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Anisotropic opinion dynamics with an adaptive social rule
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We consider an anisotropic opinion formation process where the set of rules B, that dictates what is the
socially acceptable position, changes following the average voters’ opinion. As in the case of a constant B,
conservative (agreement with B) and liberal (agreement with neighbors) voters’ attitudes are still represented
by stable fixed points in the phase space of the system but with the difference that the conservative fixed point
is stable for all possible values of the intervoter interaction. It has been also observed that, when the model is
applied to sufficiently large populations, the time needed to consolidate a position in agreement with B is finite.
We observed that there is also a range of values of the interaction where the two stable points coexist, opening
the door for the modeling of bistability related phenomena, such as stochastic resonance and hysteresis.
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I. INTRODUCTION

Opinions are highly dynamical mental representations of
the individual’s beliefs, resulting from inference processes
frequently performed with insufficient information. They play
a fundamental role in the individual’s reaction to social sit-
uations that can trigger collective responses. In this article
we analyze a model of anisotropic opinion formation in a
community of interacting agents [1] where the social rule B,
which is the model’s source of anisotropy, slowly changes
with the average opinion of the population. As is presented
in Ref. [1], we assume that the agents are adaptive in the
sense that they learn to produce an opinion from the available
information, and that such a learning process is influenced
by B and by neighboring agents. It has been observed that
the dynamics that results from this process (and extended in
Ref. [2]) presents two stable points in the phase space of the
system; one, dubbed conservative, for low values of the in-
teragent interaction, the other, dubbed liberal, for sufficiently
high values of the interaction. These two points do not coexist
if B is constant. We will demonstrate in the following that if
B adapts following the average opinion of the population, the
conservative fixed point becomes stable for all possible values
of the interagent interaction.

Following Ref. [1] we will represent social issues S ∈
{±1}N by binary strings of length N. These issues are clas-
sified as socially acceptable (or not) if σB(S) ≡ sgn(B · S) =
1 (−1), where B ∈ RN is the (internal representation) vector
associated with the perceptron B (for a clear definition of
the perceptron network, see Ref. [3]), the function sign is
defined as sgn(x) = 1 if x > 0,−1 if x < 0, and 0 if x = 0
and the inner product is the usual one B · S ≡∑N

i=1 BiSi . The
agents, also represented by perceptrons, classify the social
issues according to their own internal representations Ja ∈
RN , according to σJa

(S) ≡ sgn(Ja · S), where σJa
(S) is the

opinion of agent a on issue S. In the current scenario we
consider all vectors, i.e., B and all Ja’s, to be plastic. Such
plasticity is manifested through the way the agents’ internal
vectors get modified through the interaction with the society
and their neighbors.

We represent the topology of the society by a directed
graph G = {{a}, {ga,b}} where {a} is a set of vertexes asso-
ciated with the social agents and {ga,b} is a set of strengths
ga,b that represent the influence of agent b on agent a. The
neighborhood of a is defined as Na = {c ∈ [M]: ga,c > 0}.
The total number of vertexes (or agents) is M , and the average
neighborhood size is defined as

ν ≡ 1

M

M∑
a=1

|Na|, (1)

where |Na| is the cardinality of the set Na . We will consider
graphs with ν ∼ O(1) only. We say a bond (a, b) is active if
ga,b > 0 and passive otherwise.

A. Update algorithms

Assuming that the population of interacting agents receives
information taken from the set S ≡ {(σB,n, σNa ,n, Sn), n =
1, . . . , T }, where the issue Sn is presented at time n and then
discarded, σB,n = sgn(Bn · S) and σNa ,n = {sgn(Jc,n · Sn):
c ∈ Na} is the set formed by the opinions of the agent a’s
neighbors, the update equation for the internal representation
of a is as follows:

Ja,n+1 = Ja,n + ψa,n

σB,nSn√
N

, (2)

where σBS/
√

N is the (unit length) Hebb vector [4], that
indicates the direction of the socially acceptable position on
Sn and ψa,n is the learning amplitude, that regulates how the
information is incorporated in the internal representation of a.

