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Variability of collective dynamics in random tree networks of strongly coupled
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We study the collective dynamics of strongly diffusively coupled excitable elements on small random tree
networks. Stochastic external inputs are applied to the leaves causing large spiking events. Those events
propagate along the tree branches and, eventually, excite the root node. Using Hodgkin-Huxley type nodal
elements, such a setup serves as a model of sensory neurons with branched myelinated distal terminals. We
focus on the influence of the variability of tree structures on the spike train statistics of the root node. We
present a statistical description of random tree networks and show how the structural variability translates into the
collective network dynamics. In particular, we show that in the physiologically relevant case of strong coupling
the variability of collective response is determined by the joint probability distribution of the total number of
leaves and nodes. We further present analytical results for the strong-coupling limit in which the entire tree
network can be represented by an effective single element.
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I. INTRODUCTION

The study of the dynamical properties of complex networks
of nonlinear elements [1,2] is an important trend in nonlinear
science [3,4]. In particular, networks of coupled stochastic
excitable elements are commonly used as model systems for
a wide range of natural phenomena, such as pattern formation
in chemical reactions [5,6], the dynamics of gene regulatory
networks [7-10], and the electrical activity of single neurons
[11-13] and large neuronal populations [14].

Network topology strongly influences the collective dy-
namics of coupled excitable elements [3,15]. For instance,
coherent collective oscillations can emerge for certain cou-
pling strengths or particular choices of network connectivity
[16,17]. Furthermore, the emergent correlated activity of large
recurrent neural networks can be linked to their connectivity
[18]. The sensitivity of complex networks to external signals
and the dynamic range of the network’s collective response
can be maximized for the so-called critical networks [19], i.e.,
being on the verge of a phase transition. This criticality can
be achieved either by tuning the coupling strength and signal
propagation parameters in the network [12,13,20] or by tuning
its topology [21].

The majority of works in this area are devoted to large
networks with well-defined statistical properties such as de-
gree distributions and spectra of the adjacency or Laplace
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matrices [3,4,9]. Due to the large number of nodes and in-
terconnections one can average over the network structure.
Then, the emergent collective dynamics can be related to the
statistical properties of the network’s architecture [15,18,22].
The situation is different when the collective dynamics of
small random networks is studied. Although the network
topology can be specified in terms of statistical properties,
such as degree distributions, individual network realizations
may differ significantly. In consequence, a detailed analysis
of the relation between the collective dynamics and statistical
properties of the network topology requires studies of ensem-
bles of network realizations.

In the present paper we focus on a class of small networks:
small random trees of strongly coupled stochastic excitable
elements. The dynamics of excitable elements coupled with
regular tree networks were addressed in several studies. In
particular, propagation failure of excitations starting at the
root node of a regular tree of diffusively coupled deterministic
excitable elements was studied in [26]. There it was shown
that the degrees of the network nodes play a crucial role in
the dynamics of propagating excitations. An excitable system
of stochastic excitable cellular automata elements interacting
on a large regular tree was studied in [13,20,27] as a model
of large neuronal dendritic trees with active branchlets. In
such a model random Poisson inputs to the tree’s nodes result
in excitation waves, leading to an extremely large dynamical
range of the collective response, measured at the root node.

Small tree networks serve as models for certain types
of peripheral sensory neurons whose morphology includes
treelike branched myelinated distal terminals. Examples of
such sensory neurons include cutaneous mechanoreceptors
[25,28], pain receptors [29], mechanoreceptors in lungs
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FIG. 1. Examples of connectivity of nodes of Ranvier in myelinated branching terminals of muscle spindle afferents [(a)—(c)] from [23,24]
and of a touch receptor afferent (d) from [25]. Red semicircles represent heminodes (leaf nodes) which receive external inputs. Internal nodes
of Ranvier are marked by blue circles; the green circle marks the root node.

(pulmonary afferents) [30,31], some electroreceptors [32],
and muscle spindles [33,34]. Terminal branches of such neu-
rons are wrapped by myelin which is interrupted at the nodes
of Ranvier, located at branching points. Figure 1 exemplifies
such networks for terminal branching of muscle spindle affer-
ent neurons and for a touch receptor afferent. Starting from
a primary node (green circle), branching continues for a few
generations (2-5), terminating at leaves, called heminodes, at
which myelin ends. Heminodes receive sensory inputs from
thinner neurite processes. In response, the sensory neuron
generates a sequence of action potentials. The number of
nodes and heminodes, their connectivity, and the size of termi-
nals varies among individual neurons. Due to the high density
of voltage-gated Na™ ion channels at the heminodes, an action
potential (AP) can be triggered at any heminode. Therefore,
such neurons obey multiple stimulus encoding zones [33].
Furthermore, despite the inevitable randomness of input sig-
nals to the individual spatially separated terminal endings,
these sensory neurons often exhibit pacemaker-like activity,
characterized by noisy periodic spiking [23]. Several dynamic
mechanisms were proposed in order to explain AP generation,
the periodicity of firing, and the observed nonlinear responses
of these neurons. Those mechanisms include random mixing
[35], nonlinear competition between multiple pacemakers,
associated with heminodes [23], and additional mechanical
coupling between sensory receptors [36]. In an alternative
approach, the low resistance of myelinated segments, inter-
connecting the individual nodes of Ranvier, leads to strong
coupling of their activity. In consequence, the stochastic fir-
ing of heminodes and nodes is synchronized and the whole
branched terminal can be viewed as a single effective excitable
system, which produces the corresponding firing statistics
[37]. This proposal was supported by modeling studies using
star [38] and regular tree [39] networks of stochastic excitable
elements. In particular, in [39], a strong-coupling theory was
developed, allowing prediction of the firing rate and spike
train variability of strongly coupled excitable elements.
Reconstructions of myelinated terminals of sensory neu-
rons revealed that their tree structures varies among neurons
[23-25]; see Fig. 1. This gives rise to a description of those
terminals using random tree networks as models. Within this
paradigm the specific coupling structure in a single myeli-
nated terminal is just one possible realization of a random
branching process, which generates random tree networks
with certain statistical properties. Those properties can, for
instance, be specified by providing a branching probability

mass function, which, back in the experimental setup, would
characterize myelinated terminal of a certain kind of neuron.
As terminals of individual neurons may differ significantly,
this raises the question of how this structural variability affects
the statistics of neuronal firing [25], which we address in the
present paper.

The present paper is organized as follows. In Sec. II A we
describe a model of Hodgkin-Huxley type excitable elements
coupled on random tree network. The deterministic dynamics
and measures of spike train variability for a tree network are
described in Secs. IIB and IIC. In Sec. IID we introduce a
statistical description of random tree networks. The latter is
then applied for particular examples of random binary trees
in Sec. IIT A. Section III B and Appendix C are devoted to the
extension of the strong-coupling theory of Ref. [39] to random
trees, which is applied to three examples of random trees in
Sec. III C. We end with our conclusions in Sec. IV.

II. MODEL AND METHODS

In the present paper, we study the collective dynamics of
excitable elements located at the branching points of ran-
dom tree networks. Elements are interconnected by passive
branches. This setup is illustrated in Fig. 1.

A. Hodgkin-Huxley type model

We assume that all nodes and passive links are identical,
except for the leaf nodes, representing heminodes, which re-
ceive external inputs. Given a tree with N nodes, the dynam-
ics of the nodes’ membrane potentials are approximated by a
discrete cable model [40] in which the membrane potential of
the nth node (compartment) is governed by

N

CVy=—Ln+x Y A (Vi = V) + Ju(@). (1)
j=1

Here the index n = 1,2, ..., N marks the respective node.
In particular, n = 1 refers to the root node. In Eq. (1) C
is the nodal membrane capacitance and the term I, rep-
resents the nodal ionic currents. In the following, we use
a Hodgkin-Huxley type (HH) model for the ionic currents
of nodes of Ranvier, which is a simplified version of the
model used in [41]. Ionic currents are represented by Na™
and leak currents, lion = Ina + Ir. [38,39]. The Na™ cur-
rent is Ina = gnam>h(V — Vna), Where g, = 1100 mS/cm?
is the maximal value of the sodium conductance and
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VNa = 50.0 mV is the Na* reversal potential. The gating
activation and inactivation variables obey the dynamics

m = o (V)(L —m) = Bu(V)m,

. 2)
h = ap(V)(A = h) — r(V)h,

with the following rate functions:

am(V) = 1.314(V +20.4)/{1 — exp[—(V +20.4)/10.3]},
Bm(V) = —0.0608(V + 25.7)/{1 — exp[(V + 25.7)/111},
an(V) = —0.068(V + 114)/{1 — exp[(V + 114)/11]},
Br(V) = 2.52/{1 + exp[—(V + 31.8)/13.4]}.

The leak current is given by I = g .(V — V1) with g =
20 mS/ cm?, Vi, = —80 mV, and the nodal capacitance is set
to C =2 uF/cm?.

