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We introduce and study a metapopulation model of random walkers interacting at the nodes of a complex
network. The model integrates random relocation moves over the links of the network with local interactions
depending on the node occupation probabilities. The model is highly versatile, as the motion of the walkers
depends on the topological properties of the nodes, such as their degree, while any general nonlinear function
of the occupation probability of a node can be considered as local reaction term. In addition to this, the relative
strength of reaction and relocation can be tuned at will, depending on the specific application being examined.
We derive an analytical expression for the occupation probability of the walkers at equilibrium in the most
general case. We show that it depends on different order derivatives of the local reaction functions, on the degree
of a node, and on the average degree of its neighbors at various distances. For such a reason, reactive random
walkers are very sensitive to the structure of a network and are a powerful way to detect network properties
such as symmetries or degree-degree correlations. As possible applications, we first discuss how the occupation
probability of reactive random walkers can be used to define novel measures of functional centrality for the nodes
of a network. We then illustrate how network components with the same symmetries can be revealed by tracking
the evolution of reactive walkers. Finally, we show that the dynamics of our model is influenced by the presence
of degree-degree correlations, so that assortative and disassortative networks can be classified by quantitative
indicators based on reactive walkers.
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I. INTRODUCTION

The architecture of various social, biological, and man-
made systems composed of many interacting elements can
be well described in terms of complex networks [1,2]. The
ability of all such systems to execute complex tasks and im-
plement dedicated functions is indeed intimately connected to
their underlying architecture. Studies on epidemic spreading,
synchronization, and game theory have shown how different
network topologies can affect the emergence and the proper-
ties of collective behaviors in a given system [3]. Similarly,
ingenious techniques have been proposed to reconstruct the
topology of a given network from direct inspection of its
emerging dynamics [4–6]. Fully understanding the interplay
between structure and function is generally considered today
as one of the grand challenges of network science.

Random walks are probably the simplest among the many
dynamical processes which have been studied on networks.
Since the pioneering works of Pearson [7], who also coined
the term, random walks have been extensively investigated
in different fields ranging from probability theory to statis-
tical physics and computer science and have found a num-
ber of practical applications. A random walk on a network
involves an agent that performs local hops from one node
to one of its neighbors, producing in this way random se-
quences of adjacent nodes [8–10]. Despite the simplicity of

the process, random walks have been proven to be a funda-
mental tool to unravel unknown features of the underlying
network [1,4,5,11,12]. For instance, they have been used to
identify the most central nodes [1,2,13–16] or the modules of
a given network [17–19]. The trajectories of random walk-
ers have also turned useful to uncover hidden relationships
between nodes of the network, like symmetries or degree-
degree correlations [20]. More generally, random walks on
complex networks are considered to be at the heart of several
real-world dynamical systems, like disease spreading [21],
financial markets [22], foraging of animals [23], innovation
growth [24,25], and more. They have also found applications
in the context of metapopulation models [26–31], where the
nodes of the network represent discrete patches occupied by
members of a local population, and the random walk process
describes the migration from patch to patch.

In the simplest possible case, at each time step, a random
walker jumps from one node to one of its first neighbors,
which is chosen at random with uniform probability. However,
the process can be generalized so as to bias the walk toward
nodes that display specific features. In the case of degree-
biased random walkers, for instance, the transition probability
between two adjacent nodes is gauged by the degree k of
the target node. This can be done so as to impose a prefer-
ential movement toward hubs or, alternatively, toward poorly
connected nodes [11]. The versatility of this type of random
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walks has inspired in recent years an abundance of methods to
investigate the network structure of real-world systems [32].
Biased random walks have also been employed for commu-
nity detection [33], to define new centrality measures [34,35],
to characterize the structure of multilayer networks [36], and
to measure degree-degree correlations [11,37–39].

Random walks are usually depicted as models for dif-
fusion. It is, however, important to distinguish among such
two related but different concepts. More specifically, diffusion
refers to the flow of a (material or immaterial) substance,
on a continuous or discrete support, from regions of high
concentration to regions of low concentration. This process
inevitably yields a space-homogeneous redistribution of the
density, which is forcefully subject to detailed balance con-
straints. When diffusion occurs on a network, the system
evolves toward an asymptotic state where all nodes are equally
populated, often termed as consensus [40]. Hence, the sta-
tionary state associated to a purely diffusive process does not
bear information on the underlying network structure, which
is solely influencing the dynamics during the transient, before
consensus is eventually reached. The stationary distribution
as attained by random walkers on a network is instead propor-
tional to the connectivity of the nodes, and this basic fact hints
at how they can prove more informative than diffusion when
the focus is on the network topology [6].

While random walks are the basic ingredient to describe
mobility, they do not take into account the possible interac-
tions between agents present in the same node of a network.
These are typically described by a local dynamics, which
can be different for each node. Local dynamics have been
frequently coupled with diffusive processes to describe the
self-consistent evolution of mutually coupled species, when
subject to the combined influence of diffusion and reaction
terms [41–46]. In this work, we propose a model of reactive
random walkers, where generalized biased random walkers
not only navigate the system but also interact when they
meet at the nodes of the network. At variance with conven-
tional diffusion, in reactive random walkers the probability of
relocation between adjacent nodes is also sensitive to local
reactions, which ultimately confer to each node a self-identity.
For such a reason, the occupation probability of a given node
depends not only on the connectivity pattern but also on the
ability of the node itself to attract walkers. This last property
can be tuned at will by properly shaping the reaction term,
and this enables us in turn to highlight different characteristics
of the network structure. Reactive random walkers are highly
versatile and motivate a series of applications aimed at uncov-
ering the topology of the discrete support where the dynamics
takes place. In particular, in this paper we will focus on (i)
the definition of a novel functional centrality measure, (ii) the
issue of revealing hidden symmetries in a graph, and (iii) the
problem of characterizing node degree-degree correlations in
complex networks.

The article is organized as follows. Section II introduces
our model of reactive random walkers in its most general
form. Examples on a number of small graphs are reported to
elucidate the main ingredients of the model at the levels both
of the choice of the reaction functions and of the type of bias
in the walk. In Sec. III, we analytically derive the stationary
state of the dynamics of the model by means of perturbative

calculation. In Sec. IV, we elaborate on a measure of func-
tional centrality, as a first application of the model. Section V
unveils the relationship between reactive random walkers
and network symmetries. In Sec. VI, we further investigate
the connection between dynamics and structure by propos-
ing an alternative indicator of degree-degree correlations in
networks. Finally, in Sec. VII we discuss possible further
extensions of the proposed model.