The length of the opinion formation process T is considered
to be proportional to the number of issues presented to the
agents. Based on social corroboration experiments [5–7] and
assuming that agent a is connected with the agents in Na ,
we propose ψa ≡ f |Ja|/

√
N�a where f is a units’ constant,

|Ja|/
√

N =
√∑N

j=1 J 2
a,j /N is a factor that has no impact on

the learning efficiency of the algorithm [8], it has been only
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considered for technical purposes, and

�a ≡ 1 − �(−σBσa )
∑
c∈Na

ga,c

f
�(σaσc ), (3)

where �(x) = 1 if x > 0 and 0 otherwise is the Heaviside
step function. The update algorithm (2) has been introduced
(and discussed) in Ref. [1]. Let us define the unit vectors
b ≡ |B|−1B in the direction of the internal representation of
B, ja ≡ |Ja|−1Ja in the direction of the internal representa-
tion of agent a and ja,⊥ = [1 − ( ja · b)2]−1/2[ ja − ( ja · b)b]
in the direction of the component of Ja perpendicular to B.
Given that an agent’s opinion is obtained through information
processing using the internal representation vector Ja and that
any modification to the vector B in the direction of B does
not produce any change in B’s opinions, we will construct the
update algorithm for B by considering the vector,

L ≡ 1

M

M∑
c=1

j c,⊥, (4)

which is the arithmetic average over all the components of the
internal representations Jc perpendicular to B. Observe that
B · L = 0 and |L · L| � 1. Then,

Bn+1 = Bn + λ√
N

f Ln, (5)

where λ/
√

N is a suitable scale factor. Observe that if λ ∼
O(1) the updates of B at each time step are very small
thus λ/

√
N is a measure of the inverse social inertia (if the

mass of B is infinite we would not expect any change at all,
thus λ = 0). Observe also that |Bn+1|2 = |Bn|2 + O(f 2N−1),
which implies (see below) that the length of vector B does not
change with the update.

To help describe the state of the system, we define the
variables,

φa ≡ σB ja · S, (6)

β ≡ σB b · S, (7)

and parameters,

Ra ≡ ja · b, (8)

Wa,b ≡ ja · jb, (9)

Ya,b ≡ ja,⊥ · jb,⊥. (10)

The variables depend explicitly on the information {σB, S},
whereas the parameters depend on the internal representations
{{Ja}, B} only. The variable β � 0 and the smaller the β(S),
the higher the likelihood of S to be a socially neutral issue.
(An issue S0 is dubbed socially neutral if there is no socially
accepted position about it, i.e., B · S0 = 0). The variable φa (S)
indicates how much vector Ja has to be modified to agree
with B. If φa � 0 the modification needed is negligible, if
φa � 0 the modification needed is moderated, and if φa 	
0, the modification needed is substantial. The parameter Ra

represents the level of agreement of agent a with the society
B, Wa,b represents the level of agreement between agents a

and b, and the parameter Ya,b represents the level of agreement

between agents a and b on socially neutral issues. Given
that Wa,b = RaRb + Ya,b

√
(1 − R2

a )(1 − R2
b ) we only need to

know {Ra} and {Ya,b} to know the state of the society.

B. Update equations

Given a graph G = {{a}, {ga,b}} with vertices {a} and
bonds {ga,b}, the state of the society can be described by the
sets of parameters {Ra}, defined on the vertices and {Ya,b},
defined on the bonds of G. The data accessible to agent a

are (σB, φa, φNa
, S) where φNa

≡ {φc|c ∈ Na}. The length
of such a training set is T = αmaxN , which implies that
αmax = T/N . For a given number 1 � n < N of examples
presented to the perceptrons there is a 0 < α < αmax such that
n = α(n)N . Observe that, given that the minimum increment
in the number of examples presented is 1, �α(n) ≡ α(n +
1) − α(n) = 1/N . By defining �t ≡ f �α = f/N and by
using the update rules (2) and (5), we have that the equation
for the evolution of the parameters Ra and Ya,b is as follows:

�Ra

�t
= �a (β − Raφa ) + λ

√
1 − R2

aY a + O(�t ), (11)

�Ya,b

�t
= �a√

1 − R2
a

⎡
⎣φb − Rbβ√

1 − R2
b

− Ya,b

φa − Raβ√
1 − R2

a

⎤
⎦

− λRa√
1 − R2

a

(Y b − Ya,bY a ) + ITb,a + O(�t ), (12)

where Y a ≡ M−1∑
c Ya,c and ITb,a represents a set of terms,

identical to the previous ones in (12) with the indices a and b

interchanged.

C. Large system size limit: Differential equations

For sufficiently large N and sufficiently small f , the di-
vided difference equations (11) and (12) can be transformed
into differential equations. It also occurs that the components
of a social issue S are independent and identically distributed
variables with P (S) =∏N

j=1 [ 1
2δSj ,1 + 1

2δSj ,−1] where δS,X =
1 if S = X and 0 otherwise is the Kronecker δ. This stochastic
character is inherited by the variables β and {φa}, whose joint
probability in the large N limit can be estimated. In particular,
for a society with only two voters we have that the joint
probability is given by

P (β, φa, φb ) = N
(
β|�a,b�(φa, φb ),�2

a,b

)
N

× (φb|Wa,bφa, 1 − W 2
a,b

)
N (φa ), (13)

where N (x|μ, σ 2) ≡ exp[−(x − μ)2/2σ 2]/
√

2πσ 2 is a
Gaussian distribution on x, centered at μ, with variance
σ 2,N (x) = N (x|0, 1), and