In Eq. (1) the coupling between nodes is described by
K 2?;1 A, j(V; = V,), where A is the adjacency matrix of
the undirected rooted tree graph. It is a ' x N symmetric
matrix with elements A; ; = 1 for connected nodes i and j,
and A; ; =0 for unconnected nodes; see Appendix A for
more details. In the following the coupling strength, «, is
used as a control parameter. However, the physiologically
relevant values of x can be estimated from the sizes of a
node, the myelinated links, and the axoplasmic resistivity
[40], giving the range of ~125-1500 mS/cm? [38,39]. The
external currents 7, are applied to the leaves only and consist
of a constant and a noisy part, i.e.,

Tn(t) = 8,u[J + V285 (1)), 3)

where [ denotes indices of leaf nodes; §,; is the Kronecker
delta. The zero-mean Gaussian white noise & (¢) with inten-
sity S is uncorrelated for different leaves, i.e., (£;(r)) =0,
(&i(1)§;(t + 7)) = &; ; (7). Thus, leaf nodes receive random
uncorrelated inputs. Other sources of noise, e.g., due to fluc-
tuations of nodal ion channel conductances, are neglected. In
contrast to regular tree networks where inputs are adminis-
tered only to nodes in the last generation of a tree [39], leaves
can occur at any generation in random tree networks; see
Fig. 1.

Equations (1)-(3) were integrated numerically using the
explicit Euler-Maruyama method with a time step of 0.1 us
for 60—600 seconds long simulation runs.

B. Deterministic dynamics

We first discuss repetitive action potential generation at the
root node for deterministic input currents, S = 0 in Eq. (3).
Qualitatively different dynamical operation modes of the root
node are separated by a threshold value, Jy,, of the constant
current, J, applied to leaf nodes. While APs evoked at the leaf
nodes do not fire up the root node for low currents, values of
J exceeding Jy, result in sustained periodic firing of the root
node. This is reminiscent of the dynamic behavior of a single
isolated node. The latter is at the resting state in the absence
of external input, 7 = 0. A sufficiently high constant current
results in an Andronov-Hopf bifurcation of the equilibrium
state rendering an isolated node to fire a periodic sequence of
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FIG. 2. Sufficiently strong input current to leaf nodes fires up the
root node. (a) A sample tree with ' = 17 nodes. The H = 8 leaf
nodes are marked by red semicircles. The root node is marked by
the green circle. Star symbols point at “recording” sites of voltage
traces shown in Fig. 3(b). The shown tree structure reproduces a
reconstruction of an experimentally observed muscle spindle afferent
neuron presented in Ref. [24]. (b) Threshold current, Jy;, for the onset
of repetitive firing of the root node, as a function of the coupling
strength, «, for the tree shown in panel (a). The dashed horizontal
line marks the theoretical estimate of the threshold current in the
strong-coupling limit, Jo, = (N/H)Jau = 61.75 A /cm?; see in
Sec. III B.

action potentials (APs). For a single node this Andronov-Hopf
bifurcation occurs at Jay &~ 29.06 1A /cm? [39].

As in Ref. [39], we numerically calculated the threshold
current Jy,, which is the minimum constant current applied to
the leaf nodes, which for a given coupling strength results in
the repetitive sustained generation of full-size APs (a voltage
spike of at least 60 mV magnitude) at the root node. As
for regular trees [39], the threshold current depends on the
coupling strength, Ji(k), as exemplified in Fig. 2(b). Due to
diffusive coupling, i.e., with the current depending on voltage
differences, see Eq. (1), a coupled node is harder to excite
when the neighboring voltages are low. Consequently, as the
coupling strength increases, more input current is required
to sustain the firing of the root node. Hence the threshold
current increases with « and, finally, saturates at the limiting
value J, := lim,_,  Jin(x) for strong coupling. The strong-
coupling regime spans the range of physiologically realistic
values, ¥ > 100 mS /cmz, for branched myelinated terminals
of sensory neurons [38,39].

For a given value of « the root node shows a sustained
sequence of APs, if values of the input current are above
Jin(k), shown in Fig. 2(b), and no APs if the value of 7,
is below that curve. These two regimes are referred to as
oscillatory and excitable, respectively, in the following. Note
that for weak coupling the dynamics of the tree can be quite
complex; e.g., not every AP generated at leaf nodes may
propagate all the way to the root node. Such regimes will be
studied elsewhere.

For strong enough coupling and sufficient input current, all
nodes in the tree are synchronized and fire periodic sequences
of APs. As in the case of regular trees, the limiting value of
the threshold current for strong coupling, J,, matches the
threshold value of the current of an effective single node with
parameters rescaled by the ratio of the number of inputs (leaf
nodes) and the total number of nodes as Joo = (N/H)Jan;
see dashed line in Fig. 2(b). This value is derived in Sec. III B
and Appendix C.
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FIG. 3. Stochastic dynamics of excitable elements coupled on
the tree network shown in Fig. 2(a). (a) Time traces of the membrane
potentials of two leaf nodes and the root marked by stars in Fig. 2(a),
for the indicated coupling strengths. (b), (c¢) Firing rate, r, and
coefficient of variation, C,, for spike trains generated at the root
node as a function of coupling strength. Dashed lines in panels (b)
and (c) refer to theoretical estimates of the firing rate and CV in the
strong-coupling limit. The parameters of input currents to leaves are
J =50 pA/em?, § =500 (uA/cm?)? ms.

C. Spike train statistics

In the presence of noise, the AP generation becomes
stochastic. We are particularly interested in statistical prop-
erties of spike trains generated at the root node. We extracted
a sequence of spike times of the root node, {;}, from 60—-600
s long simulation runs. The sequence of interspike intervals
(ISIs), t; = t;+1 — t;, is characterized by the firing rate, r, and
by the coefficient of variation (CV), C,,

r=@7" ol=7-@7

T

C. =roy, €]

where T and o, are the mean and the SD of the sequence of
ISIs, respectively. The bar stands for the averaging over all
ISIs in the spike train of the root node. The CV quantifies the
ISI variability.

Figure 3 exemplifies the stochastic firing dynamics for the
tree shown in Fig. 2(a). The constant current was chosen such
that the tree is in the excitable regime for x > 20 mS/cm?. As
in regular trees [39], the firing rate, r(k ), depends nonmono-
tonically on the coupling strength. For weak coupling, spikes
generated at the leaves often fail to propagate to the root,
leading to its sparse firing, Fig. 3(a). This results in low values
of the firing rate and large values of the CV. Furthermore,
the root and leaf nodes fire asynchronously. Increasing the
coupling strength leads to stronger interaction between nodes.
In consequence, synchronous coherent firing with large firing
rates and small CVs emerges; see middle panel of Fig. 3(a).
However, as the coupling increases further, more input current
is required to sustain the network firing, see Fig. 2(b), tending
to decrease the firing rate. Competition of these tendencies
results in a maximum of the root node firing rate as a function
of the coupling strength. For strong coupling, nodal firing is
perfectly synchronized, see rightmost traces in Fig. 3(a), and
the firing rate and the CV saturate at their limiting values,
indicated by dashed lines in Figs. 3(b) and 3(c). In Sec. III B
we show that in the case of strong coupling, a tree can be well

represented by its root node which receives effective input
with rescaled constant current and noise intensity.

D. Statistical description of random trees networks

An ensemble of random trees can be constructed as a set
of realizations of a stochastic branching process [42]. In this
paradigm, the tree shown in Fig. 2(a) is just one possible
realization of a random tree network. Each network realization
causes certain statistical properties of its root node’s firing
characteristics, such as those depicted in Fig. 3.

In each realization, branching starts at the root and con-
tinues up to a prescribed maximal number of generations,
G, or until all branches end in leaf nodes. Each node in a
certain generation g is located at the same path distance,
g, from the root. The latter defines the generation g = 0.
Furthermore, each node in the gth generation, g < G, is a
parent to a random number of offspring in the (g + 1)st
generation. However, each child node has only one parent.

The kth realization of a tree network consists of several
generations each containing a random number of nodes, D, ,
which we model by using the Galton-Watson process [43],

Desik= Y deies g=0.1,....G—1, Dor=1.

iegen.g

(5
Here g indicates the generation and k = 1,2, ... indicates a
particular realization of a tree network. The sum runs over
all nodes in generation g. The number of offspring, d, ; x, of a
certain parent node i in generation g is an independent random
variable generated from the probability mass function (PMF),
Pe(d). In the following sections, we will consider several
examples of branching PMFs.