II. MODEL

Our model describes the dynamics of reactive random
walkers, i.e., random walkers moving over the links of a
complex network and interacting at its nodes. Let us consider
an undirected and unweighted network with N nodes and
K edges, described by a symmetric adjacency matrix A =
{aij }, where aij = 1 if nodes i and j are linked and aij = 0
otherwise. We denote as xi (t ) the occupation density, at time
t , of node i, with i = 1, 2, . . . , N , so that the state of the entire
network at time t is completely described by the vector x(t ) =
[x1(t ), x2(t ), . . . , xN (t )]. The occupation density x shall be
normalized as

∑
i xi (t ) = 1 ∀t , so that it can be considered

as an occupation probability. The law governing the time
evolution of x(t ) takes into account the network topology, i.e.,
the adjacency matrix A, and also the specific characteristics of
each individual node through a set of local reaction functions.
This is formally expressed by the following N equations:

ẋi = (1 − μ)f (xi ) + μ

N∑
j=1

lRW
ij xj , i = 1, . . . , N, (1)

where μ is a tuning parameter, referred to as the mobility
parameter, which takes values in [0,1] and enables us to
modulate the weight of two contributions. The first term on
the right-hand side of Eq. (1) accounts for the local reaction at
each node i and is ruled by a function f (xi ) of the occupation
probability xi . For simplicity, we assume that the reaction
function f is the same for all nodes. The second term takes
into account the topology of the network and describes the
mobility on it by means of the random walk Laplacian LRW =
{lRW

ij }. This Laplacian is defined as

lRW
ij = πij − δij , (2)

where � = {πij } is the transition matrix of a random walk.
Entry πji of matrix � represents the probability of the random
walker to move from node i to node j (see Appendix). Notice
that

∑
j πji = 1 ∀i. In the simplest possible case, we can

assume that the random walk is unbiased. This means that the
probability of leaving node i is equally distributed among all
its adjacent nodes j , so that we can set πji = aij /ki for each
j . Here, we consider instead a more general transition matrix
in the form

πji = aij k
α
j∑

l ailk
α
l

, (3)

which describes degree-biased random walks, i.e., random
walkers whose motion also depends on the degree of the
node j , and such a dependence can be tuned by changing
the value of the exponent α [11]. Namely, for α > 0, the
walker at node i will preferentially move to neighbors with
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high degree while, for α < 0, it will instead prefer low degree
neighbors. Finally, for α = 0, we recover the transition matrix
πji = aij /ki of the standard unbiased random walk.

Summing up, the main ingredients and tuning parameters
of the reactive random walkers model in Eq. (1) are the
network topology, encoded in the adjacency matrix A of the
underlying mobility graph; the bias parameter α ∈ R, which
allows us to explore the graph in different ways; the local
reaction functions ruling the interactions at nodes; and the
mobility parameter μ ∈ [0, 1] to weigh the relative strength
of reaction and relocation. Notice that the model of reactive
random walkers we have introduced recalls metapopulation
models [26,28,30], for which the occupation probability of
each node of the network wherein the population is allocated
is governed by a random walk process, as well as by a local
term accounting for birth and death on each environment.
Equations (1) are also similar to those describing reaction-
diffusion processes, but where xi (t ) represents the density at
node i at time t and the Laplacian matrix LRW of Eq. (2) is
replaced by the matrix LDiff = {lDiff

ij } that stems from a purely
diffusive process. For similarities and differences between the
two definitions of the Laplacian, see the Appendix.

A. Limiting case μ = 0

Let us begin the analysis of the reactive random walk
model by considering its two limits, namely μ = 0 and μ =
1. In the first limit, the mobility is completely suppressed
and the dynamics of each node is independent of the others.
Since we have assumed that the function f is the same
for each node, Eq. (1) reduces to solve the one-dimensional
system ẋ = f (x). In principle, the reaction function f can be
freely chosen among all the functions f : R → R. However,
interesting cases are found when the variable x(t ) is bound to
converge toward a stationary point, x∗, defined by f (x∗) = 0.
The function f should then be chosen among the continuous
functions and such that 0 is included in its image. Moreover,
in order to have equilibrium stability, it is necessary that f is
monotonically decreasing in, at least, one of the points where
it vanishes, in order to ensure that there exists (at least) one
stable fixed point x∗. Some possible examples of reaction
functions are reported in Fig. 1(a).

B. Limiting case μ = 1

In the opposite limit, when the mobility parameter takes its
maximum value μ = 1, Eq. (1) describes a pure random walk
process. The stationary distribution x∗ = {x∗

1 , x∗
2 , . . . , x∗

N } of
the dynamics in this limit is obtained by LRW x∗ = 0, which
is equivalent to �x∗ = x∗. The Perron-Frobenius [47,48]
theorem ensures that if the graph is connected and contains
at least one odd cycle, the fixed point x∗ always exists and
is unique. In the case of degree-biased random walks, we
get [11]

x∗
i = cik

α
i∑

l clk
α
l

with ci =
∑

j

aij k
α
j . (4)

Such an expression, for α = 0, reduces to x∗
i = ki/2K , mean-

ing that the walker, after a sufficiently long period of time, is
found on a node i with a probability linearly proportional to

FIG. 1. (a) Examples of possible reaction functions to be used in
Eqs. (1): f (x ) = x − x2 in blue, f (x ) = x − x10 in red, and f (x ) =
sin(3x ) in yellow. (b) A graph of N = 9 nodes, and (c) the fixed point
x∗ obtained when a reactive random walk model with f (x ) = x −
x2 and different values of the mobility parameter μ is implemented
on such a graph. The inset represents an enlargement showing the
inversion of x∗

5 and x∗
6 obtained by changing μ.

the node degree ki . In this case, the asymptotic distribution is
completely characterized by the degree k of the graph, with
better-connected nodes having a larger probability of being
visited by the walker.

The general expression for the asymptotic distribution at a
node i, when α �= 0, depends instead not only on the degree ki

of node i, but also on the degrees of the first neighbors of node
i, through the coefficient ci , and such dependence can be tuned
by changing the value of the exponent α. For instance, optimal
values of the bias, which depend both on the degree distribu-
tion and on the degree-degree correlations of a network, can
be found to obtain maximal-entropy random walks [11,38,39]
or to induce the emergence of synchronization [49].

C. The general case

The most interesting dynamics of our model emerges at
intermediate values of the mobility parameter μ, when in-
teractions at nodes and random movements between nodes
are entangled. In this case, the walkers move on the network
jumping from node to node, so that the node occupation prob-
ability depends on the network connectivity because of the
Laplacian contribution but, at the same time, it evolves at each
node according to the reaction function. Reaction functions in
turn depend on the occupation probability, so that we have
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different contributions for differently populated nodes. This
leads to a stationary probability x∗ reflecting the topology of
the graph in a way that is nontrivial and worth analyzing. The
stationary probability of the model can be obtained, for any
value of μ in [0,1], by setting ẋi = 0 in Eq. (1) and solving
numerically the following recursive equations:

x∗
i =

∑
j

aij

kj

x∗
j + (1 − μ)

μ
f (x∗

i ). (5)

Notice, however, that when μ �= 1, the state xi (t ) of node i in
Eqs. (1) is not constrained between 0 and 1. This is an effect
caused by the reaction term, which behaves as a source term
at each node. If we want to interpret the state of the network
as an occupation probability, we need then to further impose
the normalization; for instance, we can consider the vector
x/

∑
i xi instead of the vector x.

