (x, 1)Wn(x, 1, 1) + x2Sn(x, 1)Sn(x, x)Wn(x, 1, 1)

+ xWn(1, 1, 1)Sn(1, x)Sn(x, 1) + 7xSn(1, 1)Sn(x, 1)Wn(x, 1, 1) + 2xWn(1, 1, 1)Sn(x, 1)Wn(x, 1, 1)

+W 2
n (1, 1, 1)Sn(1, x) + 6Sn(1, 1)Wn(1, 1, 1)Sn(1, x) + 8S2

n (1, 1)Wn(x, 1, 1)

+ 6Sn(1, 1)Wn(1, 1, 1)Wn(x, 1, 1) + 2x3S2
n (x, 1)Sn(x, x) + 2x2Sn(1, x)S2

n (x, 1)

+ 4xSn(1, 1)Sn(1, x)Sn(x, 1) + 7S2
n (1, 1)Sn(1, x) + x2Tn(x)W 2

n (x, 1, 1)

+ 2Tn(1)Wn(1, 1, 1)Wn(x, 1, 1) + W 2
n (1, 1, 1)Wn(x, 1, 1)

}
(A1)
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