We consider basic properties of a single tree network
realization, first. The total number of nodes N} of a tree
network realization k is a random variable and obtained by
summing D, ; over all generations,

G Gk
Ne=) Dgi =) Dy (6)
g=0 g=0

where G, < G is the height of the tree and is given by the
actual number of generations in the current tree network
realization. Thus, there might be no nodes in the outer genera-
tions for particular realizations of the Galton-Watson process,
Eq. (5). The number of leaf nodes in a particular generation g
is also a random variable given by

hg-k: Z 8dg.i,1<q0' @)

iegen.g

By construction, branching terminates at the maximum gen-
eration G and all nodes in that generation are leaf nodes. In
general, however, leaf nodes can be found in any but the Oth
generation. Thus, a node i in generation 0 < g < G becomes
a leaf node with probability p,(0), i.e., if d, ; x = 0. The total
number of leaf nodes, Hy, is a random variable, obtained by
summing A ; over all generations, i.e.,

G
Hi= hgx ®)
g=1
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In the special case of no extinction, i.e., if p4(0) = 0 for 0 <
g < G, all leaf nodes are in the peripheral generation, g =
Qk = G and Hk = DG,k-

Next, given the branching PMF, p,(d), and the maximum
allowed number of generations, G, some statistical properties
of random trees formed by the Galton-Watson process, such
as the mean number of total nodes and leaves, their variances,
etc., can be determined by the standard method of probability
generating functions [1,42,43]. In the present paper, we are
mainly interested in the influences of structural variability, as
arising from different tree network realizations for the same
branching PMF, on the firing statistics of the root node. We
characterize that statistics for a single tree network realization
k by calculating the firing rate, ri(J, S, k), and the CV,
Cr(J, S, k), according to Egs. (4). Note that these quantities
depend not only on the network realization with the particular
coupling structure, but also on input current, i.e., J and S, and
the coupling strength «.

The variability of a certain quantity Qy, of the kth tree re-
alization, can be assessed by calculating its ensemble average
mean and standard deviation (SD):

K

1 1
(Q) = lim — 3 O, 03=Klg)nw§§Qi—(Q>2~
©)

k=1
This yields the ensemble averaged firing rate (r(J, S, k)) and
its normalized standard deviation:

_ 0,(J.5.K)
G, S,k) = o (10)

The latter provides a measure of variability for the root nodes’
firing rates resulting from tree network realizations from
the same branching PMF with respective input currents and
coupling strengths.

By defining sets of identical or isomorphic trees in an en-
semble, averaging can be performed using the probability dis-
tribution of sets of identical trees. Denoting the set of param-
eters, which uniquely defines trees by {7}, the kth realization
of the quantity Q is denoted as Qy := Q({T%}). Its average can
be formally written as (Q) = Z{T} Q{T}) P(T}), where
P({T}) is the PMF of nonidentical trees and the summation
runs over all possible values of the parameter set, {7'}. Various
levels of coarse-graining methods can be used to simplify the
ensemble averaging.

In the present paper we restrict ourselves to iden-
tical nodes and interconnections except for the exter-
nal input, which is only applied to leaf nodes. As
a first way of coarse-graining, we consider trees with
the same number of nodes and leaf nodes in each
generation as identical. We get (2G — 1)-tuple {T;} =
D1y - Dois higs - o hg_1.k) = ({Dy}, {he}). We note
that trees with identical tuples ({Dy}, {hx}) may still
possess different connectivities. The ensemble of trees
is then characterized by the joint (2G — 1)-dimensional
PMF of number of the nodes and leaves in all genera-
tions, Po,g_1(D1,...,Dgihy, ..., hg_1) = P,g_1({D}, {h}).
The tree-ensemble averages, Egs. (9), are then approximated

by
(O, S, 1) ~ Y O, S,k {D}, {h) Pag1({D}, {h}),
{D},{h}
oo(J, S, k)~ Y QXU S, 1, {D}, {h})) Pag1({D}, {h})
{D},{h}
— (0, S, k)%, (11)

where the summations run over all possible values of
Dy,...,Dg and hy, ..., hg—;. As a second way of coarse-
graining, we consider trees with the same total number of
nodes and leaf nodes as identical. As we will show in
Sec. III B, this simplification yields sufficient results in the
strong-coupling limit k — co. We parametrize a particular
realization of tree network by the tuples (Hy, N;) and then
carry out averaging similar to Eq. (11), but with 2-dimensional
PMF of the total number of leaves and nodes, P>(H, N).

Throughout the paper we focus on small trees, 2 < G <
4, with branching supported on a bounded interval. This is
consistent with the topology of branched myelinated terminals
of sensory neurons [23-25,28]. For such trees the number
of configurations with distinct tuples ({D}, {h}) in the same
ensemble is rather small. In particular, for binary trees this
enables us to list all nonidentical trees in the ensemble and
calculate the corresponding joint PMF. Furthermore, dynami-
cal measures, such as the firing rate and CV, can be calculated
numerically for the complete small set of trees. Thus, the
structure-induced variability of these measures can be calcu-
lated according to Eq. (11).

III. RESULTS

We use small binary trees for illustration. However, our
approach is applicable to any random tree network, generated
by the Galton-Watson process, as we demonstrate at the end
of this section.

A. Statistics of binary random trees

In binary trees each node has at most two offspring. Here
we consider two types of binary trees: full and nonfull binary
trees. The so-called full binary tree is a tree in which every
internal node has two offspring and leaves have none. In
contrast, in nonfull binary trees, which we term as general
binary trees, the number of offspring of any internal node can
be either one or two.

1. Full binary trees

To avoid a large number of short trees in the ensemble, we
allow extinction only after the second generation. In conse-
quence, the smallest tree possesses two generations, each with
branching two. In our particular example branching after the
second generation is characterize by the PMF:

82, 0<g<2,
Podao+ (1 —po)ban, 2<g<G, (12)
84,0, g=0G.

pg(d) =

The resulting ensemble is parametrized by two quantities: the
probability of zero branching, py, and the maximum number
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FIG. 4. Tree networks for all 25 possible configurations of 2-tuples of (Ds, Dy) resulting for the branching PMF given by Eq. (12) for
G = 4. Leaves are marked red, the root node is marked green, and internal nodes are depicted as blue circles. Trees are arranged in columns
with the same total number of leaves and nodes, (#, A'), shown on the bottom. The ratio of the total number of nodes to leaves, A/ /H, increases

from left to right, from 1.75 to 1.9375, respectively.

of generations, G. For such trees the numbers of nodes in
the first two generations are fixed, D = 2, D, = 4, while the
numbers of nodes in higher generations are random variables
ranging from O to 2%, for g > 2.

The limit py — 0 corresponds to a tree with N = 20+ —
1 nodes and H = 2¢ leaf nodes, located in shell G. In the
opposite limit, py — 1, trees are extinct after the second
generation, resulting in a tree with the total number of nodes
and leaf nodes V' = 7 and H = 4, respectively.

In the following, we consider a particular ensemble of
full binary trees with at most G = 4 generations. While the
numbers of nodes in the first and second generations are fixed,
the number of nodes in the third and fourth generations are
random integers. The latter take even values in the intervals
0 < D; < 8and 0 < Dy < 16. Furthermore, the numbers of
leaf nodes in the second and third generations are determined
by the number of nodes in those shells as 7, = 4 — D3/2 and
hy = D3 — Dy /2 [42]. In consequence, trees with the same
numbers of nodes in the third and fourth generations can be
considered as identical. This leads to 25 unique 2-tuples of
(D5, Dy), or equivalently to 25 distinct trees in the ensemble,
shown in Fig. 4. The joint PMF, P,(Dj, D,), describing this
ensemble is given by (see Appendix B)

4 2n n3—n n n.
Py(D3, Dy) = (n )( 3>p3“ (1= poytne,
3

ny
D3=2n3, D4=2n4, n3=0,1,...,4,
ng=0,1,...,8. 13)

This two-dimensional joint PMF is shown in Fig. 5(a).

Of particular interest is the statistics of the total number of
nodes and leaf nodes. As we show in Sec. III B, both are used
to derive approximations for certain measures of spike train
statistics of the root node in the strong-coupling limit. The
number of distinct tuples, (Hy, N}), i.e., the number of trees
with identical total numbers of leaves and nodes, is smaller
than the number of trees with identical (D3, Ds) tuples, as
trees with different numbers of nodes in certain generations
may possess the same total number nodes and leaves. This
is illustrated for the example of the full binary tree ensemble
in Fig. 4. As illustrated in the figure for G = 4, the number
of distinct tuples (Hy, Nj) is 13 and thereby smaller than the

total of 25 distinct trees in the ensemble. Furthermore, for the
considered example of full binary trees, the number of leaves
is exclusively determined by the number of nodes as H =
4 + (N — 7)/2. Therefore, the statistics of the total number
of nodes and leaves is characterized by the one-dimensional
PMF of the total number of nodes, P;(N) (see Appendix B),

P N _ & 4 2}13 44+n3—ny _ m
TN =D Sunm ni) Uy )P0 (1=po)™,

I’l3=0 n4=0

m= W —17)/2. (14)
The PMF P;(N) is depicted in Fig. 5(b).

2. General binary trees

In general binary trees, each node has either zero, one, or
two offspring. In our particular example, general binary trees
are generated from the following branching PMF:

241 +842), 0<g<l,
Pe(d) = podao + 52 (Bar +842), 1< g <G, (15
34,0, g=0G.