In the following, we will consider a series of examples so
as to get insight into the properties of the stationary distribu-
tion x∗ for different network structures and for different values
of the two main tuning parameters of the model, namely the
mobility parameter μ and the bias exponent α.

As local interaction, we consider the logistic function
f (x) = x − x2 shown in Fig. 1(a), and we implement the
model on the graph of N = 9 nodes displayed in Fig. 1(b).
Figure 1(c) reports the obtained values of the components of
the normalized fixed point 1∑

i x∗
i

(x∗
1 , x∗

2 , . . . , x∗
9 ) as functions

of the mobility parameter μ, when α is set to zero. The nu-
merical results are in agreement with the expected behaviors
in the two limiting cases μ = 0 and μ = 1. In particular, we
get x∗ = k/2K for μ = 1 and x∗ = 1/N for μ = 0, where
1 denotes an N -dimensional vector with all entries being
identically equal to 1. This means that all the curves in the
figure start from the same value at μ = 0, while for μ = 1
we observe four different values for the entries of x∗. The
graph considered has in fact nodes with four different degrees,
namely k = 1, 2, 3, and 4, and curves corresponding to nodes
with the same number of links will converge to the same point
x∗ for μ = 1. However, at intermediate values of μ, even
nodes with the same degree can exhibit different values of x∗
(with the exception of some of them, see Sec. V for a dis-
cussion on symmetric nodes) going from their degree class at
μ = 1 toward 1/N at μ = 0. In particular, the various curves
of x∗ as a function of μ can cluster in a different way when
heading towards the limit μ = 0. Let us focus for instance on
the behavior of node 6 of the graph. Such a node belongs to the
degree-2 class but, following the curve of its stationary state
when it goes from μ = 1 to μ = 0, we notice that it separates
from the curves of the other nodes of its class, approaching the
curve of node 5, x∗

5 , although the latter node is characterized
by a larger degree (k5 = 3). Moreover, node 6 even overcomes
node 5 for small values of μ before both curves collapse
toward the homogeneous solution. The crossing between the
two curves is highlighted in the inset of Fig. 1(c).

In the most general case, in our model it is possible to
tune both the local dynamics, by choosing different reaction
functions f (x), and the bias in the random walk, by consid-
ering values of the exponent α �= 0. An illustrative example
is reported in Fig. 2 in the case of a smaller graph with
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FIG. 2. Stationary occupation probability of the nodes of graph
in panel (a) is shown for a reactive random walk as a function of
the mobility parameter μ and of the bias exponent α: node 1 (b),
node 2 (c), and nodes 3 and 4 (d). The latter two nodes yield identical
patterns (consequently displayed in just one figure), being symmetric
nodes. The same reaction function as in Fig. 1 has been chosen.

only four nodes. The three colored panels show the three
different values of the fixed point at the nodes of the network
as functions of the mobility parameter μ and the bias exponent
α. Notice that nodes 3 and 4 have the same symmetry in
the graph, so they reach the same fixed point (see Sec. V
for a discussion of symmetries). In detail, while for μ and
α equal to zero the four nodes exhibit the same value of the
occupation probability x∗

i = 0.25∀i, when we increase the
mobility parameter we observe a nontrivial behavior of these
values, which in general decrease for low-degree nodes and
increase for high-degree nodes. The effect of introducing a
degree bias in the random walk by turning on and tuning the
bias parameter is instead that the occupation probability of the
most connected nodes (see nodes 2, 3, and 4) is enhanced for
positive and decreased for negative values of α. The opposite
happens for the less connected nodes (node 1).

Our third and last numerical example is reported in Fig. 3.
In this case, we have considered two different topologies,
namely a scale-free network with N = 100 nodes (first row
panels) and a smaller network with N = 11 nodes (second
row panels). Again, the stationary occupation probability at
the nodes of the graphs is shown for various values of μ.
For both networks, the size of the nodes in the graphs is
proportional to x∗, while the four different columns represent
respectively the four values of the mobility parameter, μ =
0.1, 0.5, 0.9, 1. While all the nodes have almost equal size
for small values of μ, they clearly tend to differentiate when
μ increases. Notice that for μ = 1 node size only reflects
degree, so that the nodes with the largest sizes are the hubs
of the scale-free network in the first row. For intermediate
values of the mobility parameter (see, for instance, μ = 0.9),
instead, the nodes with the largest occupation probability are
those connecting isolated vertices to the rest of the network,
irrespective of their own degree. This is evident for the
second graph in the second and third rows. For this graph,
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FIG. 3. Reactive random walks on a scalefree network with pk � k−γ and γ = 2.2, N = 100, and mean degree 〈k〉 = 3.6, and on a toy
graph with only 11 nodes. The four columns represent four different values of the mobility parameter: μ = 0.1, μ = 0.5, μ = 0.9, and μ = 1,
where the size of the nodes is proportional to the different components of x∗. The reaction function selected are f (x ) = x − x2 for the first
network and f (x ) = sin(3x ) for the second one. In the second graph, the same color has been used for nodes with the same symmetry, while
gray has been used for all other (non-symmetric) nodes. The histograms report the stationary occupation at each node, while the node degree
is indicated on the x axis.

symmetric nodes are also highlighted in the figure (see Sec. V
for a formal definition of symmetric nodes) by adopting the
same colors for pairs of nodes with the same symmetry and
reporting in gray those nodes that do not have a symmetric
counterpart. It is worth stressing that distinct choices of the
reaction function will enable one to highlight different nodes,
depending on their structural traits, at intermediate values of
μ, as will appear clear in Sec. IV.

III. ANALYTICAL DERIVATION
OF THE STATIONARY STATE

The fixed point x∗ of the reactive random walk model in
Eq. (1) is in general not easy to obtain analytically because of
the interplay between random walk dynamics and local inter-
actions. Approximate techniques can be employed, however,
in the low-mobility limit μ � 0, when the local dynamics is
only slightly modified by coupling between network nodes
due to the movement. In this limit, it is possible to derive
a perturbative estimate for x∗: x∗ = s∗1 + ∑∞

n=1 μnδx (n),
where δx (n) stands for the n-th correction to the uncoupled
case. The first two corrections take the explicit form

δx
(1)
i = − s∗

f ′(s∗)

∑
j

lRW
ij (6)

and

δx
(2)
i = − (s∗)2

2

f ′′(s∗)

f ′(s∗)3

(∑
j

lRW
ij

)2

− s∗

f ′(s∗)

∑
j

lRW
ij + s∗

f ′(s∗)2

∑
j

lRW
ij

∑
k

lRW
jk

= δx
(1)
i − f ′′(s∗)

2f ′(s∗)

(
δx

(1)
i

)2 − 1

f ′(s∗)

∑
j

lRW
ij δx

(1)
j ,

(7)

where s∗ is the solution for μ = 0, f (s∗) = 0. In Fig. 4, we
show that the analytical predictions are in agreement with
the numerical solution. In particular, we consider reactive
random walkers with a mobility parameter μ = 0.1 and a
logistic function as local interaction term, and we implement
the model on the graph of collaborations among jazz musi-
cians [50]. If f is a C∞ function, the perturbative terms can
be computed for each order n. In this case, the hypothesis of
small μ can be relaxed and the analytical solution for the fixed
point can be, in principle, exactly determined. In such a case,
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the generic n-th correction can be cast in the form

δx
(n)
i = − 1

f ′(s∗)

⎧⎨
⎩

n∑
r=2

f (r )

r!