�2
a,b ≡

(
1 − R2

a

)(
1 − R2

b

)(
1 − Y 2

a,b

)
1 − W 2

a,b

, (14)

�(φa, φb ) ≡ (Ra − Wa,bφb )φa + (Rb − Wa,bRa )φb√(
1 − R2

a

)(
1 − R2

b

)(
1 − Y 2

a,b

)(
1 − W 2

a,b

) .
(15)
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The full derivation of these expressions is presented in the
appendix of Ref. [1]. For larger communities the joint prob-
ability is much harder to obtain, but it can be estimated by
considering an independent bond approximation (also pre-
sented in Ref. [1]). Finally we have to consider the distribution
of the parameters {Ra} and {Ya,b}. Following Ref. [9], these
parameters can be proved to be self-averaging in the large
N limit, i.e., limN→∞〈Ra〉 = Ra and limN→∞〈Ya,b〉 = Ya,b,
where 〈x〉 = ∫ dx P (x)x. This is a consequence from the
fact that for most cases the distribution of the parameters,
inferred from the distribution of the issues S, is such that the
variances σ 2

R ≡ 〈(Ra − 〈Ra〉)2〉 and σ 2
Y ≡ 〈(Ya,b − 〈Ya,b〉)2〉

satisfy limN→∞ σ 2
R = limN→∞ σ 2

Y = 0.

Dimer

In the large N limit and for a population of only two voters,
we obtain the following equations:

Ṙa = 2 − ηa,b

2

(
1 − R2

a

)+ ηa,b

2

[(
1 − R2

a

)arccos(Ya,b )

π

+ ρa,b(Rb − Wa,bRa )

]
+ λ

√
1 − R2

a

1 + Ya,b

2
, (16)

Ṙb = 2 − ηb,a

2

(
1 − R2

b

)+ ηb,a

2

[(
1 − R2

b

)arccos(Ya,b )

π

+ ρb,a (Ra − Wa,bRb )

]
+ λ

√
1 − R2

b

1 + Ya,b

2
, (17)

Ẏa,b = 1 − Y 2
a,b

2

⎡
⎣2
√

1 − R2
bηa,bρa,b − λRa√
1 − R2

a

+ ITb,a

⎤
⎦, (18)

where ηc,d ≡ limf →0 f −1gc,d and

ρa,b ≡ 1

2
− 1

π
arctan

⎛
⎝ Ra − Wa,bRb√(

1 − R2
a

)(
1 − R2

b

)(
1 − Y 2

a,b

)
⎞
⎠.

(19)

Supposing without loss of generality that ηa,b < ηb,a ,
we found that there are only two stable points in the
phase space of the system defined over the domain
S ≡ {(Ra,Rb, Ya,b ): Ra,Rb, Ya,b ∈ [−1, 1]}, namely, C
 =
(1, 1,−1), the conservative point, and L
 = (−Rr,−Rv, 1),
the liberal point, where

Rr ≡
√

1 −
(

2λ

ηa,b − 2

)2

, (20)

Rv ≡ A
√

A2 + C2 − 4λ2 − 2λC

A2 + C2
, (21)

and

A ≡ ηb,a (1 + Rr ) − 2, (22)

C ≡ 2ηb,aλ

ηa,b − 2
. (23)

For values of ηa,b ∈ [0, 2(λ + 1)] and ηb,a > ηa,b we have that
C
 is the only stable point and for 2(1 + λ) < ηa,b < ηb,a both

C
 and L
 are stable. To demonstrate this statement we first
observe that for |Ya,b| � 1 we can approximate

ρa,b � �
(
Ya,bRb

√
1 − R2

a − Ra

√
1 − R2

b

)
, (24)

ρb,a � �
(
Ya,bRa

√
1 − R2

b − Rb

√
1 − R2

a

)
. (25)

Close to the conservative point we can write Ra =
cos α, Rb = cos β, and Ya,b = cos(π − y) for sufficiently
small α, β, y > 0. (Given that C
 is a point in the border of the
domain S, α, β, y > 0.) In such a case Ya,bRa

√
1 − R2

b −
Rb

√
1 − R2

a � Ya,bRb

√
1 − R2

a − Ra

√
1 − R2

b � −α − β

and ρa,b � ρb,a � 0. Therefore the system formed by
Eqs. (16)–(18) can be expressed as

α̇ � −α, (26)

β̇ � −β, (27)

ẏ � −λ

(
1

α
+ 1

β

)
y2

2
. (28)