The root node may have either one or two offspring with
equal probability. Other nodes may have either zero offspring,
with probability py, or either one or two offspring, each with

164 Po=05 319 (b) P oona
12 . . 23 .. 0.11
QT 8 o . = ... 0.08
° ° 15
4 o . 0.05
[ ] ® °
o . . 0.02
0 T T T T T 7 T T T
0 2 4 6 8 4 8 12 16
D3 H

FIG. 5. Node statistics of full binary trees with the branching
PMF given by Eq. (12) with po = 0.5 and G = 4. (a) The joint
probability mass function of numbers of nodes in third and fourth
generation, P,(Ds, D). All 25 connectivity states are shown by filled
circles. Probabilities for realizing the respective trees are indicated by
circle diameter and color. (b) The PMF of respective combinations of
total number of leaf nodes and nodes given by Eq. (14).
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FIG. 6. Realizations and statistics for general binary trees with
the branching PMF (15) and maximal allowed number of gener-
ation, G = 3. (a) A sample of 12 different realizations of general
binary trees. (b) The PMF of the total number of nodes and leaves,
P>(H, N); 28 possible trees with distinct total numbers of nodes and
leaves are shown by filled circles, whose diameter and color represent
probability values.

probability (1 — po)/2. As in the case of full binary trees,
an ensemble of general binary trees is parametrized by the
probability of zero branching, pg, and by the maximal number
of generations, G. In full binary trees, the number of nodes in
each generation is an even number. In contrast, for general
binary trees with the branching PMF (15) both odd and even
numbers of nodes are allowed. Compared to full binary trees,
this leads to a larger number of trees with distinct tuples
(D}, {h}).

In order to reduce computational costs, we con-
sider trees with the branching PMF (15) and set G =
3. The resulting network ensemble possesses 50 trees
with distinct sequences of numbers of nodes and leaves,
{Dy, Dy, D3, hy, hy}. Tt is characterized by a 5-dimensional
joint PMF, Ps(D, D,, Ds;hy, hy), which we calculated nu-
merically for various values of the zero-branching probability
po. Figure 6(a) shows a small sample of possible tree real-
izations. The limit py = O corresponds to nonextinct binary
trees; i.e., all leaf nodes are located in the third generation.
The opposite limit, py = 1, results in only two possible con-
figurations with a total number of either 2 or 3 nodes (one or
two leaf nodes, respectively).

In contrast to full binary trees, where the total number of
nodes uniquely determines the total number of leaf nodes,
general binary trees allow for several distinct configurations
with the same total number of leaf nodes, but different total
numbers of nodes. For the considered case of G =3 and
po # 0, the PMF given in Eq. (15) leads to 28 distinct tuples
(H, N'), whose PMF function is illustrated in Fig. 6(b). It
shows the multiplicity of possible total numbers of nodes for
the same total number of leaf nodes.

B. Strong-coupling approximation

In the physiologically relevant case of strong coupling,
the stochastic firing of all nodes is synchronized. In the
synchronized state, the dynamics of individual tree network
realizations, Egs. (1)—(3), can be approximated by that of an
effective single node (see Appendix C):

CVi = —Lionl Vi, mi, ] + Tegi i (t). (16)

Here Vi () is the effective membrane potential and Jes  (¢)
is the effective stochastic input current. The index k refers
to the actual tree realization. The latter encodes the tree
structure. The nodal ionic current, Io,[Vi, my, hy], and the
gating variables, my and hy, are given by the same equations
as for the network model in Sec. IT A. Equations for Jeg ¢ (¢)
for regular trees were derived in [39]. In Appendix C, we
extend their approach to random trees and obtain

Tett k(1) = Jefik v/ 2Seitn E(t) = Rook I + 28800k £ (1),

Hi Hi

N Soo’k_./\/}f' a7
Here J and S are the constant current and the noise intensity,
respectively. Both specify the strengths of the noisy input
current applied to the leaves in the actual tree realization; & ()
is Gaussian white noise.

In the following, we use Egs. (16) and (17) as an approxi-
mation for the dynamics of the root node, i.e., vk () =~ V| x(¢),
in the strong-coupling limit. Thus, we replace the ensemble
of trees by an ensemble of their effective root nodes. The
respective total numbers of nodes and leaves, (Hy, N;), in
the individual tree realization determine the effective current,
Ry J, and noise intensity, SSy, in Eq. (17).

7efoo,k =

1. Spike train statistics of tree realizations

The strong-coupling theory allows for several important
predictions. In the strong-coupling limit, the dynamics of tree
nodes is determined by the total numbers of leaves and nodes,
{Hy, Ni}, only. In consequence, it does not depend on the
particular configurations with unique sequences of numbers
of nodes in shells, {Dj, ..., Dgx}, on particular locations
of leaves within shells, {h1t, ..., hg}, as well as on nodal
connectivity. Thus a set of distinct trees with identical total
numbers of nodes and leaves would show identical dynamics
in the strong-coupling limit.

In the deterministic case, S = 0, inputs to leaf nodes larger
than the threshold current of a tree realization result in a
sustained repetitive firing of the root node. From Eq. (17), we
find for the threshold current

Joo,k = R;olquAH» (18)

where Jap is the threshold current of a single isolated node.

In the stochastic case, the firing statistics of the whole
ensemble of trees can be predicted by evaluating the effective
currents and noise intensities for all possible tuples (Hy, N ).
For a single effective node, the firing rate, 7(Jott, Setr), and the
CV, C; (Jett, Setr), solely depend on these effective parameters.
For a certain tree realization, k, in the strong-coupling limit
this yields

r(J, S, &, {Di}, {hi}) = F(Jetr i, Sefrx),

~ 19)
CT(Ja Sv K? {Dk}’ {hk}) ~ CT(Jeff,k7 Seff,k)’

where the tilde symbol indicates the firing rate and the CV
of the effective node. This relation is illustrated in Fig. 7.
The figure shows a heat map of 7(Jet, Setr), where symbols
mark combinations of effective parameters that can actually
be realized in the presented tree network ensembles.
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FIG. 7. Heat map of the firing rate of a single HH node vs input
current and noise intensity, 7(Jegr, Ser). Symbols mark combinations
of Jesrx and Sesr i (17) of realizations of binary trees for the indicated
ensembles. The magenta symbols (circles and squares) represent all
possible full binary trees with branching PMF (12) and G = 4. Black
star symbols mark all possible general binary trees with branching
PMF (15) and G = 3. Parameters: S = 500 (uA/cm?)?> ms; J =
38.5 A /cm? (unfilled stars and circles) and J = 70 uA/cm? (filled
stars and squares).

2. Spike train statistics of tree ensembles

As follows from the previous subsection, the ensemble-
averaged dynamics and its variability can be predicted from
the dynamics of a single isolated node, see Eqgs. (16)—(19),
and the statistics of the total numbers of nodes and leaves.
This enables us to derive strong-coupling approximations for
ensemble-averaged quantities such as the root node’s firing
rate. As the effective parameters in Eq. (16) solely depend on
the total number of nodes and leaf nodes, ensemble averaging
in Eq. (11) can equivalently be performed using the two-
dimensional joint PMF of total number of nodes and leaf
nodes, P>(H, N). Then, the ensemble averages of the firing
rates and CV can be calculated by using the 2-dimensional
PMF, P,(N, H), in Egs. (11) as described in Sec. II D before.
As we restrict ourselves to finite ranges of possible branching,
it is also possible to determine bounds of corresponding
quantities, such as maximal and minimal firing rates and CVs
of the ISI sequence.

C. Onset of repetitive spiking

The randomness of tree ensembles may lead to qualita-
tively different dynamics of individual network realizations.
In the present section we consider its consequence for the
threshold current setting the onset of repetitive spiking of the
tree’s root node in the case of deterministic input currents, i.e.,
S=0.

