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Kazuki Fujita,1,* Alexey Medvedev,2,3,† Shinsuke Koyama,4,‡ Renaud Lambiotte,5,§ and Shigeru Shinomoto1,‖
1Department of Physics, Kyoto University, Kyoto 606-8502, Japan

2NaXys, Universite de Namur, 5000 Namur, Belgium
3ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

4The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
5Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

(Received 2 August 2018; published 13 November 2018)

The occurrence of new events in a system is typically driven by external causes and by previous events taking
place inside the system. This is a general statement, applying to a range of situations including, more recently, to
the activity of users in online social networks (OSNs). Here we develop a method for extracting from a series of
posting times the relative contributions that are exogenous, e.g., news media, and endogenous, e.g., information
cascade. The method is based on the fitting of a generalized linear model (GLM) equipped with a self-excitation
mechanism. We test the method with synthetic data generated by a nonlinear Hawkes process, and apply it to a
real time series of tweets with a given hashtag. In the empirical dataset, the estimated contributions of exogenous
and endogenous volumes are close to the amounts of original tweets and retweets respectively. We conclude by
discussing the possible applications of the method, for instance in online marketing.
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I. INTRODUCTION

In online social networks (OSNs), users have the ability to
produce, consume and validate information by posting their
own content and by reading the content written by others
and sharing it to their own social circle [1]. The growing
popularity of OSNs and the complexity and size of their
data require the development of new tools for a variety of
applications, from online marketing and tracking the pulse of
society [2] to sociological studies on the emergence of grass-
roots movement [3]. The dynamics of information in OSNs
is particularly rich due to the strong heterogeneity among
users, typically associated with a broad degree distribution
in the social network [4]; the competition between different
keywords of hashtags [5,6]; the coexistence of different types
of users [7], e.g., genuine versus bots; and also the interplay
between OSNs and more traditional mass media [8].

Several works have focused on the structure and dynamics
of the resulting information cascades, from their character-
ization in empirical data to the design of machine learn-
ing algorithms and mathematical models to predict their
behavior [9–17]. Mathematically, information cascades are
often modeled by self-exciting point processes [18–21], as
previous events may trigger new events, in a way that
generalizes the standard Hawkes process [22]. In their sim-
plest instance, Hawkes processes are linear self-reinforced
processes, where the occurrence of an event increases the
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likelihood of future events. Hawkes processes have a di-
rect connection to SI models in epidemiology [23] with, as
an additional ingredient, a temporal kernel determining the
stochastic time between an event and its response. This family
of models has been successfully applied to model and predict,
among other phenomena, seismic dynamics [24,25], sciento-
metrics [26], finance [27–29], and neuronal firing [30,31].

The main purpose of this work is to design a method to
identify the main forces driving the activity in an OSN, and to
characterise the importance of endogenous activity, generated
organically by interactions between users, and exogenous fac-
tors perturbing the internal dynamics. Distinguishing between
exogenous and endogenous forces is critical for understand-
ing the mechanisms that drive dynamics of OSNs and has
important practical applications, such as the quantification
of marketing or external factors that may manipulate the
social system [32,33]. A possible solution to this challenging
problem is to consider how the number of events decays after
a burst of activity, as different types of relaxation are expected
to emerge if the system endogenously built up its bubble of
activity or if it was caused by an external shock [34]. However,
this method suffers from practical limitations as it only allows
for a post hoc analysis after a sufficiently important burst
happened. Instead of analyzing gross activity, we propose to
focus on the precise time series of event occurrences. Inspired
by the parallels between spike train and social media time
series [35], we model the system with a generalized lin-
ear model (GLM) equipped with a self-exciting mechanism.
GLMs have emerged as an important statistical framework
for modeling neuronal spiking activity in a single-neuron
and multineuronal networks [36,37], and their nonlinearity
presents desirable properties for information spreading on net-
works, as synchronised activity tends to reinforce the response
to a signal. As we will show, the model naturally allows one to
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disentangle endogenous and exogenous contributions in time
series.

The rest of the paper is organized as follows. After in-
troducing the model and the associated parameter inference,
we validate the method on artificial data before testing it on
empirical time series of appearance of tweets with a particular
hashtag, where we successfully determine the contributions of
endogenous and exogenous forces. We then provide a critical
discussion about our work and conclude with possible future
steps.