Thus α, β, and y decay exponentially.
If 2(1 + λ) < ηa,b < ηb,a the previous stability analysis

is also valid, and C
 is still a stable point of the sys-
tem. For values of Ra and Rb sufficiently close to −Rr

and −Rv , we can propose Ya,b = cos y, Ra = cos(π − θr +
α), and Rb = cos(π − θv + β ), where θr = arccos(Rr ), θv =
arccos(Rv ) and with α, β, y sufficiently small. Observe
that ηa,b < ηb,a then Ra > Rb, Rv > Rr , and θr > θv

(see the Appendix). Then, Ya,bRa

√
1 − R2

b − Rb

√
1 − R2

a �
−Rv

√
1 − R2

r + Rr

√
1 − R2

v = sin(θv − θr ) and ρa,b � 0.
Similarly, ρb,a � 1, thus,

α̇ � −ηa,b − 2

2
Rrα, (29)

β̇ � ηb,a

2
cos(θr − θv )α

−
[
ηb,a − 2

2
Rv + ηb,a

2
cos(θr − θv )

]
β, (30)

ẏ � −
[

2

√
1 − R2

r

1 − R2
v

ηb,a + λ

(
Rv√

1 − R2
v

+ Rr√
1 − R2

r

)]
y2

2
.

(31)

The coefficient on the right hand side of (29) is positive if
ηa,b > 2. Rr is well defined if ηa,b > 2(1 + λ) thus α → 0
exponentially. The factor in the second term on the right hand
side of (30) is positive, then β also decays exponentially.
Finally the right hand side of (31) is negative thus Ya,b → 1
from below.

These results can be condensed into an effective model
defined by the following equations:

Ṙa = 1 − R2
a + 1 + Y eff

a,b

2

[
−ηa,b

2

(
1 − R2

a

)

+
(

ηa,b

2
�(Rb − Ra ) sin(θa − θb ) + λ

)√
1 − R2

a

]
,

(32)
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FIG. 1. Ṙ as a function of R when (a) 2λ > η − 2 and (b) 2λ <

η − 2. In the first case, there is only on stable fixed point (R = 1), in
the second case, there are two coexisting stable fixed points R=−Rr

[Eq. (20)] and R = 1.

Ṙb = 1 − R2
b + 1 + Y eff

a,b

2

[
−ηb,a

2

(
1 − R2

b

)

+
(

ηb,a

2
�(Ra − Rb ) sin(θb − θa ) + λ

)√
1 − R2

b

]
,

(33)

where Y eff
a,b is completely determined by the values of the

social strengths and the initial conditions. Let us define ηmin ≡
{ηa,b, ηb,a} and Rmin = Ra if ηmin = ηa,b and Rb otherwise.
Then Y eff

a,b = 1 if ηmin > 2(1 + λ) and Rmin(0) < Rr . Observe
that the presence of this effective bond Y eff

a,b is a direct
consequence of B adapting to the average position of the
dimer. The stability of this effective system is illustrated in
Fig. 1. If ηmin < 2(1 + λ), then there is only one stable point
[Fig. 1(a)], whereas if ηmin > 2(1 + λ), there are two stable
points [Fig. 1(b)].

Following the definitions introduced in Ref. [1], we will
dub an agent a consensual if it is within the basin of attraction
of C
 and polarizing if it is not. In terms of the social
strengths, an agent has an attitude that is conservative if
ηa,b < 2(1 + λ) and liberal otherwise.

D. Beyond the dimer

Following Ref. [1], we obtain for the vertices and bond
variables of a given graph the following set of equations:

Ṙa =
⎛
⎝1 −

∑
c∈Na

ηa,c

2

⎞
⎠(1 − R2

a

)+
∑
c∈Na

ηa,c

2

[(
1 − R2

a

)ϕa,c

π

+ ρa,c(Rc − Wa,cRa )

]
+ λ

√
1 − R2

aY a, (34)

Ẏa,b = (
1 − Y 2

a,b

)√1 − R2
b

1 − R2
a

ηa,bρa,b

− λRa√
1 − R2

a

(Y b − Ya,bY a ) + ITb,a. (35)

With the insight gained from the dimer case, we assume that
there exists at least two fixed points, one conservative, present
for all values of the social strengths if λ > 0 and characterized
by a positive value of the magnetization,

μ ≡ lim
t→∞

1

M

∑
a

Ra (t ), (36)

and one liberal, present for sufficiently large values of the
social strengths and characterized by a negative value of the
magnetization.