We numerically calculate the threshold current as a
function of coupling strength for each of the 25 distinct
full binary trees depicted in Fig. 4. This results in
one curve for each tree network realization, each one
similar to the curve shown in Fig. 2(b). Besides its
dependence on the coupling strength k, the threshold
current for a single tree network realization, Jpj, is

2
©
7\11.5
S 7
1 T T T
100 101 102 103 100 10! 102 103
k (mS/cm?)
2_
1.9 4
|
&
1.8
1.7 o T T 1 T T T
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R Rt

FIG. 8. Normalized threshold current, R~!(k, {Di}, {h}) =
Jin(k, {Dr}, {hi})/ Jan, as a function of coupling strength « for two
tree network ensembles. (a) Curves for all 25 full binary trees of
Fig. 4. (b) Same for 50 general binary trees with all possible numbers
of nodes and leaf nodes, with maximal number of generations, G =
3. Curves are color-coded according to the tree’s normalized thresh-
old currents in the strong-coupling limit, Rgo{k = N /Hy. Dashed
horizontal lines show the value of the applied constant current,
J =38.5 uA/cm?, used for stochastic simulations in Fig. 9. (c),
(d) Normalized threshold current for ¥ = 1000 mS/cm? versus its
theoretical strong-coupling limit, Ro_ol’k = N, /H; for full (c) and
general (d) binary trees.

also a function of the number of nodes in the third
and fourth generations, i.e., Jni = Jn(k, D3, Day).
It can be expressed in units of Jay by introducing the
dimensionless scaling factor R™'(x, D3k, Day), ie,
Jink = Jn(k, D3k, Dag) = RNk, Dag, Das)Jan. At J =
Jan a single isolated node enters the repetitive spiking
regime by undergoing an Andronov-Hopf bifurcation. We
will refer to R~ (x, D3, Day) as the normalized threshold
current in the following. For strong coupling the threshold
current of a single tree network realization approaches
its limiting value, Joo(H,N), given by Eq. (18). The
latter depends only on the total number of nodes and leaf
nodes, i.e., Joo(H, N) = R (Hi, Ni)Jan = Ni/Hi)Jan.
Here  lim,_ o R(k, D3k, Dax) = Roo(Hi, Ni) = Hi/Ni.
Normalized threshold currents are shown in Figs. 8(a) and
8(b). We find that it increases monotonically with the coupling
strengths and finally saturates for strong coupling. For weak
coupling, the actual tree structure matters as it determines
the paths action potentials have to travel in order to excite
the root node. Here trees with various configurations, but
identical numbers of leaves and nodes, fall into tight clusters
around distinct values of R~!. With the increase of coupling
the clusters blur. For general binary trees, Fig. 8(b), the
range of threshold currents is significantly larger than for full
binary trees, Fig. 8(a). Finally, for strong-coupling curves for
individual sample trees saturate. Their limiting values are well
approximated by the theoretically predicted strong-coupling
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FIG. 9. Spike train statistics of ensembles of excitable trees. The upper panels [(a), (b), (c)] show results for all 25 full binary trees of Fig. 4;
the lower panels [(d), (e), ()] refer to 50 general binary trees with at most G = 3 generations and with all possible numbers of nodes and leaf
nodes. Trees’ firing rates [(a), (d)] and CVs [(b), (e)] as functions of coupling strength. Lines are color-coded according to the scaling factor,
Rook = Hy /Ny, for the strong-coupling limit; dashed horizontal lines show lower and upper limits of corresponding quantities, obtained from
the strong-coupling approximation. (c), (f) Firing rate as a function of the CV for ¥ = 1000 mS/cm? for simulated trees (crosses) and for
single root nodes (circles) with input current rescaled according to (17). The parameters for numerical simulations are J = 38.5 uA/cm?,

S =500 (1A /cm?)? ms.

limit Joo x = (Ni/Hi)Jan, as illustrated in Figs. 8(c) and
8(d).

These results indicate that for weak and moderate coupling
the onset of spike generation may be strongly affected by the
particular tree structure. However, for physiologically relevant
coupling strengths, ¥ > 100 mS/cm?, threshold currents are
close to their strong-coupling limits and their values mainly
depend on the statistics of the total number of nodes and leaf
nodes.

D. Stochastic dynamics

For stochastic input currents, i.e., S > 0, variability in
tree structures interacts with variability caused by stochastic
inputs. In order to study the stochastic dynamics we prepare
ensembles of excitable trees, i.e., no spike generation at the
root node if the input current had no stochastic component. To
this end, we set the value of the constant input current such
that it is below the sample trees’ threshold currents for strong
coupling, but causes nonvanishing firing rates, >2 Hz, of all
possible tree realizations. For the two types of binary trees,
used in the previous section, this is achieved by using a con-
stant input current of J = 38.5 uA/cm?. This corresponds
to the normalized threshold current, R~! = 1.325, shown by
the dashed lines in Figs. 8(a) and 8(b). For the coupling
strengths, ¥ > 30 mS /cmz, all curves of the threshold current
in Figs. 8(a) and 8(b) lie above the dashed lines, indicating
that all trees are indeed excitable.

Then, we simulated Eqgs. (1)—(3) for all possible nonidenti-
cal tree network realizations and estimated the firing rate and
CV of their root nodes, r(«, {D}, {h}) and C.(«x, {D}, {h}),
respectively. The obtained measures of spike train statistics
are shown in Fig. 9. For individual tree realizations, theses

measures show qualitatively similar dependencies on the cou-
pling strength. In more detail, we find that firing rates become
maximal at intermediate coupling strengths for both full and
general binary trees. CVs attain their minimum values at
similar coupling strengths. This indicates most regular firing
of the root node at intermediate coupling strengths. Note that
this is in qualitative agreement with previous results on regular
tree networks presented in [39].

Considering the spike train statistics of the entire tree
ensemble, we find that structural variability hardly affects
firing rates and CVs for weak coupling. In contrast, firing
rates and CVs of individual tree realizations strongly differ for
physiologically relevant strong coupling. For such coupling,
the spike train statistics of individual tree realizations are
well approximated by those of single isolated nodes with
effective currents and noise intensities given by Eq. (17). This
is further illustrated in Figs. 9(c) and 9(f), where the ISI
statistics of root nodes of tree realizations is compared to that
of effective isolated nodes according to the strong-coupling
approximation.

Importantly, the strong-coupling approximation also al-
lows for the prediction of lower and upper bounds of the
firing rates and CVs, shown by the dashed lines in Figs. 9(a)—
9(d). The scaling parameters R x and S x of the effective
current in Eq. (17) define the range of the trees’ firing rates
and CVs at strong coupling; see Fig. 7. In that sense, they
provide bounds for the influence of structural variability on
the spike train statistics of the root node. Since all tree
realizations are excitable for strong coupling, the highest
values of scaling parameters Ro. ; yield the highest firing
rate and lowest CV. In contrast, small values of R yield
low effective currents, Eq. (17), and drive the network deep
into the excitable regime. This causes Poisson-like statistics

052303-9



ALI KHALEDI-NASAB et al.

PHYSICAL REVIEW E 98, 052303 (2018)

100

—~ 75 7

50

(r) (Hz

25 -

T T
100 10!

1(|)0 1(|)1 1(;2 1(|)3 l(lJO 1(|)1 1(|)2 1;)3
% (mS/cm?) £ (mS/cm?)

FIG. 10. Ensemble-averaged ISI statistics as a function of cou-
pling strength for the indicated values of the zero-branching prob-
ability. (a), (b) Ensemble-averaged firing rate, (r), and CV (C;)
for full binary tress with G = 4. (c), (d) (r) and (C,) for general
binary trees with G = 3. Dashed lines show predictions of the strong-
coupling theory, obtained by ensemble averaging of corresponding
values for isolated single nodes with the effective current and noise
intensity according to Eq. (17). Parameters: J = 38.5 uA/cm?, S =
500 (A /cm?)? ms.

of spike generation resulting in low firing rates and CVs close
to one.

Next we consider the ensemble-averaged ISI statistics. It
is obtained by averaging the firing rates and CVs accord-
ing to Eq. (11). Averaging is simplified for the full binary
trees, as the joint PMF, Eq. (13), for G = 4 depends only
on the numbers of nodes in the third and fourth genera-
tions. For the general binary trees with G = 3 the ensem-
ble averaging is performed using the 5-dimensional joint
PMF, Ps;(D;, D,, Ds;hy, hy), which we estimated numeri-
cally. Ensemble-averaged measures of spike train statistics are
shown in Fig. 10 for different values of the zero-branching
probability py. The ensemble-averaged firing rates and CVs
follow curves that are qualitatively similar to those for individ-
ual trees. However, pg strongly affects the ensemble-averaged
statistics in the strong-coupling regime. Low probabilities
cause on average taller sample trees with smaller fractions
of leaf nodes. In consequence, the effective current and noise
intensity in Eq. (17) become smaller, which drives the network
deep into the excitable regime, and results in low firing rates
and large CVs. Larger values of pg refer to an increased
fraction of short trees with larger fractions of leaves, which
receive inputs. The latter results in higher firing rates and
smaller CVs.

In order to quantify the influence of structural variability on
the firing statistics of root nodes, we consider the normalized
standard deviation, C,, of the distribution of firing rates; see
Eq. (10). Simulation results are shown in Fig. 11. We find
that firing rate distributions of general binary trees show
larger variability than those for full binary trees. Besides the
previously noticed fact that the structural variability is most
pronounced for strong coupling, we find a maximum of the C,
for a finite value of zero-branching probability. For full binary
trees the number of possible distinct trees approaches one for

90 7(2) 1 (b)
/\

— k=1
— k=10
45 4 — . = 1000(network)
=== k = 1000(single)

(r) (Hz)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
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FIG. 11. Variability of the firing rate due to structural variability.
Upper and lower panels show the ensemble-averaged firing rate, (r),
and its normalized SD, C,, Egs. (11) and (10), as a function of the
probability of zero branching, py, for the full binary trees and for
general binary trees, respectively. Solid lines show results of direct
simulations of trees; dashed blue lines show prediction of the strong-
coupling theory. Other parameters are the same as in Fig. 10.

po — 0, i.e., only the regular tree with branching two, and
po — 1, i.e., only the regular tree with the minimal number
of generations. The pronounced maximum of C, in Fig. 11(b)
expresses the trade-off between trees becoming more regular
as po approaches either one of those limits. In general binary
trees, however, the limit py — 0 still results in an ensemble
of 17 possible trees with distinct pairs of number of nodes and
leaf nodes, as all combinations of branching one and two are
possible. Consequently, the normalized SD at py = 0 remains
finite.