II. METHODS

At the core of our method, we assume that the activity time
series in OSNs, for example postings of tweets with a specific
keyword, is modeled by a GLM, where the underlying rate is
given by

λ(t ) = exp

(
γ (t ) + α

∑
k

h(t − tk )

)
(1)

or, equivalently,

λ(t ) = exp
[
γ (t )

]∏
k

exp [αh(t − tk )], (2)

where γ (t ) and α represent the time-varying external environ-
ment and the degree of internal self-excitation, respectively.
h(t ) is a kernel representing the time profile of internal
excitation, and tk is the occurrence time of kth event. Here we
have chosen h(t ) = (1/τ ) exp(−t/τ ) for t > 0 and h(t ) = 0
otherwise.

In contrast with standard linear Hawkes models, where the
underlying rate has the form

λ(t ) = μ(t ) + α
∑

k

h(t − tk ), (3)

the effect of previous events multiply each other, as seen in
Eq. (2), which results in a nonlinear dynamical process. The
nonlinearity of the model has interesting implications for the
stochastic dynamics, as it favors configurations when events
appear in short bursts instead of over a long period. The model
thus intrinsically rests on the importance of reinforcement,
and of multiple contacts over short times to promote diffu-
sion, as observed in complex contagion [38], but previously
modeled by means of threshold models [39] on temporal
networks [40]. This effect is illustrated in Fig. 1, where we
compare examples of intensities of the linear Hawkes process
and the nonlinear Hawkes process of the GLM type. We
observe that linear reinforcement adds a constant contribution
into secondary events, while multiplicative reinforcement give
a stronger push if subsequent events arrive closer in time.

Given the occurrence rate λ(t ), the probability that events
occur at times {tk} ≡ {t1, t2, . . . , tn} in the period of t ∈ [0, T ]
is obtained as [41,42]

p({tk} | λ(t )) =
[

n∏
k=1

λ(tk )

]
exp

(
−

∫ T

0
λ(t ) dt

)
, (4)

where the exponential term is the survivor function that repre-
sents the probability that no more events have occurred in the
interval.

(a) (b)

FIG. 1. Comparison of intensity self-reinforcement between (a)
the linear Hawkes process and (b) the nonlinear Hawkes process.
Both processes have background rates equal to 1 and exponential
memory kernels. We consider the hypothetical situation where events
get realized at the same times in each case and compare the resulting
intensities. Linear reinforcement generates a constant number of
secondary events, while multiplicative effect is stronger if subsequent
events arrived closer in time, e.g., around t = 4.

When confronted with empirical time series, as is usual in
practice, we invert the arguments of the conditional probabil-
ity Eq. (4) with Bayes’ rule so that the unknown underlying
rate λ(t ) is inferred from the event series observed {tk}:

p(λ(t ) | {tk}) = p({tk} | λ(t )) p(λ(t ))
p({tk})

. (5)

As a prior distribution of λ(t ), we assume that external
modulation γ (t ) is slow. This is given by penalizing the large
gradient, |dγ (t )/dt |:

p(λ(t )) ∝ exp

[
−β

∫ T

0

(
dγ (t )

dt

)2

dt

]
, (6)

where β is a hyperparameter representing the slowness of the
external fluctuations; the external stimulus is largely fluctuat-
ing if β is small, and we interpret that external stimulus as
absent if β = ∞, because γ (t ) should be constant in time in
this case.

We represent p({tk} | λ(t )) and p(λ(t )) respectively as
pα ({tk} | γ (t )) and pβ (γ (t )), by explicitly specifying the de-
pendency on the external modulation γ (t ), internal excitation
parameter α, and the stiffness parameter β. Then the proba-
bility of having event times p({tk}) is given as the marginal
likelihood function or the evidence:

pα,β ({tk}) =
∫

pα ({tk} | γ (t )) pβ (γ (t )) D{γ (t )}, (7)

where
∫

D{γ (t )} represents a functional integration over all
possible paths of external fluctuations γ (t ). The method of
selecting the hyperparameters according to the principle of
maximizing the marginal likelihood function is called the
empirical Bayes method [43–46]. The marginalization path
integral Eq. (7) for a given set of time series {tk} can be carried
out by the expectation maximization (EM) method [47,48] or
the Laplace approximation [49].

In this framework, the contributions of endogenous and
exogenous origins that have influenced for the occurrence
of events are judged by the hyperparameters {α̂, β̂} selected
by maximizing the marginal likelihood pα,β ({tk}) (Table I).
Given the hyperparameters determined as {α̂, β̂}, we can
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TABLE I. Presence of endogenous and exogenous contributions
can be inferred by the selected hyperparameters of the GLM.