If we impose the homogeneity condition,

Y a = Y b = Y ≡ 1

M2

∑
a,b

Ya,b, (37)

which we expect to be valid for sufficiently large societies
(i.e., 1 	 M) with low connectivity (i.e., if the size of a
typical neighborhood is a quantity of order 1) and considering
that most of the terms in (37) come from passive bonds
(ηa,b = ηb,a = 0),

Y = 1

M

∑
a

⎧⎨
⎩ 1

M

∑
b∈Na

Ya,b + 1

M

∑
b/∈Na

Ya,b

⎫⎬
⎭

= 1

M2

∑
a

∑
b/∈Na

Ya,b + O(M−1),

we conclude that

Ẏ = −2λK Y (1 − Y ) + O(M−1), (38)

where

K ≡ 1

M

∑
a

Ra√
1 − R2

a

. (39)

Observe that there are two possible stable values for Y ,
satisfying Y


 = �(−K ). We expect K > 0(<0) if there is
a sufficient number of consensual (polarizing) agents with
Ra → 1(−1). This estimate implies that, if K > 0, we are
in a conservative phase where the average position within a
neighborhood of voters differs to the average position of a
different neighborhood on neutral social issues. Collectively,
this adds up to a Y = 0. If K < 0 we are in a liberal phase
where different neighborhoods agree on socially neutral is-
sues, producing an effective Y = 1. In these circumstances,
Eq. (35) for active bonds is transformed into

Ẏa,b �
⎡
⎣
√

1 − R2
b

1 − R2
a

ηa,bρa,b(1 + Ya,b )

− λ
Ra√

1 − R2
a

�(−K ) + ITb,a

⎤
⎦(1 − Ya,b ). (40)

It is straightforward to conclude that, if K > 0 or, if K 	0
(where most of the agents are polarizing, i.e., Rc < 0)
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Ya,b → 1. Equation (40) and the correspondent (34) become
very difficult to analyze for intermediate values of K ∈
(−Kmin, 0), which occur for values of the social strengths
such that νη � 2(1 + λ), where ν is the average neighbor-
hood size (1) and η =∑ηa,b>0 ηa,b/

∑
ηa,b>0 1 is the average

social strength considering only active bonds. Preliminary
numerical experiments suggest that for these values of η

the final states of the system are extremely sensitive to the
initial conditions. Such an analysis will be left for a future
work.

By using that for the set of values of the social strengths for
which the system is tractable the values of Ya,b correspondent
to active bonds converge to one, we propose the following
equation for the set {Ra}:

Ṙa =
⎛
⎝1 −

∑
c∈Na

ηa,c

2

⎞
⎠(1 − R2

a

)+
⎡
⎣∑

c∈Na

ηa,c

2
�(Rc − Ra ) sin(θa − θc ) + λ

⎤
⎦√1 − R2

a. (41)

Let us define the effective social strength on a by its neighbors by the expression,

Ha ≡
∑
c∈Na

ηa,c. (42)

Let us assume that if Ha < Hb and after a sufficiently long time 0 	 t0 Ra � Rb. With this assumption in mind and without loss
of generality, let us rearrange the labels in such a way that H1 < H2 < · · · < HM . Then we have that for a time t > t0 there are
a number of agents with equations of the form

Ṙn =
(

1 − Hn

2

)(
1 − R2

n

)+ λ

√
1 − R2

n, (43)

where all agents (n), whose equations of motion do not depend on the variables associated with other agents, are characterized
by having constants Hn < Hni

where ni ∈ Nn, so n has a more conservative attitude than its neighbors. We will call such
agents the nucleating centers. The dynamic behavior of the nucleating centers depends on the value of the constant Hn and [if
Hn > 2(1 + λ)] of the value of Rn at time t0 where the order Rn > Rn1 for all n1 ∈ Nn is established. To support this claim, let
us integrate (43),

t − t0 = −2
∫ θ

θ0

dx

2λ + (2 − Hn) sin x
. (44)

If H < 2(1 + λ) there is only one fixed point, R
 = 1, reached from any initial condition θ0 ∈ (0, π ). There are three possible
situations in this phase,

t − t0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4√
(2−Hn )2−4λ2

[
arctanh

(√(2−Hn )2−4λ2

2−Hn

)− arctanh
( √

(2−Hn )2−4λ2

2λ tan(θ0/2)+2−Hn

)]
, Hn < 2(1 − λ),

2
λ

tan(θ0/2)
tan(θ0/2)+1 , Hn = 2(1 − λ),

4√
4λ2−(2−Hn )2

[
arctan

( 2λ tan(θ0/2)+2−Hn√
4λ2−(2−Hn )2

)− arctan
( 2−Hn√

4λ2−(2−Hn )2

)]
, 2(1 − λ) < Hn < 2(1 + λ),

(45)

but in all cases t − t0 < ∞. At the critical point we have that Hn = 2(1 + λ) in which case we have that the stable points are
R


n = cos(θ
) with θ
 = 0, π and basins of attraction (0, π/2) and (π/2, π ), respectively,

t − t0 =
⎧⎨
⎩

2
λ

tan(θ0/2)
tan(θ0/2)+1 , θ0 ∈ (0, π

2

)
,

lim
θ→0

1
θ
, θ0 ∈ (π

2 , π
)
.