The variability of the root node’s firing rates indeed de-
pends on the input current to the leaves. For strong coupling
a particular coupling structure is imprinted in the scaling of
input current according to Eq. (17), and so the spread of
effective input currents for trees in the ensemble translates
into the spread of their firing rates. This can be seen in Fig. 7
by comparing locations of tree realizations for two values
of input currents to leaves. For J = 38.5 uA/cm?, all tree
realizations are in the excitable regime and their positions
in the heat map cut across a wide range of firing rates. For
J =170 ,u,A/cmz, however, most tree realizations are in the
oscillatory regime, cutting across a narrower range of firing
rates. A decrease of the input current shifts trees to the left
in Fig. 7, i.e., deeper into the excitable regime. The increase
of J moves trees to the right and trees become oscillatory.
This is illustrated explicitly in Fig. 12, showing firing rates of
root nodes as a function of the constant part of input current,
applied to the leaf nodes. Due to a larger range of possible
scaling factors, R x and Seo «, the general binary trees show
a wider spread of r(J) curves than the full binary trees. The
ensemble-averaged results are summarized in Fig. 13, which
shows the dependence of the normalized SD of the firing
rate, C, [(c), (d)], on the input current and the zero-branching
probability for the strong-coupling limit. Except for small
input currents, J < 30 A /cm?, the firing rate variability of
general binary trees is larger than that of full binary trees, as

052303-10



VARIABILITY OF COLLECTIVE DYNAMICS IN RANDOM ...

PHYSICAL REVIEW E 98, 052303 (2018)

20 40 60 80 100 20 40 60 80 100
J (pA/cm?) J (pA/cm?)

FIG. 12. Response curves, r(J), for tree networks with all pos-
sible combinations of numbers of leaf nodes and nodes in respective
tree ensembles, in the strong-coupling limit. Panel (a) shows results
for all possible 25 full binary trees of Fig. 4; panel (b) refers to the
50 general binary trees with at most G = 3 generations. Lines are
color-coded according to the scaling factor, Roo x = Hi/N. Choices
of other parameters are the same as in Fig. 10.

they cut across wider ranges of scaling factors of input current
in Eq. (17).

E. Nonbinary trees

Although dendritic arbors are effectively modeled by bi-
nary trees, branches with more than two offspring have been
observed in myelinated arbors of muscle spindle afferents
[24], such as shown in Figs. 1(c) and 2(a). To demonstrate the
generality of our approach, we consider an example of random
nonbinary trees. In this example, random branching is drawn
from a uniform distribution with at most 4 offspring for each
node, and trees with at most G = 4 generations are allowed.
To avoid short trees we set the zero-branching probability to
zero, p,(d) = 0, for generations g = 0, 1, 2, as in the example
of full binary trees. Thus, the branching PMF is given by

%Z;‘zl dai, 0<g<2,
% Z?:o Sai, 2<g <4, (20)
84,0 g=4

pg(d) =

The PMF in Eq. (20) yields a large number of nonidentical
trees, i.e., trees that differ in the their numbers of nodes and
leaf nodes per generation. Figure 14(a) exemplifies 3 noniden-
tical tree network realizations obtained from the PMF. Instead
of counting distinct trees and calculating their corresponding
probabilities, we analyzed tree network ensembles obtained
from the PM using a brute-force approach. We generated an

0 0.25 0.5 0.75 1
Po

FIG. 13. Normalized standard deviation of the distribution of
root nodes firing rates, C, = C,(po, J), among ensembles of full
(a) and general (b) binary tries as a function of the constant input
current to leaf nodes and the zero-branching probability for the
strong-coupling limit. Other parameters are the same as in Fig. 10.
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FIG. 14. Firing rate statistics of nonbinary random trees with
uniform branching according to the PMF Eq. (20). (a) Three ex-
amples of tree networks; pairs of total number of nodes and leaf
nodes are (49,70) for the upper panel, (4,10) for the lower left, and
(24.,40) for the lower right panel. (b) Heat map of the firing rate of a
single HH node as a function of input current and noise intensity,
7(Jetrs Ser). Symbols mark combinations of effective parameters,
Jetrr and Serr in Eq. (17), for the ensemble of 2000 network
realizations. (c) Probability distributions of the firing rate of the
root nodes for the indicated values of coupling strengths. For strong
coupling, ¥ = 1000 mS/cm?, solid and dashed lines compare direct
simulations of tree realizations and simulations of effective single
nodes, respectively.

ensemble of 2000 tree network realizations and then pro-
ceeded with the analyses of collective dynamics of coupled
HH nodes as in previous sections.

For deterministic inputs, the threshold current as a function
of coupling strength possesses a similar shape to that for bi-
nary trees (data not shown). This includes the strong-coupling
regime, where threshold currents approach the value predicted
by the strong-coupling theory, Joo x = (Ni/Hi)Jan-

We then set the constant input current at J =
38.5 pLA/sz, for which all network realizations resulted
in excitable trees for coupling « > 100 mS/cm?. Firing
statistics of root nodes of the 2000 tree realizations showed
qualitatively similar dependencies on the coupling strength
to those for binary trees of Fig. 9 (not shown). As for binary
trees, structural variability of the firing rate of nonbinary
trees is small for weak and intermediate coupling and large
for strong coupling. This is illustrated in Fig. 14(c), by the
probability distribution of the firing rate of root nodes. The
latter broadens as the coupling strength increases.

As for binary trees, the firing statistics of nonbinary
tree network realizations can be predicted using the strong-
coupling theory of Sec. III B. In order to compare the firing
rate statistics obtained from simulations for the 2000 tree net-
work realizations with that resulting from the strong-coupling
approximation, we first calculate the pairs of effective current
and noise intensity for each tree realization using Eq. (17).
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The locations of those pairs in the current noise intensity
space are shown in Fig. 14(b). The figure also shows a heat
map of the firing rate of a single node 7 as a function of
current and noise intensity. Then, using Eq. (19) we obtain
an approximation of the firing rate for each pair of effective
currents, i.e., for each tree network realization. The resulting
distribution of firing rate approximates (single) is compared to
the root nodes’ firing rates for different coupling strengths as
obtained from simulations of network activity in Fig. 14(c).

IV. DISCUSSION AND CONCLUSION

We studied the influence of network structure on the
root node’s spike train statistics in random tree networks
of excitable elements in which only the leaf nodes receive
stochastic inputs. This setup was motivated by the mor-
phology of certain sensory neurons which possess branched
myelinated terminals with excitable nodes of Ranvier at the
branch points. Myelination ends at the so-called heminodes,
representing leaves of a tree, receiving sensory inputs. As
inputs excite heminodes, action potentials may jump over
myelinated branches and ultimately fire up the root node.
This morphology was modeled as a simple discrete cable with
electrically coupled excitable nodes on regular tree networks
in Ref. [39]. Here we generalize to random tree networks
which allows us to study the impact of structural diversity,
naturally occurring in the myelinated terminal, on the firing
statistics of the root node.

Owing to diffusive coupling the system of networked ex-
citable elements is harder to excite if the coupling strength
increases. As a result, the threshold current to sustain repeti-
tive firing of the root node increases as a function of coupling
strength and finally saturates. As a consequence, the root
node’s firing rate attains a pronounced maximum at inter-
mediate coupling strengths. These results are in accordance
with previous results on regular tree networks presented in
Ref. [39]. Branched myelinated terminals of sensory neurons
resemble dendritic arbors of neurons of the central nervous
system, which may possess active dendrites with excitation
and propagation of dendritic spikes [44,45]. Unlike saltatory
conduction of action potential in the myelinated fibers, prop-
agation of dendritic spikes is slow and has a probabilistic
nature due to a small density of voltage-gated ion channels
in active branchlets. Recent studies [20,27] modeled dendritic
arbors as an excitable media of stochastic excitable cellular
automata, each receiving random inputs, and bidirectionally
coupled on large regular trees. Such a system demonstrates
excitation waves [46], resulting in a large dynamical range of
the collective response registered at the root node. Excitation
waves are observed in our model for small coupling, k¥ <
lmS/cmz. However, because of bidirectional connectivity
by low resistant links the coupling is rather strong, result-
ing in global synchronization of all nodes, even though the
heminodes may receive random inputs. This constitutes a
possible mechanism of coherent spike generation and stimulus
encoding when the branched myelinated terminal tree with
multiple encoding zones acts as an equivalent single excitable
system [37]. In the strong-coupling limit, we derived an
approximation in which the regular tree is replaced by an
effective node with appropriately rescaled input [39]. Here