Self-excitation α̂ Stiffness β̂

Endogenous finite ∞
Exogenous 0 finite
Endo. + exo. finite finite

obtain the maximum a posteriori (MAP) estimate of the exter-
nal circumstance γ̂ (t ), with which their posterior distribution,

pα̂,β̂ (γ (t ) | {tk}) ∝ pα̂ ({tk} | γ (t )) pβ̂ (γ (t )), (8)

is maximized. With the estimated γ̂ (t ) and the given series of
event times {tk}, we obtain the rate λGLM(t ) as

λGLM(t ) = exp

(
γ̂ (t ) + α̂

∑
k

h(t − tk )

)
. (9)

III. RESULTS

A. Application to synthetic data

Here we test the efficiency of the method by fitting it to
series of occurrence times derived from the following rate
processes:

(a) Exogenous modulation. First we considered an inho-
mogeneous Poisson process in which events are drawn from a
time varying rate:

λ(t ) = exp
[
γ0 + b0 sin(t/T )

]
. (10)

We interpret this mode as purely exogenous because the rate
variation is independent of past events. We fit our GLM to
a series of occurrence times derived from this rate process.
The left panel of Fig. 2(a) shows a contour plot of the
log-likelihood [Eq. (7)], indicating that the self-excitation
parameter α̂ is zero while the stiffness constant β̂ is finite.
Thus the method suggests that the rate modulation would have
been exogenous. In the right panel of Fig. 2(a), the occurrence
rate estimated with our GLM, exp[γ̂ (t )], is compared with a
time histogram optimally fitted to the data [50], demonstrating
that the GLM has succeeded in capturing the underlying rate
properly.

(b) Endogenous modulation with a small self-excitation.
We generated events with the nonlinear Hawkes process

λ(t ) = exp

(
γ0 + α0

∑
k

h0(t − tk )

)
, (11)

where we have taken the kernel h0(t ) = (1/τ0) exp(−t/τ0) for
t > 0 and = 0 otherwise. Here, we have chosen the timescale
of the GLM kernel (τ ) to be identical to the timescale of this
generative model (τ0). By applying our GLM to the series of
occurrence times, the self-excitation parameter α̂ is selected
as nonzero, suggesting that the system had endogenous exci-
tation [Fig. 2(b), left panel). Because the stiffness β̂ is very
large, the base rate exp[γ̂ (t )] is nearly constant, indicating
that external circumstances were stationary. The total rate
estimated by the GLM, Eq. (9), is very close to the original
rate given in Eq. (11). For this data, the optimized bin size of

the histogram diverges, indicating that the fluctuation in the
rate was not detected. The estimated (constant) rate is above
the baseline rate exp(γ̂ ), because the contribution of the self-
excitation is included in the total rate [Fig. 2(b), right panel].

(c) Endogenous modulation with a larger self-excitation.
We generated events with the nonlinear Hawkes process given
by Eq. (11) with the self-excitation term α0 greater than in the
case (b), so that event occurrence exhibits large fluctuations.
By applying the optimal histogram method, we obtained a
fluctuating rate (i.e., the optimal bin size was finite), imply-
ing that the nonlinear Hawkes process may also exhibit the
stationary-nonstationary (SN) transition that was found in the
linear Hawkes process [20,21]: significant fluctuations appear
even in the absence of external modulation. Although the rate
estimation method suggested that the rate is fluctuating, our
GLM was able to reveal that exogenous forcing was absent,
and we conclude that the fluctuations appeared solely due to
the self-excitation [Fig. 2(c), right panel].

(d) Exogenous + endogenous modulation. We derived
events from the system receiving both external fluctuations
and self-excitation:

λ(t ) = exp

(
γ0 + b0 sin(t/T ) + α0

∑
k

h0(t − tk )

)
. (12)

By applying our GLM to a series of occurrence times, we
obtain both the self-excitation parameter α̂ and stiffness con-
stant β̂ as finite, as shown in the contour plot of the log-
likelihood [Fig. 2(d), left panel], suggesting that the system
would have been stimulated exogenously but there would have
been endogenous self-excitation mechanisms as well.