⎡
⎣n−r+1∑

m1=1

n−r−m1+2∑
m2=1

n−r−m1−m2+3∑
m3=1

. . .

n−∑r−2
j=1 mj −1∑

mr−1=1

δx
(m1 )
i δx

(m2 )
i . . . δx

(mr−1 )
i δx

(n−∑r−1
k=1 mk )

i

⎤
⎦

−
n−1∑
r=2

f (r )

r!

⎡
⎣ n−r∑

m1=1

n−r−m1+1∑
m2=1

n−r−m1−m2+2∑
m3=1

. . .

n−∑r−2
j=1 mj −2∑

mr−1=1

δx
(m1 )
i δx

(m2 )
i ...δx

(mr−1 )
i δx

(n−1−∑r−1
k=1 mk )

i

⎤
⎦

− f ′(s∗)δx (n−1)
i +

∑
j

lRW
ij δx

(n−1)
j

⎫⎬
⎭, (8)

where f (r ) is the r-th derivative computed in s∗.
As expected, at different perturbative orders the local dy-

namics involves successive derivatives of f at s∗. In particular,
the first correction δx (1) is only sensitive to the the first deriva-
tive, while in δx (2) the second derivative appears. In general,
the n-th correction is characterized by all the derivatives of f

until the n-th one. More interestingly, it is worth noticing that
δx

(1)
i contains a term that, when the random walk is unbiased,

is proportional to
∑

j aij /kj , which essentially is a sum over
all neighbors of node i of their inverse degree. This implies
that the first correction to the generic ith component of the
uniform fixed point depends on the inverse degree of all the
nodes of the graph that are adjacent to i. In the second-order
correction, we instead find the term

∑
j l (aij /kj )(ajl/kl ). The

fixed point computed at the second order in μ thus not only
depends on the inverse degree of the nearest neighbors of
node i, but also on the inverse degree of its second-nearest
neighbors. By iterating forward this reasoning, the n-th cor-
rection will depend on the nth nearest neighbor degrees: The
term

∑
j lRW

ij δx
(n−1)
j in Eq. (8) takes recursively into account

all the nodes of the network that can be reached, in at most
n time steps, when starting from node i. Obviously, when n

FIG. 4. Comparison between analytical predictions (first order in
red small dots and second order in yellow dots) and numerical results
(blue large dots). The stationary occupation probability of different
nodes (sorted by their degree) is shown for reactive random walkers
with logistic growth f (x ) = x − x2 on graph of collaboration among
jazz musicians [50]. The mobility parameter μ has been set to 0.1.

goes to infinity all the nodes of the network contribute with
their inverse degree.

It is also worth observing that the perturbative calcula-
tion can be readily extended to the general case of biased
random walks. To this end, one should consider the more
general Laplacian form in the last term of each correction:∑

j lRW
ij δx

(n−1)
j . In this case, the first correction δx

(1)
i is not

solely influenced by first neighbors of node i but also depends
on the second neighbors being proportional to kα

i

∑
j

aij∑
l alj k

α
l

.
Analogously, for the second correction term, the biased ran-
dom walks introduces a dependency on the neighbors of all
nodes at distance two from each vertex, and so on. In general,
considering a degree bias always has the effect of moving the
set of involved nodes to further proximity level in the network,
as already observed in Ref. [11] in the case of non-reactive
random walks.

In the next three sections, we will explore how the occu-
pation probability of reactive random walkers can turn useful
to define novel measures of functional centrality for the nodes
of a network, to detect network symmetries, or to distinguish
assortative from disassortative networks.

IV. MEASURES OF FUNCTIONAL RANKING

Centrality measures allow us to rank the nodes according
to their location in the network [2]. Originally employed in
social network analysis to infer the influential actors in a
social system but soon adopted in many other fields, different
centrality measures have been constructed to capture different
aspects which make a node important, from the number and
strength of its connections to its reachability. Commonly used
centrality measures are the eigenvector centrality [47,48],
the α centrality [14,51], the betweenness centrality [52], the
closeness centrality [53], and, of course, the simplest one, the
degree centrality. This latter corresponds to the fixed point
of our model in the limit μ = 1. In this case, the stationary
occupation probability x∗

i is indeed proportional to the degree
of node i. However, in our model of reactive random walkers,
when μ �= 1, the stationary state of the model will also depend
on the choice of the local dynamics, resulting in a plethora
of distinct configurations fostering different roles within the
network. In other words, for a fixed value of the mobility pa-
rameter, we can interpret our dynamical system as a reaction-
dependent centrality measure. Moreover, we note that the
form of Eq. (5) on which this centrality measure is based is
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reminiscent of other existing definitions of centralities such
as a generalization of the Bonacich centrality [14] known as
the α centrality [51], and the PageRank centrality (PRC) [13].
For instance, the PageRank centrality xPR

i of a graph node i is
defined as [54–56]

xPR
i = d

∑
j

aij

kj

xPR
j + 1 − d

N
, (9)

where d ∈ (0, 1) is a parameter usually set equal to 0.85. PRC
was originally proposed as a method to rank the pages of the
World Wide Web. Indeed, it mimics the process of a typical
user navigating through the World Wide Web as a special
random walk with “teleportation” on the corresponding graph.
Such a random walker with a probability d performs local
moves on the graph (most of the times a user surfing on
the Web randomly clicks one of the links in the page that is
currently being visited), while with a probability 1 − d starts
again the process at a node randomly chosen from the N nodes
of the graph (the surfer starts again from a new Web site). The
latter action, the so-called “teleportation” is represented by the
term (1 − d )/N in Eq. (9). Notice that the value of d = 0.85 is
estimated from the average frequency at which surfers return
to their browser’s bookmark feature. The introduction of the
teleportation term assigns a uniform nonzero weight to each
vertex, and it is particularly useful to avoid pathological cases
of nodes with null centrality, in the case where the graph is not
connected (or strongly connected if a directed graph). In some
cases, however, the teleportation contribution is not uniform
but can be designed to gauge an intrinsinc importance of each
node. This implies enforcing a dependence on the generic
node index i in the second term in the right-hand side of
Eq. (9). The advantage of using Eq. (5) instead of Eq. (9) as a
measure of centrality then consists in the possibility of freely
choosing the reaction term. The adoption of function f (xi )
in Eq. (5), assigning a different contribute to each node i that
depends on xi , finds a plausible justification in the fact that the
importance of a node may also depend on other factors, not
necessarily directly linked to the topology of the graph, such
as the status or functionality of the node. In a social network,
for instance, this factor could be related to the age, social
status, or income of an individual. Moreover, f can be chosen
so as to take into account the temporal evolution of some
features of the nodes of the network. Let us consider again the
problem of ranking Web pages. PageRank centrality in Eq. (9)
can be modified by replacing the constant teleportation term
with a variable contribution, due to, for instance, the number
of visualizations of each page, which could be suitably de-
scribed by a non-constant term proportional to xi (t ), or more
generally by a function f (xi ) as in Eq. (5).