we extended this result to random trees. Importantly, the
strong-coupling approximation is essentially independent of
the particular type of the model used for nodal units, as long
as they are coupled diffusively. Although we used a particular
Hodgkin-Huxley type model for the nodes, the qualitatively
similar behavior is observed for other excitable units coupled
diffusively, such as the active rotator [47], FitzZHugh-Nagumo
[48], or Frankenhaeuser-Huxley [49] models (the last one was
also used in [39]). We note that while the FitzHugh-Nagumo
and Frankenhaeuser-Huxley systems belong to the so-called
type II excitability, with the transition to periodic spiking via
Andronov-Hopf bifurcation, the formal active rotator model
belongs to the type I excitability via a saddle-node bifurcation
[40,50]. Branched myelinated terminals of sensory neurons
can be represented by small random tree networks which
differ in height (number of generations), numbers of nodes
and heminodes, as well as nodal connectivity [23,24,28,51],
and may result in variability of neural responses across a
population, as documented, e.g., for touch receptors [25,52].
Here we developed a probabilistic framework to study the
collective response of stochastic excitable elements coupled
on random trees whose structure is generated by Galton-
Watson random branching processes. We investigated the
variability of the spike train statistics resulting from variations
of network structure within a tree ensemble. We have shown
that in the physiologically relevant strong-coupling regime the
firing statistics of the root node is determined by the number
of nodes and leaf nodes, while being hardly affected by a
particular nodal connectivity. Thus, trees in the ensemble can
be distinguished by the total number of nodes and leaf nodes,
which simplifies the calculation of the ensemble averages
significantly. Furthermore, the collective response of the tree
network can be predicted from a single node with an effective
input, rescaled according to the number of nodes and leaf
nodes. Given a joint probability distribution of the total num-
ber of nodes and leaf nodes, this allows for the calculation of
the ensemble-averaged firing rate and coefficient of variation
as well as for setting lower and upper bounds of firing rate
statistics.

Using two types of binary random trees and an example
of random trees with a uniform branching we found that
structural variability, resulting from different realizations of
the network connectivity, strongly affects the root node’s spike
train statistics for strong coupling. In particular, ensembles of
realizations of excitable tree networks show a wide range of
firing rates and coefficients of variations shown in Fig. 9. The
structural variability is indeed reflected in the response curves,
see Fig. 12, and thus should result in the variability of the
stimulus coding measures, such as mutual information. The
response diversity may be utilized by a sensory system for
an effective sensory processing [53], as suggested in [25] for
touch receptors.

While we considered uniform inputs to heminodes (leaf
nodes), an additional level of randomness can be introduced
by nonuniform random inputs to heminodes, as in [25]. This
would lead to additional variability across tree realizations.
Interestingly, recent work yielded experimental evidence for
structural plasticity of Merkel cell touch receptor complexes
in healthy skin [28]. The study documented that the number
of heminodes of a touch receptor afferent adjusts to the
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inputs from Merkel cells, which varies over a time span of
several days. In our framework such an afferent remodel-
ing corresponds to the variation of inputs, accompanied by
structural changes of corresponding tree network. Strong-
coupling approximation then can be used for prediction of
neuronal responses during remodeling cycles.
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APPENDIX A: CONSTRUCTION OF ADJACENCY MATRIX

The adjacency matrix was used in numerical simulations
of coupled nodes, Egs. (1)—=(3). Throughout the appendices
we drop the index k referring to a particular tree network real-
ization. In order to construct a single tree network realization,
we generate a sequence of random numbers, {d,}, according
to the branching PMF, p,(d). Then, the numbers of nodes in
each generation, Dy, Dy, ..., Dg, are calculated from Eq. (5).
The total number of nodes (6) yields the dimensions of the
symmetric adjacency matrix, A.

To construct the adjacency matrix, nodes in a tree are
indexed by j, starting from the root node j = 1 in the zeroth
generation and then proceeding with the nodes’ offspring. The
number of nodes until generation g, M,, is given by

8
My=>"Di, g=0.....G.

i=0

(b)

o oo R R~ O
cCoco o oo o o —
co o, O oo -
ocCo R oo OO —
O OO0 O~ OO
cooc o~ oo O
— o OoORrR OO OO
[ R e B e i e Wl e Wl o Bl

FIG. 15. Example of a random tree network with G = 4 (a) and
corresponding adjacency matrix (b), constructed following Egs. (A1)
and (A2).

In the first generation, the dp; nodes are indexed asj =
2,...,Mi; nodes in the second generation are indexed in
the order of their parent nodes, ie., j = M;+ 1, M| +
2,..., M +d, for dy, offspring of node j =2 in gener-
ation g = 1 and so on. This is illustrated in Fig. 15(a). Thus,
node indexes run from j = 1to j = Mg =N.

As the full adjacency matrix follows from symmetry,
we restrict our description to the upper triangular ma-
trix A"P. Its first row contains all connections to the root
node:

1, j=2,...,My,

0, else. (AD)

an ==
Interconnections between a node j in generation g and its
offspring in generation g + 1 result in a sequence of 1’s of
lengths d, ; in the jth row of A", compare Fig. 15(b). Here
d,. ; is the number of offspring of the jth node, which is part
of generation g. In more detail,

I, i=U+1), J=WMe+ 1), (M +dg 111,
1, i=+2), J=WMg+1+dgig1). ... (Mg +dgii1 +dg112),
A : : ,1<g<g — 1,
L i=(+D) =My =M+ 1+, deris) o (Mg + 305 detsy = Mear),
0, else,
(A2)

where [ = M,_;. Finally, the full adjacency matrix follows
from symmetry.

APPENDIX B: PROBABILITY MASS FUNCTION OF
NUMBERS OF NODES AND LEAVES FOR FULL
BINARY TREES

For full binary trees with a maximum of G = 4 generations
and branching PMF (12) the joint PMF of the number of
nodes and leaf nodes in the third and fourth generations,
Py(D3, Dy, hy, h3) = Py(D3, Dy), is

P,(Ds3, Dy) = P(D3) x P(D4|Ds3), (B1D)

(

where P (D) is given by the binomial distribution

D, n Y
P(Ds = 2n3) = (n )p(?z (1 =pe), (B2
3
with integer values n3 = 0, 1, ..., D,, specifying the number
of parent nodes in generation g = 2. Accordingly, for given
D5, we find

D5\ p. )
P(Dy = 2n4|D3) = <nj>POD3 ‘(A= po)™. (B3

Here ny =0, 1, ..., Ds is the number of parent nodes in the
third generation. Applying Eq. (B1) this yields Eq. (13).

For the full binary tree considered in the main text, we find
H =4+ (N —7)/2. In consequence, the joint PMF of the
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total number of leaf nodes and nodes is determined by the
PMF of the total number of nodes, P;(/N). The latter can be
obtained by summing Eq. (13) such that D3 + Dy =N — 7,
or, equivalently, n3 + nqy = (N — 7)/2. This yields Eq. (14).

APPENDIX C: DYNAMICS IN THE STRONG-COUPLING
LIMIT

In the strong-coupling limit, each of the network realiza-
tions approaches a synchronized state. Its dynamics can be
treated as that of a single node given by Eq. (16). In the
following, we derive the effective parameters, see Eq. (17),
which account for the influence of network structure on the
dynamics in the strong-coupling limit. In order to simplify
the notations, we skip the index referring to the considered
network realization.

For the derivation, we follow the approach presented in
[39]. We first consider the coupling term in Eq. (1). Instead of
using the adjacency matrix (see Appendix A), we can rewrite
the coupling term as a sum over interconnections between
adjacent nodes:

CV] = [, +TJ;(t)+« Z Aji(Vi = V))
icgen g;—1
oD AV = V) (C1)
megen g +1
= —Iion,j + J]([) +K(l b (ngqo)(vmj — Vj)
T Z Vo, = Vj). (C2)

oj € offspring of j

Here g; denotes the generation of node j. In the first line, the
sums run over all nodes in adjacent generations. In the second
line, only nodes that are connected to node j are considered,

A‘/oo]',oj = Vooj - Vo,

J

00j €92

0j €g+1_aN

AV, =V, =

JEgY

FIG. 16. Illustration of notations for the voltage differences,
AV_,,,,,],, AVOJ j» and AV,,(,jﬁ(,j, for a tree fragment. Therein o; €
(g + 1) labels the node under consideration; the node with the index
J € g is the parent of 0;. The node with the index o; € (g + 1) is
the offspring of j and is the parent of the node oo; € (g + 2). Red
semicircles show leaves at which branching is terminated.

i.e., its only parent node, m;, in generation g; — 1 and all
offspring in generation g; + 1. The term with the Kronecker
delta accounts for the fact that the root node has no parent.
Note that the relation between nodes, their offspring, and their
parent nodes implies that k = 0; <= j = my.