In the above, we have seen that the GLM is able to
decipher the original self-excitation mechanisms provided
that the event generation process (the nonlinear Hawkes pro-
cess in this case) is contained in a family of rate processes
presumed for the GLM. In real applications, however, the
precise underlying mechanisms of data generation are usually
hidden, thus accordingly we have to assume that our GLM
may not cover the original process. To examine whether or
not the GLM may work even if the model does not con-
tain the original process, we performed the following tests:
We generated a series of events from a nonlinear Hawkes
process with exponential self-excitation kernel and timescale
τ0 = 300 seconds [Eq. (12), (α, β ) both finite], and fitted
GLMs whose self-excitation timescale τ is different from τ0.
We confirmed that the GLM suggests finite optimal (α̂, β̂ )
for a rather wide range of timescales τ (between 10 and
600 seconds) [Figs. 3(a), 3(b), and 3(c)]. Furthermore, we
tested the case in which the functional form of the self-
excitation kernel in the GLM is different from that of the
event generation process: We adopted the power law kernel
h(t ) = c(t + a)−3 (c = 2a2, a = 300 s) into the GLM and
applied it to the same data of Fig. 2(d), which was gener-
ated using the exponential kernel. The contour plot of the
log-likelihood function in Fig. 3(d) is very similar to the
original one, Fig. 3(b). This observation suggests that the
GLM may capture the presence of self-excitation and external
fluctuation robustly even if the precise temporal profile of the
self-excitation is not a priori known.

052304-3



FUJITA, MEDVEDEV, KOYAMA, LAMBIOTTE, AND SHINOMOTO PHYSICAL REVIEW E 98, 052304 (2018)

(a)

(b)

(c)

(d)

FIG. 2. Fitting the GLM to synthetic data. (a) Exogenously modulated rate process [Eq. (10), γ0 = ln 0.01; b0 = 0.2; T = 43200]. (b)
The nonlinear Hawkes process with small self-excitation [Eq. (11), γ0 = ln 0.01; α0 = 10; τ0 = 300). The inset magnifies the rate profile.
(c) The nonlinear Hawkes process with the larger self-excitation [Eq. (11), γ0 = ln 0.01; α0 = 25; τ0 = 300]. (d) The system receiving
external fluctuations and self-excitation [Eq. (12), γ0 = ln 0.01; b0 = 0.2; T = 43200; α0 = 20; τ0 = 300]. Left panel: Contour plot of the
log-likelihood [Eq. (7)]. Right panel: The solid blue line shows the optimal time histogram, the red line below shows the original exogenous
activity exp[γ (t )], the black curve represents the inferred exogenous activity exp[γ̂ (t )], and green is the total rate given by the GLM, λGLM(t )
[Eq. (9)].

B. Application to a series of tweet times

In an OSN, one may differentiate between the production
of original content and the sharing of existing content over
the network of peers. Content may be related to a topic or
a real-world event, and its appearance in the digital space is
modulated by its interest. When considering the total number
of occurrences of a topic-related content, one may interpret

the original posts as exogenous input, since the content arrives
extrinsically into the social system, while following reshares
or retweets may be considered as an endogenous self-exciting
contribution into dynamics. These two processes are undoubt-
edly coupled together, thus it is hard to directly separate one
type of activity from the other by observing only the global
time series.
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(a) (b) (c) (d)

FIG. 3. Contour plots of the log-likelihood functions of various GLMs. Panels (a), (b), and (c) correspond to exponential kernels h(t ) =
1/τ exp(−t/τ ) of timescales τ = 30, 300, and 600 seconds, respectively. Panel (d) corresponds to a power law kernel h(t ) = c(t + a)−3

(c = 2a2, a = 300 s). The original data were derived from the nonlinear Hawkes process of the system receiving external fluctuations and
self-excitation of the exponential kernel of timescale τ0 = 300 seconds as in Fig. 2(d).

We test our separation method on the data from Twitter,
which is a perfect example of a content sharing social system.
We consider the dataset of tweets, collected through the
public API, posted between January and late August of 2017
that contain the hashtag #bitcoin. These tweets represent the
topic of one cryptocurrency and public attention to it. The
dataset contains 13 365 114 tweets, and for each tweet we have
information about its creation time, its content, and whether
the tweet is an original piece of content or a retweet. Note
that no underlying network of followers was captured. From
this information we infer two separate time series, one related
to the original tweet postings with the hashtag and another
represents the total hashtag appearance, including retweets.
The average rate of appearance of these two types of tweets
is drawn in Fig. 4. Both rates were approximated from daily
bins for the sake of clarity of presentation. We observe an
increase in appearance rate of retweeted content while the
rate of original tweets remains practically stable. Since the
tweets are related to the topic of cryptocurrencies, this may be
explained by a growing attention to bitcoin related to its recent
growth in volume and market capitalization [51].

We apply our GLM in order to separate the original
tweeting rate from retweeting. Due to the large size of the
observation window we select three one-week samples from
the dataset and present our analysis of these samples (Fig. 4).
We applied the model to other samples from the dataset and
the results were comparable and are not shown here due to
space limitation. Following the rapid nature of retweeting
activity [18,19], we use the exponential kernel with timescale
parameter τ a priori set to 60 seconds. Regarding the data
examined, time stamps were recorded in seconds, and data

contain a nonzero fraction of multiple time stamps falling
into the same second. We confirm that randomization of
these multiple events in a half-second radius around the given
second times tamp performed worse than simply disregarding
them. Therefore, in our experiment we stick to the latter
option.