As a practical example, let us come back to examining the
graph in Fig. 1(b) and focus again on node 6. According to
standard centrality measures, such a node would not result
as a very central one, being in a peripheral part of the graph
and having just two neighbors. However, one of the neighbors
is node 7, which is a graph leaf, and this makes node 6 its
only bridge toward the rest of the graph. This consideration
highlights the importance of nodes bridging other nodes of
the network and, depending on which characteristics we want
to focus on, could be an extremely useful feature to take
into account when devising a measure of node centrality.

FIG. 5. Measures of centrality based on Eq. (5) and on different
choices of f and α are compared to PRC (red curves) in the case of
two networks, the graph of N = 9 nodes in Fig. 1(b) and the graph
of N = 198 nodes representing the jazz musicians network [50].

Increasing the importance of this class of nodes can be, for in-
stance, obtained by an appropriate choice of function f (x) in
Eq. (5). This is clearly shown in Fig. 5(a), where the rankings
of the graph nodes obtained for different reference reaction
functions and also for different choices of the mobility and
bias parameters are compared. The nodes are sorted according
to their degree, which is explicitly indicated on the x axis,
while the other reported numbers correspond to node labels
as in Fig. 1(b). Node 6, which bridges node 7 to the rest of
the graph, appears to be more sensitive than the others to the
changes, with a large variety of ranking positions, especially if
compared to the other nodes with the same degree. The green
and magenta symbols respectively refer to positive (α = 1)
and negative (α = −1) bias with f (x) = x − x2 and μ =
0.85. We observe that it is also possible to reproduce the same
trend of the PRC (red symbols) by again using the logistic
function with the same value of the mobility parameter but
setting the bias to zero (black symbols). A different reaction
is used for the blue curve: f (x) = x − x10 with μ = 0.7 and
α = 0.

The same types of functional ranking as in Fig. 5(a) have
also been adopted in Fig. 5(b) for the nodes of the network
of collaborations among jazz musicians, and the results are
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reported with the same color code. A similar general trend
appears, with low-degree nodes enhanced by a negative degree
bias and, vice versa, hubs enhanced by a positive bias. In
addition to this, we observe some fluctuations with peaks
appearing in the different ranking measures. It would be
tempting to speculate that the musicians associated to the
selected nodes bear a structural role in bridging different com-
munities, as happens when dealing with synthetic networks.
Unfortunately, we lack information on the examined network
of jazz musicians to draw a final and reliable conclusion in
this respect.

In conclusion, the proposed measure of functional ranking
can mimic other centrality measures, like PRC, in the limit of
large μ, where diffusion is important and it is only slightly
modified by the local interactions. In general, for every value
of μ between 0 and 1, our model of reactive random walkers
can be thought as a new way to measure centrality which
accounts for the differences between nodes at a deeper level,
with the focus on different time-varying characteristics of the
nodes themselves.

V. DETECTING NETWORK SYMMETRIES

Symmetries are ubiquitous in nature, and one of the
main reasons by which humans have been long attempted
to describe and model the world through the tools and the
language of mathematics. In complex networks, despite
the fact that symmetric nodes may appear as special cases,
they are surprisingly numerous in real and artificial network
structures [57].

In mathematical terms, network symmetries form a group,
each element of which can be described by a permutation
matrix that reorders the nodes in a way that leaves the graph
unchanged. More precisely, a graph G with N nodes described
by an adjacent matrix A has a symmetry if there exists a
permutation matrix P , i.e., a N × N matrix with each row
and each column having exactly one entry equal to 1 and
all others 0, such that P commutes with A: PA = AP . This
is equivalent to say that PAP −1 = A, namely that PAP −1

performs a relabeling of the nodes of the original graph which
preserves the adjacency matrix A. Therefore, two nodes of
the graph are said symmetric if their swapping preserves the
adjacency relation. This implies that two symmetric nodes
are necessarily characterized by the same degree but also
that their neighbors must have the same degree, and as the
neighbors of their neighbors, and so on.

While network symmetries may be easy to spot in small
graphs like those considered in Figs. 1 and 3, this is typically
not the case for large graphs. Different techniques to reveal
symmetries in networks have been developed, both numerical
and analytical [57–60]. As we will show below, reactive
random walkers provide another method to detect symmetric
nodes by looking at the value of the stationary occupation
probability at different nodes. In fact, while in the case μ = 1
of a pure random walk process the fixed point x∗ is solely
determined by the node degrees, when μ �= 1 the dynamics
is governed by the network as a whole and the value of the
stationary occupation probability at a node will depend on its
degree but also on the properties of the second, third, and so
on neighbors. Hence, it is plausible to conclude that only per-

fectly symmetric nodes can assume the same asymptotic oc-
cupation probability and to propose to detect symmetric nodes
of a graph by looking at those having the same value of x∗ for
a reactive random walker model with μ �= 1 on the graph.

An analytical argument in support of this can be obtained
from the perturbative derivation of the stationary state pre-
sented in Sec. III. In the limit μ � 0, the expression for the
first correction δx

(1)
i to the uniform stationary state given

in Eq. (6) contains a term proportional to
∑

j aij /kj , which
indicates the dependence of the stationary state on the degree
of the neighbors of i. Analogously, the degree of the second
nearest neighbors can be found in the second correction δx

(2)
i ,

while the degree of the n-th nearest neighbors appears in the
nth correction. The value of x∗

i of a node i will consequently
depend on the degrees of all the nodes in the graph. Since
two symmetric nodes share the same connectivity at each level
of neighborhood, we can then find symmetric nodes as those
with exactly the same value of x∗.

Let us come back to the graphs considered in Figs. 1 and
3. In the first example, the three nodes labeled as 2, 8, and 9
are symmetric, as can be seen directly from Fig. 1(b), given
that they share the same set of neighbors. The existence of
such a symmetry is also revealed by looking at the behavior of
the occupation probability of different nodes when varying μ:
Figure 1(b) shows that the curves corresponding to these three
nodes are indistinguishable. Another remarkable example is
reported in Fig. 3, where the graph reported in the second row
panels is taken as reference model to observe the variation
in the occupation probability state for different values of
μ. Here, nodes with the same symmetries are shown with
the same color, while the remaining nodes are in gray, and
correspond to exactly the same value of x, as reported in the
third row panels of the same figure.