(46)

Finally, for Hn > 2(1 + λ) we have that the two stable points are R

n = cos(θ
) with θ
 = 0, π − θr , where

θr ≡ arccos

⎛
⎝
√

1 −
(

2λ

Hn − 2

)2
⎞
⎠, (47)

and basins of attraction (0, θr ) and (θr , π ), respectively,

t − t0 =

⎧⎪⎨
⎪⎩

4√
(Hn−2)2−4λ2

[
arctanh

( √
(Hn−2)2−4λ2

Hn−2−2λ tan(θ0/2)

)− arctanh
(√(Hn−2)2−4λ2

Hn−2

)]
, θ0 ∈ (0, θr ),

lim
θ→0

ln
(

1
θ

)
, θ0 ∈ (θr , π ).

(48)
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Those we observe for all initial conditions belonging to the
basin of attraction of the conservative point R


n = 1 the dura-
tion of the opinion formation process is finite. The time the
process lasts to reach the liberal position R


n = cos(π − θr )
when Hn > 2(1 + λ) and θ0 ∈ (θr , π ) is infinite.

Suppose agent (o) is a nucleating center, suppose also that
the initial condition Ro(t0) ∈ (cos θr , 1) (conservative basin
of attraction) and the current time t is sufficiently larger than
t0 to ensure convergence to R


o = 1. The element of o1 ∈ No

with the lowest effective social strength Ho1 is ruled by the
equation,

Ṙo1 =
(

1 − Ho1 − ηo1,o

2

)(
1 − R2

o1

)+ λ

√
1 − R2

o1
, (49)

which is identical to (43) and can be analyzed in the same
way. Also observe that the presence of a consensual agent
increases the chances of producing new nucleating centers
due to the reduction of the effective social strength of its
neighbors as is observed in the first term of the right hand side
of (49). This nucleating effect has been observed previously,
close to the critical value of the social strength, i.e., H ∼
2(1 + λ). If the effective strengths HoL

of agents located at
a distance L of the nucleating center are sufficiently large,
it may occur that R


oL
< 0 and a border of polarizing agents

emerge around a cluster of consensual agents. Such clusters
have been observed emerging in the numerical experiments
presented in Ref. [1]. In the following section we will explore
the distribution of cluster sizes as a function of the strengths
{ηa,b} in the square lattice.

II. ESTIMATED OBSERVABLES AND EXPERIMENTS
IN THE SQUARE LATTICE

We consider the case of the agents sitting in the vertices
of a square lattice and where the ηa,c’s are drawn from a
Gaussian distribution centered at η and with variance �2. η,
the average social strength, represents the average influence
neighbors have on each other, and in an indirect form it also
represents a level of discontent with B. The parameter �

controls the level of variation, or disorder, in the set of social
strengths. In the following we present a theoretical analysis
based on the distribution of social strengths, disregarding the
initial conditions of the variables {Ra (0)}.

On a square lattice each agent is linked to precisely four
neighbors. The expression,

P0 :=
∫ 2(1+λ)

−∞

dx√
2π (2�)2

exp

{
−1

2

(
x − 4η

2�

)2
}

= H
(

4η − 2(1 + λ)

2�

)
, (50)

where H(x) ≡ ∫∞
x

dy N (y) is the Gardner error function
represents the probability that a vertex o has a conservative
attitude 2(1 + λ) >

∑
c∈No

ηo,c in which case for times not
smaller than a sufficiently large t0, Ro > Rb for all b ∈
No. At a link away from o there are the neighbors No =
{o1, o2, o3, o4}. The probability that these sites have a conser-
vative attitude is in similar manner and given that the center o

is consensual,

P1,0 := H
(

3η − 2(1 + λ)√
3�

)
. (51)

The vertices of the square that complete the first layer around
o have only two neighbors each that may not be consensual
thus,

P1,1 := H
(

2η − 2(1 + λ)√
2�

)
, (52)

thus the probability of having a consensual cluster with only
one layer of agents around the nucleating center is

P1 = P0P
4
1,0P

4
1,1. (53)

By repeating this process L times, the probability of having a
consensual cluster with L layers is

PL(η,�) = P0(η,�)[P1,0(η,�)]4L[P1,1(η,�)]4L2
. (54)

In order to measure the distribution of clusters in a square
lattice of side

√
M , we propose the following quantities:

〈L〉 ≡
∑√

M/2
j=1 jPj (η,�)∑√

M/2
j=1 Pj (η,�)

, (55)

σL ≡
√

〈L2〉 − 〈L〉2. (56)

〈L〉 is the estimated size of the cluster for the given values
of the social strength and the disorder parameter, and σL its
standard deviation.