As only the differences in membrane potentials between
nodes and their offspring enter Eq. (C1), we introduce these
differences as new variables:

AV, j = Vo, — Vj. (C3)

Voltage difference and the corresponding notation is illus-
trated in Fig. 16. Applying this to Eq. (C1), we obtain

CVj = —lionj + Ti(t) = (1 = 84, 0)AVm,

+ K Z

ojeoffspring of j

AV, j. (C4)

From this, we can derive the dynamics of the voltage differ-
ences by subtraction of the two equations for V,, and V;:

d
Cd AVO, j= _Iion,o,- +Ii0n,j +;70»,-(t)_ \-7j(t)
+K(1 —(Sg/,())AVj,m,-
—k| AV i+ Y AV

o';eoffspring of j

+K Z

00'; eoffspring of o,

A Voo} 0+ (CS)

1. Generation-averaged dynamics

In the strong-coupling limit, the nodal dynamics is syn-
chronized and nodes within the same generation become sta-
tistically indistinguishable. To make use of this fact, we follow
the approach presented by Kouvaris ef al. [26,54] and extend it
to stochastic excitable elements on random tree networks. To
this end, we consider the dynamics of the generation-averaged
membrane potentials

Zv, ¢=0,1,2,....G. (C6)

§ jegeng

Here the average is taken in each generation g < G of the
kth random tree network realization (the realization index k
is dropped); i.e., only generations that actually include nodes
are considered.

Applying Eq. (C6) to Eq. (C1), we obtain the generation-
averaged membrane potential dynamics:

d
C—(V)y = —(Lion)g + (T (1)) — ij,

dt
Jegeng
+/<— > Yo (Vo =Vy). (@D
jegeng ojeoffspring of j

Note that averaging over the zeroth generation yields (V), =
V). As the first sum on the right-hand side of Eq. (C7) runs
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over the D, offspring which share D,_; parent nodes, we find

nglli

g7 iegen g—1

|
N
5
|

Dg Sd V) (C8)

Accordingly, the double sum in (C7) can be simplified by
noting that the jth node in generation g has d, ; offspring in
generation g + 1,

1
Z Y. V= D Y deVi=d V),

Jj€gen g ojeoffspring of j 8 jegeng
(€9)

J

dt

In the limit of strong coupling, we can assume that V; ~ (V)

from the generation average, i.e., (d V) ¢

d
C—(V)g = —(Lion)g + (T (D)), ((V)g T

g,
~ (d), (V),. Performing similar simplification for the root node, g = 0, and the nodes

The other double sum can be reduced to a single sum over the
nodes in the (g 4 1)th generation:

7Y X V=g X

]eg oj€gen g+1 8 ojegen g+1

This can be further simplified by considering the generation
average membrane potential,

_Z =

0jeg+1

Dyy1 1
D Dg+1

v, = =Sy
Z J Dg g+

(C10)
From the recurrent relation of the Galton-Watson process (5)
it follows that the ratios of numbers of nodes in adjacent
generations can be replaced by the mean branching within a
generation as D, /D, = (d),. Then using Egs. (C8)-(C10)
in Eq. (C7) yields

(d V)g1> + k(d)g (Vg1 — (dV)y). (C11)

g—1

for i in generation g;. Then, we can decouple the branching

in the last generation, g = G, we end up with the following system for the generation-averaged membrane potentials:

_(V>0 = _<Iion>0 + (j(t»O
_< 1on>

—(fion)g + (T ())g + K ((V)g-

+ kdo i ((V) —
H(T@D)g —k(V)g = (V)go1) + &(d)g (Vg1 —

1= (V)

Vo),

(C12)

2. Dynamics of generation-averaged membrane potential differences

Next we introduce the differences between generation-averaged membrane potentials from adjacent generations, A(V), 1=

(V)ngl - <V)g, g = 0,1,...,

d
Cdt<AV) AllLion) g + A{T (1)),
—k ({d)o + DA

LAy — e, +

kK A(V)g_, —

Here we introduced the differences between generation-averaged ionic currents A (fion) ¢ = (Lion) g1

A(T0) g = (T (1)) g41
separated in a deterministic part A(J),

—(J (1)), and set dp 1 = (d)g
= (J>g+l

(d)g_1A(V)g_1,

— (J), and a stochastic one A&, (1) = (§(¢)) 441
Next, we consider the difference of the generation-averaged ionic currents A (Zion)

8

G — 1. Subtraction of the corresponding equations in (C12) yields

Vo +k{d)1 A(V),, g=0,
DAV, + k{d) g1 AV) g1, 1<g<G—1 13
g=G—1.

— (fion) g and input currents

. The differences of generation-averaged input currents A(J (7)), can be

— (£,

o Both the difference between membrane

potentials of individual nodes and corresponding generation averages and the difference between generation-averaged membrane
potentials of adjacent generations, A(V),, become small in the case of strong coupling. We therefore approximate the differences
between generation-averaged ionic currents to the first order in A(V), around a vanishing mean difference. We assume that it
can be expanded in a Taylor expansion around A(V), = 0. This yields (lion) g1 — (fion)g = ag + by A{V), + h.o. Here h.o.
refers to higher order terms in A(V),. As we restrict ourselves to networks of identical nodes, except for leaf nodes, we assume
that the coefficient a, vanishes and that the coefficients b, are small compared to the coupling strength «, i.e., by < «. Using
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these assumptions, Eq. (C13) can be linearized and we find

—k({d)o + DA(V)o + k{d) A(V), g=0,
d
CAAY) i~ AT + KAV, s = ((d)y + DAV, + M) AV)gr, 1<g<G=1.  (Cl4)
kA(V)g_o —k({d)g_1 + DAV )g_y, g=G-1

In consequence, the dynamics of the differences of the generation-averaged membrane potentials can be approximated by a
multidimensional Ornstein-Uhlenbeck process,

C%A(V) ~BA(V) + A(J) + AE)(@). (C15)

Here we introduced the G-dimensional vectors,
AV) = (A(V)g, ..., A(V)g_ DT,
AJ) = (A{Jo), AU, ..., AlJg-)T,
AED) = (AED), A, ..., AED)g )

and the G x G tridiagonal matrix,

—k({d)o+ 1) r(d); 0 0
K —k({d); + 1) k{d),
B= 0 K —«(d),+1) - 0 . (C16)
K(d)g_y
0 0 Kk  —k({d)g_; +1)

In accordance with our notation for differences of generation-averaged quantities, we introduced the differences of generation-
averaged constant and noisy current components, A(J), = (J) o1 — (J), and A(§(1)), = (§(1)) 11 — (5(1)),-

In the strong-coupling limit, temporal deviations of A(V) from its stationary value decay extremely fast. Hence, we can use
an adiabatic approximation [55] to approximate A (V) by its stationary value plus a white Gaussian noise. Both the stationary
voltage difference and the intensity of the Gaussian white noise in the strong-coupling limit can be obtained by setting the
left-hand side of Eq. (C15) to zero. This yields

A(V) ~ —B7'[A(J) + A(E(1))], (C17)

where B! is the inverse of the matrix B.

3. Single-node description of strongly coupled random tree networks

In order to obtain an approximation for the dynamics of the root node, only the first component, A(V),, of Eq. (C17) is need.
Using the latter in Eq. (C12) yields

CVi = —lion1 + & do{B™'[A(D) + A(E()) T} (C18)

Hereafter the index 1 denotes the first component of a G-dimensional vector. From Eq. (C18), we find the effective current Jeg
and noise intensity Ses for the current realization of the tree network as

Jeir = cdo[BT' A1, V2Ser§(t) = k do[B™' A(E(1))]s. (C19)
The latter relation is obtained by noting that the sum of Gaussian white noises yields a Gaussian white noise with modified
intensity.
For a given tree realization the inverse of B can be calculated explicitly using the formula for the inverse matrix,
1
B! = B adj(B). (C20)

Here |B| and adj(B) refer to the determinant and adjugate of the matrix B, respectively. In the following, we present explicit
formulas for the cases used in the main text, G = 3, 4.
In the case of G = 3, B, is a 3 x 3 matrix. Its determinant reads

IB| = —((d)o(d)1(d)> + (d)o{d); + (d)g + 1) = = N. (€21
Its adjugate matrix reads
()1 (d); + {d), + 1 (d), +1 1 '
adjB=«*| (d)(d), + (d), (d)old), + {d)o + {d)r + 1 (d)o+1 . (C22)
(d)(d), (d)o(d)y + (d), (d)old)y + {d)o + 1
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Using this, we can evaluate the effective parameters in Eq. (C19) and find

H H
Jeff = Rood = %G J, Sett = SooS = e S. (C23)
Similarly, in the case of G = 4, B is a (4 x 4) matrix with determinant |B| = —«*N. Evaluation of the adjugate matrix also

yields Eq. (C23).

We stress that derivations in this appendix are done for the particular tree realization. Thus, assigning the index k for tree
realizations in (C23) to the total number of leaves and nodes gives the scaling relations Eqgs. (17) and (18) of the main text.
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