As a further independent check, we tried our method on
the adjacency matrix which is made available in the paper by
Pecora et al. [59]. The devised procedure proves successful
in chasing for the hidden symmetries: It in fact returns an
overall interpretation of the data which is identical to that
reported in Ref. [59]. In particular, the non-trivial clusters
(1,8), (2,3,7,9), (4,6), and (5,10) are identified in agreement
with the conclusion in [59].

A more general argument that extends the results above
from μ � 0 to the general case μ �= 1 can be obtained by
proving that Eq. (1) are equivariant under a permutation of
symmetric nodes [59]. Such equations can be rewritten in
vectorial notation as

ẋ = AK−1x − x + F (x), (10)

where K = {kij } is a diagonal matrix whose entries are
defined as kij = kiδij , and the functional F : RN → RN is
defined such that the generic ith element of the image vec-
tor [F (x)]i is equal to f (xi ). Our goal is now to prove
that Eq. (10) also holds for the permuted vector P x. Left-
multiplying the equation by matrix P , we get

P ẋ = PAK−1x − P x + PF (x)

= AK−1P x − P x + PF (x), (11)

where in the last equality we have used the fact that P

commutes with A and, since symmetric nodes have the same
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degree, it also commutes with K and consequently with its in-
verse. Now we observe that the role of matrix P is to permute
symmetric nodes while leaving the others unchanged. The
effect of P on a generic vector v ∈ RN is [P v]i = vĩ where ĩ

denotes the node of the network which is the symmetric twin
of i, if it exists, and otherwise ĩ = i. Consequently, when we
apply P to F (x), we obtain a vector whose i-th component is

[PF (x)]i = [F (x)]ĩ = f (xĩ ) = f ([P x]i ) = [F (P x)]i .

(12)

Making use of this result, Eq. (11) becomes the equivalent
of Eq. (10) evaluated for P x instead of x, which is what we
wanted to prove.

VI. MEASURING DEGREE CORRELATIONS

A distinguishing feature of many real-world networks is
the presence of non-trivial patterns of degree-degree correla-
tions [61–63]. In the case of positive degree-degree correlation
the network is said to be assortative: This is often the case
for social networks, where hubs have a pronounced tendency
to be linked to each other. Conversely, a network is said
disassortative if the correlations are negative and connections
between hubs and poorly connected nodes are favored. Well-
known examples of disassortative networks are the Internet,
and biological networks such as protein-protein interaction
networks, where high-degree nodes tend to avoid each other.

One possible way to reveal the presence of degree-degree
correlations in a network is to compute the average degree
of neighbors of nodes of degree k and to look at how this
quantity depends on the value of k. The average degree knn,i of
the neighbours of node i is defined as knn,i = 1

ki

∑
j aij kj . To

obtain the average degree of neighbors of nodes of degree k,
we need to average the quantity knn,i over all nodes i of degree
k. Let us denote as pk′|k the conditional probability1 that a link
from a node of degree k is connected to a node of degree k′.
Now, by expressing the sum over nodes as a sum over degree
classes, the average degree of the nearest neighbors of nodes
with a given degree k can be written as

〈knn〉k =
∑
k′

k′pk′|k.

The function 〈knn〉k is a good indicator of the presence of
degree correlations in a network. In fact, the quantity 〈knn〉k
increases with k when the network has positive degree cor-
relations, decreases when the network has negative correla-
tions, and is constant and equal to 〈k2〉/〈k〉 for uncorrelated
networks.

We will now show that the dynamics of the reactive ran-
dom walker model of Eq. (1) is sensitive to the presence of

1To construct the conditional probabilities pk′ |k it is convenient to
define a matrix E such that the entry ekk′ is equal to the number of
edges between nodes of degree k and nodes of degree k′, for k �= k′,
while ekk′ is twice the number of links connecting two nodes having
both degree k. The conditional probability pk′ |k can be then expressed
as pk′ |k = ekk′/

∑
k′ ekk′ [2]. By definition such a probability satisfies

the normalization condition
∑

k′ pk′ |k = 1 ∀k.

correlations in the the underlying network, and it is therefore
possible to detect and measure the assortative or disassortative
nature of a network from the asymptotic node occupation
probability. To this end, we need to return to the perturbative
approach to obtain the equilibrium occupation probability
discussed in Sec. III. As already remarked, a full hierarchy of
terms are found to appear as a by-product of the calculation,
which respectively relates to paths connecting nodes that are
1, 2, 3, . . . steps away from any selected node. Let us focus on
the first correction to the uniform state, namely the term δx

(1)
i ,

as specified in Eq. (6). Up to the multiplicative node-invariant
factor s∗/f ′(s∗), δx

(1)
i is equal to

∑
j lRW

ij = ∑
j aij /kj − 1.

Therefore, at the first order, the difference between the equi-
librium distribution and the uniform state is governed by the
quantity

w
(1)
i ≡

N∑
j=1

aij

kj

= ki

〈
1

knn

〉
, (13)

representing, for a generic node i, the sum of the inverse
degrees of all its neighbors. The quantity w

(1)
i is always non-

negative, and it gets larger when many nodes are adjacent
to node i (large degree ki , corresponding to many terms in
the sum) and all such nodes display smaller degrees. In the
particular case in which all the nodes connected to i have
exactly degree equal to ki , we get w

(1)
i = 1. When instead the

degree ki of node i is smaller than the inverse of the mean
inverse degree of the nodes adjacent to i, then we have 0 <

w
(1)
i < 1. In the extreme case of low-degree nodes connected

to hubs, w
(1)
i tends to zero.2

Looking at the whole network, the vector w can be turned
into an effective indicator for the presence of degree-degree
correlations that relies on the harmonic mean of the degrees
instead of on the standard mean.

For instance, we can consider the average value of w
(1)
i for

all nodes i of degree ki = k. Such a quantity can be written in
terms of the adjacency matrix of the graph as

〈w(1)〉k = 1

Nk

N∑
i=1

N∑
j=1

aij

kj

δki ,k, (14)

where Nk = ∑N
i=1 δki ,k is the number of nodes of degree k.

We can rewrite the previous equation by making use of the
conditional probability pk′|k , so that the sum over all neighbors
j of i becomes a sum over the degrees k′ of the nodes adjacent
to those of degree k. We finally obtain

〈w(1)〉k = k
∑
k′

1

k′ pk′|k = k

〈
1

k′

〉
k

, (15)

2Using the definition given in Sec. IV, the quantity w(1) weighs the
role of i in bridging the gap between neighbors. In other words, it
gauges how much node i is important in linking isolated nodes to the
main bulk, so keeping the graph connected. We already mentioned
the role of node 6 in the graph of Fig. 1(b) and how its intrinsic
relevance stems from the stationary solution x∗ [see Fig. 5(a)]. The
formal explanation of this phenomenon is indeed due to the presence
of the quantity w in the first term of the perturbative expansion of x∗.
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FIG. 6. The quantity 〈w(1)〉k is reported as a function of k for (a) three synthetic graphs with the same number of nodes and links, and
respectively disassortative (r = −0.94, red pluses), assortative (r = 0.93, yellow pluses), and uncorrelated (r ∼ 0, purple pluses). The vertical
dashed line identifies the mean degree 〈k〉. The mean degree 〈knn〉k of the nearest neighbors of nodes of degree k is displayed in the upper left
inset, while the degree distribution pk is shown in the lower right inset. Same quantities as in panel (a) for two real networks: (b) the network
of collaborations in astrophysics and (c) Internet AS. Double-logarithmic scales have been used.