The results of the exogenous activity separation are shown
in Fig. 5. For the sake of clarity of presentation, the original
and total tweeting rates are shown using the 20 min binning
of time stamps, and estimated tweeting rates are shown using
1 min binning. We first observe that large peaks in the total
tweeting activity are not accompanied by peaks in the rate
of original tweet arrivals, therefore those are clearly due to
retweets. The GLM method succeeded in filtering out these
bursts of activity, and the estimated exogenous rate exp[γ̂ (t )]
is close to the rate of original tweets. The total estimated
rate λGLM(t ) is shown to precisely follow the total tweeting
activity, which is expected, since the algorithm optimizes the
difference between total tweeting rate and λGLM(t ). However,
there appears to be a slight discrepancy in Fig. 5(c), which
may be explained by the growth of attention in combination
with the drawback of one-second resolution. The contour plots
for the time series (a) show clear finite optimal (̂α, β̂ ) for
various values of timescale parameter τ (Fig. 6).

IV. DISCUSSION

We have developed a GLM-based method to estimate the
influence of exogenous and endogenous forces on observed
temporal events. Using synthetic data generated by nonlinear
Hawkes processes, we confirmed that the method is capable

FIG. 4. Tweeting rate in the whole dataset from January to September 2017. The solid blue line shows the tweeting rate of the tweets that
contain a hashtag related to “bitcoin.” The dashed red line shows the rate of appearance of original tweets with the same hashtags. Both rates
were approximated from daily bins.
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(a)

(b)

(c)

FIG. 5. Original tweeting rate estimation for one-week samples of tweets: (a) between January 9 and January 16, 2017, (b) between May
1 and May 8, 2017, and (c) between July 13 and July 20, 2017. The solid blue line shows the tweeting rate of all tweets, the red line below
shows the rate of original tweets, the black curve represents the inferred exogenous activity exp[γ̂ (t )], and green is the total rate given by the
GLM. The total and original tweeting rates were approximated using 20 min bins and the estimated rates are given using 1 min bins.

of estimating the respective contributions. Then we applied
the method to time series of tweets with a given hashtag,
and found that the estimated contributions of external and
internal origins are close to the original tweets and retweets,
respectively.

The concept of dividing the world into exogenous and en-
dogenous categories is a controversial philosophical problem,
and it might be considered as a subjective decision. However,
the estimation of the exogenous component from a time
series has important implications to design efficient models to
predict its future behavior and, for instance, to infer the impact
of a marketing campaign on the activity of a social network,

judging whether items require extensive advertisement or
word-of-mouth product mentions have already gone viral.

Note that another method has been designed for a simi-
lar purpose, based on the fitting of the linear Hawkes pro-
cess using the EM method, and validated on a data set of
violent civilian deaths occurring in the Iraqi conflict [52].
An advantage of this method is the linearity of the model,
which avoids possible catastrophic divergences in the number
of events [37]. However, our GLM-based approach has the
advantage of determining the timescale of exogenous fluctu-
ation β semiautomatically, according to the empirical Bayes
method, while this timescale needs to be given manually in

FIG. 6. Contour plots of the log-likelihood function for timescales τ = 5, 60, and 150 seconds. The optimal value found by GLM method
is depicted as (̂α, β̂ ).
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the linear model. For these reasons, our method is expected to
perform well in situations when the exogenous activity has
a slow modulation. In spite of this advantage, our method
is bounded by the condition that external stimulus be slow,
which is imposed due to the prior distribution, Eq. (6). An in-
teresting venue of future research would be to design methods
lifting this condition on the stimuli.

The continuous nature of the GLM suggests the recorded
data be continuous as well. However, in practice, high preci-
sion temporal data are rarely available, and the time is rounded
up to a second. Multiple events may thus occur in cases
when the collected time series come from a process with high
frequency, which can be subdued by improving the data mea-
surement frequency. In contrast, this finer frequency would
also increase the computational burden of the algorithm, a
classic precision/speed tradeoff. Another practical issue is
selection of the self-excitation kernel and its timescale τ . The
proposed method showed to succeed when the provided value

of τ0 lies in a certain interval around the true τ of the process.
Narrowing this interval down to a correct τ can be done using
extra available information, e.g., retweet time distribution of a
test sample of tweets.
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