Consider now the following observables:

μ(η,�) ≡ 1

M

∑
a

Ra (tmax), (57)

the magnetization, which measures the average social agree-
ment with B, and the correlations defined as

C�(η,�) = 1

M

1

8�

∑
a

∑
b∈Na (�)

Ra (tmax)Rb(tmax) − μ2(η,�),

(58)

where Na (�) is the set of agents located in the �th shell of
agent a. The behavior of the correlation can be modeled by
the expression,

C�(η,�) = C0(η,�) exp

(
− �

ξ (η,�)

)
, (59)

where ξ (η,�) is the correlation length and C0(η,�) is the
susceptibility.

To better understand the behavior of a system described
by Eq. (41), we perform a number of numerical experiments
on a square grid where we placed the member of a society
of size M = 104 with periodic boundary conditions. The
agents are connected to their first neighbors only with social
strengths {ηab} extracted from a Gaussian distribution with η

mean and variance �2. Observe that, although the {ηa,b}’s so
produced are allowed to have negative values, the values of
η and � used are such that the chances of a negative social
strength occurring are negligible. The social update constant
was kept constant at λ = 0.1. The evolution of the agents’
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FIG. 2. Expected number of layers in the typical cluster 〈L〉 ± σL

(full line) within one standard deviation (light shadow) and correla-
tion lengths ξ [full circles, averaged over ten independent numerical
integrations of (41)] as functions of the disorder � for values of the
social strength η
(�), λ = 0.1 for a society of M = 10 000 agents
arranged on a square lattice with periodic boundary conditions. In
the insets we have snapshots of the system at, from left to right, � =
0.001, 0.005, 0.06, and 0.09, respectively. The pixel at position
(i, j ), 1 � i, j � 100 in the insets represents the value of Ri,j with
values between −1 and 1 according to the provided scale.

agreement with B is obtained from the system (41), which
was numerically integrated using a second order Runge-Kutta
method for a maximum time tmax = 100 time units with initial
conditions uniformly distributed in [−1, 1] and for a variety of
values for the parameters η and �. For each � = 0.001, 0.01
in increments of 0.001 and from 0.01 to 0.09 in increments of
0.01 we found the value of η
(�) that satisfies the equation
μ(η
,�) = 0. For those values of [η
(�),�] we computed
〈L〉 (55) and σL (56) and estimated ξ [η
(�),�] averaged over
ten independent runs of the Runge-Kutta integration process.
The results of these experiences are presented in Fig. 2.

III. CONCLUSIONS

We proposed a model of opinion formation in societies of
adaptive agents where there is a set of rules B that determined
what is socially acceptable. In the present paper we allow B to
adjust according to the average position of the population with
a constant of proportionality λ. By the application of statistical
mechanics techniques we constructed a description of the
system’s behavior based on a set of differential equations
ruling the evolution of the parameters {Ra}, that represent the
agreement of the agents {a} with B, and {Yab} that represent
the agreement between two connected agents a and b on
neutral issues (i.e., issues for which B has no opinion). For
the case of a society with only two individuals, the system
can be described by Eqs. (16)–(18). For this system there are
only two stable fixed points, dubbed the conservative point
C
 with coordinates R


a = R

b = −Y 


a,b = 1 and the liberal
point L
 with coordinates R


max = −Rr, R

min = −Rv , and

Y 

a,b = 1, where Rmin(max) ≡ min(max){Ra,Rb} and Rr and

Rv are given by (20) and (21), respectively. We observe that in

the case of λ > 0 and opposite to the case reported in Ref. [1]
where λ = 0, consensual agents converge to the position of B,
represented by C
 with opposite positions on neutral issues.
This effect is due to the action of B to adapt to the average
position of a and b. The vector obtained by averaging the
internal representations of a, and b is a coplanar vector bi-
secting the angle subtended between Ja and Jb. If the internal
representation of B is modified, it eventually positions itself
in between Ja and Jb and, given that the plane perpendicular
to the internal representation B has also changed, Ja,⊥ and
Jb,⊥ become collinear and opposite. Thus, the effective action
of B adapting to the average position of the voters favors
a consensus constructed over the polarization of the agents’
positions on the plane of neutral issues. Only when the social
strengths are sufficiently high, both agents become polarized
with respect to B and with equal positions on socially neutral
issues. In this case, the adaptation of B is only sufficient to
reduce the final position of a and b to −Rr > −Rv > −1
(remember that in the case λ = 0, Ra = Rb = −1).