where the quantity 〈1/k′〉k denotes the average of the inverse
degree of the first neighbors of nodes of degree k. In the
absence of degree correlations, the conditional probability
takes the form pnc

k′|k = k′pk′/〈k〉 [2,62], where pk is the degree
distribution of the network, 〈k〉 is the average degree, and “nc”
stands for no correlations. Hence, in uncorrelated networks,
the quantity in Eq. (15) reduces to

〈
w(1)

nc

〉
k

=
(

k
∑
k′

1

k′ p
nc
k′|k

)
= k

〈k〉 (16)

and is a linearly increasing function of k with slope equal
to 1/〈k〉. Such a function represents the reference case to be
compared to when evaluating the quantity 〈w(1)〉k for a given
network.

In Fig. 6(a), we plot 〈w(1)〉k as a function of k for three
synthetic networks, respectively with positive, negative, and
no degree correlations. The uncorrelated network is an Erdős-

Rényi random graph with N = 1000 nodes and K = 10 000
edges, while the other two have been generated from the
uncorrelated one by using an algorithm that swaps edges
according to the degree of the corresponding nodes [32,64]
to produce respectively a disassortative graph with corre-
lation coefficient r = −0.94 and an assortative graph with
r = 0.93 [62]. The algorithm preserves not only the average
degree 〈k〉, but also the entire degree distribution, which is
shown in the lower right inset. Consequently, the results for
the three networks, shown respectively as purple, yellow, and
red pluses, can be directly compared to the same analytical
prediction 〈w(1)

nc 〉k (straight line), which is clearly well in
agreement with the randomized network. In the disassortative
graph, we observe that the quantity 〈w(1)〉k is larger than
〈wnc〉k for degree values k > 〈k〉. This is because the first
neighbors of the hubs are typically poorly connected, i.e.,
〈1/k′〉k > 1/〈k〉 when k > 〈k〉. Conversely, 〈w(1)〉k is smaller
than 〈w(1)

nc 〉k for poorly connected nodes, i.e., for k < 〈k〉.
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TABLE I. Pearson correlation coefficient r , exponent ν, and slope variation S for different synthetic and real-world networks with N nodes
and average degree 〈k〉. The highlighted rows correspond to the three artificial networks analyzed in Fig. 6(a).

Networks N 〈k〉 r ν ± �ν S

Synthetic uncorrelated 1000 20 −0.003 −0.02 ± 0.01 −0.01
Synthetic assortative 1000 20 0.93 0.83 ± 0.08 1.02

1000 20 0.71 0.61 ± 0.06 0.83
1000 20 0.50 0.34 ± 0.05 0.59
1000 20 0.30 0.19 ± 0.03 0.36

Synthetic disassortative 1000 20 −0.94 −0.89 ± 0.07 −0.86
1000 20 −0.71 −0.66 ± 0.05 −0.74
1000 20 −0.50 −0.35 ± 0.04 −0.52
1000 20 −0.30 −0.23 ± 0.02 −0.32

Astrophysics collaboration [65] 17 903 22.01 0.23 0.22 ± 0.02 0.41
Facebook [67] 4039 43.69 0.11 0.054 ± 0.051 0.40
Jazz collaboration [50] 198 27.70 0.03 0.11 ± 0.04 0.46
Email URV [68] 1134 9.61 0.078 0.05 ± 0.03 0.03
C. elegans frontal [69] 453 8.97 0.035 0.062 ± 0.050 0.28
Internet AS [61] 11 174 4.19 −0.19 −0.52 ± 0.04 −0.33
Caida [70] 26 475 4.03 −0.19 −0.52 ± 0.03 −0.38
US politics books [71] 105 8.42 −0.019 −0.13 ± 0.07 −0.045
US power grid [72] 4941 2.67 0.003 −0.035 ± 0.10 −0.18

In the assortative graph, as expected, 〈w〉k � 1 for most of
the degree classes. Deviations from perfect assortativity only
occur at the two extremes of the degree distribution, i.e., for
limit values of the degree: A sample node with low (high)
degree is in fact linked to nodes whose degree is in average
larger (lower) than its own.

In Figs. 6(b) and 6(c), we show the results obtained for
two real-world networks with known mixing patterns, namely
the collaboration networks of astrophysicists [65] and the
Internet at the autonomous systems (AS) level [61]. The first
network has N = 17 903 and an average degree 〈k〉 equal to
22.2 and is assortative with correlation coefficient r = 0.23,
while the second one has N = 11174 and 〈k〉 = 4.3 and is
disassortative with r = −0.19. A logarithmic scale has been
adopted in the two plots, as both networks exhibit long-
tailed degree distributions. The plots show larger fluctuations
that those observed for the artificially generated graphs. The
general behavior, however, is preserved and allows us to
identify the two different types of degree-degree correlations.
In particular, the inversion of the trend, which occurs around
the mean degree, is clearly preserved. The assortative network
of collaborations in astrophysics 〈w(1)〉 is larger than the value
expected for the uncorrelated case when k < 〈k〉, while it is
smaller that this for almost all the larger values of k. The
opposite behavior is displayed by the Internet network, which
is instead disassortative. A possible way to detect the sign and,
at the same time, to quantify the entity of the correlations in a
network from the study of the quantity 〈w(1)〉k is to extract
the slope of the curve 〈w(1)〉k as a function of k at point
k = 〈k〉 and compare it to the slope of 〈w(1)

nc 〉k versus k for the
corresponding randomized case. For instance, we can evaluate
the difference S between the two slopes multiplied by 〈k〉 is

S = 〈k〉 d

dk

(〈
w(1)

nc

〉
k
− 〈w(1)〉k

)|k=〈k〉

= 1 − 〈k〉 d

dk

(
k

∑
k′

1

k′ pk′|k

)
|k=〈k〉, (17)

which we name slope variation. The multiplying mean degree
has the role of rescaling S , which becomes a quantity of order
1 (instead of 1/〈k〉) and consequently a comparable measure
for networks with different connectivity. Such a quantity has
been computed for the networks analyzed in Fig. 6. Results
are reported in Table I and compared to the standard quantities
usually adopted, namely the Pearson correlation coefficient r

and the exponent ν governing the behavior 〈knn〉k ∼ kν of the
average degree of first neighbors of nodes of degree k as a
function of k. We notice that positive values of the slope vari-
ation S are associated to assortative networks, while negative
slope differences indicate disassortative ones, in agreement
with the standard indicators of degree-degree correlations.

Table I also reports the values of S obtained in a sample
of other artificial and real-world networks and shows that the
proposed indicator agrees not only for the sign but also for
the order of magnitude with the standard measures, when
evaluated for networks with strong degree-degree correla-
tions, namely the network of collaboration in astrophysics,
Internet AS, and Caida, as well as for artificial networks.
The exceptional cases where the value of S is considerably
different from r and ν are those where the degree correlation
does not prove to be clearly defined, corresponding to a
significant error �ν obtained from the fit of knn(k).

In summary, the value of S provides indication of the
presence of degree-degree correlations that are in all similar
to r or ν. However, as the n-th term of the expression of
x∗ in Eq. (8) takes into account the degree correlations of
a node to those which are n steps away, our indicator can
be easily generalized and employed to detect higher order
degree correlations. Let us consider, for instance, the second
term δx

(2)
i of the Taylor expansion in Eq. (7). A second-

order analog of w
(1)
i can be defined as w

(2)
i ≡ ∑

j l

aij

kj

ajl

kl
to

measure the inverse degree of the second neighbors of node
i. Such a quantity represents a measure of the connectivity of
node i compared to that of nodes which are two steps away
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from it. The degree kj present at the denominator mitigates
the impact of the number of nodes adjacent to i, so that
the comparison only takes into account ki and the degree
of the second neighbors. Indeed, we have w

(2)
i = 1 when

all the second neighbors l of i have degree kl = ki . As for
the case of w

(1)
i , we can consider the average value of w

(2)
i

over all nodes i of degree ki = k. Writing this as a summation
over degree classes, we have

〈w(2)〉k = 1

Nk

N∑
i=1

w
(2)
i δki ,k = k

∑
k′,k′′

1

k′′ pk′|kpk′′|k′, (18)

where k′′ represents the degree of second neighbors. It is
important to notice that the above introduced quantity does
not measure genuine second-order degree correlations in a
network but rather how the effect of first-order degree cor-
relations reflects on nodes which are at distance of two
steps. The generalization to higher orders follows naturally.
Assessing the efficacy of this latter quantity as compared to
other possible generalization of standard degree correlation
measures to higher order [66] is left as a challenge for future
investigations.

VII. CONCLUSIONS

Random walks have been extensively used to explore com-
plex networks with the aim of characterizing their structural
features and unveil their functional properties. In this article,
we have introduced a class of random walkers that is subject
to node-dependent reaction terms. Our model of reactive
random walks is formulated in such a way that the relative
contribution of the interaction term at the nodes and of the
relocation term can be tuned at will, and this improves the
sensitivity of the walkers to the structure of the network. In
particular, the occupation probability of a given node is shaped
by the non-trivial interplay between the connectivity patterns
and the local interaction functions. We have shown this by
determining analytically the asymptotic occupation probabil-
ity via a perturbative approach that takes a purely reactive
dynamics as reference point. Exploiting the dependence of
the occupation probabilities on the two tuning parameters of
the model, namely the mobility parameter μ and the bias
parameter α, and on the shape of the local reaction functions,
we have shown that reactive random walkers can be useful in
many different ways. We have first discussed how, by properly
adjusting the reaction contribution, one can emphasize nodes
bridging otherwise disconnected parts of the network, so
that reactive random walkers can readily lead to generalized
definitions of node centrality measures. Furthermore, with the
help of general arguments and of a series of worked examples
we have shown that, by making the random walkers reactive
and inspecting their associated density distribution, one can
easily detect the symmetries of a network. Finally, the specific
form of the perturbative solution has inspired the introduc-
tion of a novel indicator for the presence, sign, and entity
of degree-degree correlations, which unlike other standard
measures is based on harmonic averages. We have illustrated
how reactive random walkers can distinguish assortative from
disassortative networks. The approach can in principle be
generalized to include next-to-leading-order correlations and

this defines an intriguing avenue for the investigation of higher
order correlation in complex networks, which is left for future
work.

The analysis here implemented readily extends to the in-
teresting setting where the reaction function displays multiple
fixed points. This amounts to performing the Taylor expansion
in the proximity of every selected fixed point, thus introducing
a further degree of freedom in the node ranking measure,
which could be in principle exploited, e.g., to improve the
nodes’ classification. Concerning the network topology, we
expect that dealing with a generalized reaction term with
multiple zeros could eventually yield an equally complete
characterization of the hidden symmetries and the underlying
degree correlations.

In conclusion, we hope that this article has proven the
versatility and potential of reactive random walkers and that
our work will trigger further investigations of the model we
have proposed and of its many possible variations.
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APPENDIX: RANDOM WALKS ON NETWORKS

Random walks on networks are generally introduced as a
discrete time process governed by the equation

xi (n + 1) =
∑

j

πij xj (n), (A1)

where xi (n) denotes the probability that node i is visited at
time step n. The stationary distribution x∗ = limn→∞ x(n)
satisfies the equation x∗ = �x∗ and, for undirected networks
πijx

∗
j = πjix

∗
i , meaning that the flows of probability in each

direction must equal each other at equilibrium (detailed bal-
ance) [73]. This implies that if πij = aij /kj , the stationary
distribution is proportional to the degree of nodes: x∗

i =
ki/2K .

Switching from discrete to continuous time when the spa-
tial support is discrete, as in the case of a network, is not
trivial. The main point is to set the timescale, which is no
longer simply defined by the discrete steps. Two different
types of continuous-time random walks can be defined: node-
centric and edge-centric [74]. In the node-centric version, we
consider that a walker sitting on a node waits until the next
move for a time τ , where τ is a random variable. If we assume
that there are independent, identical Poisson processes at each
node of the graph such that the walkers jump at a constant
rate, the corresponding continuous-time process is governed
by

ẋi =
∑

j

(πij − δij )xj ≡
∑

j

lRW
ij xj ,

where LRW = {lRW
ij }, with lRW

ij = πij − δij is the random walk
Laplacian. The stationary state is then obtained by setting ẋi
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equal to zero, which gives
∑

j lRW
ij x∗

j = 0, so yielding the
same stationary point of the discrete time version. This also
corresponds to the eigenvector of matrix LRW associated to
eigenvalue 0.

In the other type of random walk, the edge-centric, which
is also generally called diffusion or fluid model [8,75,76], a
step occurs when the walker decides to move to another node
by using one of the outbound edges of its vertex, or in other
words, when an edge is activated. Clearly, as the starting node
is more connected, the set of options that can be alternatively
selected to jump away becomes larger. The walker therefore
leaves a node with large degree more quickly than a node with
small degree, and the transition rate for a walker starting from

node i is equal to ki . The occupation probability evolves in
this case according to

ẋi =
∑

j

(aij − kj δij )xj ≡
∑

j

lDiff
ij xj ,

which defines another Laplacian operator, LDiff = {lDiff
ij }, with

lDiff
ij = aij − kj δij , associated to diffusion. The stationary dis-

tribution x∗ is in this case homogeneous (as one would expect
in a fluid model), being the normalized eigenvector of LDiff

associated to 0 with an N -dimensional vector with all entries
1/N .
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