For a larger population M > 2, the equations obtained
by averaging the divided difference equations (11) and (12)
using the probability distribution from the independent bond
approximation are Eqs. (34) and (35). We observed that,
in the homogeneous approximation (37), the average Y is
constructed mostly with terms that correspond to passive
bonds. Such a quantity is ruled by a differential equation
with two fixed points Y


 = 0, 1. The fixed point Y

 = 0

appears for sufficiently low values of the social strengths.
In this phase, it is also observed that the connected bond
parameters converge to Y 


a,b = 1. Thus, in this conservative
phase, the effect of the adaptation of B to the average position
of the population produces an overall disagreement on socially
neutral issues between neighborhoods that are mutually dis-
connected, producing Y = 0. For large enough values of the
social strengths, we observe an overall agreement among the
agents that adds up to Y = 1. The model as it stands from (34)
and (35) becomes difficult to analyze for intermediate values
of the social strengths νη ∼ 2(1 + λ). This problem arises
from the construction of the joint probability P (β, {φa,}),
which is an approximation based on independent bonds. In
this approximation, the effect of neighbors is overestimated,
producing differential equations with no stable steady points
close to the boundary between the liberal and the conservative
phases. To overcome this problem we considered the effective
model presented in Eq. (41) where the values of {Ya,b} for
active bonds are set to 1. Such an equation is not obtained
by averaging (11) with a suitable joint probability but by
generalizing the effective system of equations for the dimer
[(32) and (33)].

The effective model presented in Eq. (41) also admits one
stable point (conservative) for sufficiently low values of the
social strengths and two stable points (one conservative and
one liberal) for sufficiently large values of them. One of the
main characteristics of this model is probably that the length
of the learning process (i.e., the time required to reach a fix
point in the phase space) is finite if the initial conditions are
in the conservative basin of attraction [Eqs. (45)–(48)].

By considering the social strengths to be drawn from a
Gaussian distribution with mean η and variance �2 for a
population of interactive agents placed on a square lattice,

052306-7



JUAN NEIROTTI PHYSICAL REVIEW E 98, 052306 (2018)

we estimated the expected size of the conservative clusters
〈L〉 and its standard deviation σL, Eqs. (55) and (56), to
be formed around nucleating centers as defined by (43).
We contrasted this quantity with the correlation length (59)
obtained from numerical integrations of (41) at the point
of transition between the conservative (low average social
strength) and liberal (high average social strength) phases,
defined by μ(η,�) = 0. The results, presented in Fig. 2, show
that these quantities are strongly correlated.

The most relevant effect observed, the emergence of con-
servative clusters when the average importance to the peers’
opinions is increased, has a clear interpretation in the context
of opinion formation. Let us assume we live in a society where
the status quo B is well established. Suppose there is evidence
in support of an action against the established order, and in
consequence a policy is made to challenge B. Such evidence
may produce a change in attitude in the social members, trying

to corroborate their opinions by contrasting them with their
peers (increase in η). Such corroboration is not sought when
there is general conformity with B. Members of the society
that remain in agreement with B have the effect of leaders
[10] and conservative clusters emerge and remain, even if η

is increased by the emergence of more evidence in favor of
the challenging policy. It has been observed that the effect of
a positive λ for large enough values of the social strengths
is the stabilization of the conservative fixed point R = 1. The
analysis of a bistable system under periodic perturbations [11]
will be presented in a following article.
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APPENDIX: DEMONSTRATION OF THE ORDER ASSOCIATED WITH THE SOCIAL STRENGTHS

Observe that our analysis is based on the supposition that, if ηa,b < ηb,a , then at the stable point and in a neighborhood of it
we have that Rb < Ra . Observe that by the definitions of A and C [Eqs. (22) and (23), respectively] we have that

ηb,a > ηa,b > 2(1 + λ),

ηb,aRr + ηb,a − 2 > ηb,aRr + ηa,b − 2 > 0,(
2λ

ηa,b − 2

)2

(ηb,aRr + ηb,a − 2)2 >

(
2λ

ηa,b − 2

)2

(ηb,aRr + ηa,b − 2)2,

(
2λ

ηa,b − 2

)2

A2 > (CRr + 2λ)2,

(
1 − R2

r

)
A2 > C2R2

r + 4λCRr + 4λ2,

(A2 + C2)A2 > (A2 + C2)
[
(A2 + C2)R2

r + 4λCRr + 4λ2
]
,

(A2 + C2 − 4λ2)A2 > (A2 + C2)2R2
r + 4(A2 + C2)λCRr + 4λ2C2,

(A2 + C2 − 4λ2)A2 > [(A2 + C2)Rr + 2λC]2,√
A2(A2 + C2 − 4λ2) > (A2 + C2)Rr + 2λC,

lim
t→∞ Ra (t ) = −Rr >

2λC −
√

A2(A2 + C2 − 4λ2)

A2 + C2
= −Rv = lim

t→∞ Rb(t ) �.

Thus, for a sufficiently large t , we have that Ra (t ) > Rb(t ) due to the continuity of these functions.
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