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Periodicity of quantum correlations in the quantum kicked top
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Quantum kicked top is a fundamental model for time-dependent, chaotic Hamiltonian system and has been
realized in experiments as well. As the quantum kicked top can be represented as a system of qubits, it is
also popular as a test bed for the study of measures of quantum correlations, such as entanglement, quantum
discord, and other multipartite entanglement measures. Further, earlier studies on kicked top have led to a broad
understanding of how these measures are affected by the classical dynamical features. In this work, relying on
the invariance of quantum correlation measures under local unitary transformations, it is shown exactly these
measures display periodic behavior either as a function of time or as a function of the chaos parameter in this
system. As the kicked top has been experimentally realized using cold atoms as well as superconducting qubits,
it is pointed out that these periodicities must be factored in while choosing experimental parameters so that
repetitions can be avoided.
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I. INTRODUCTION

Periodically kicked quantum systems are popular models
of Hamiltonian chaos. Their popularity, in part, arises from
the relative ease of analysis. The quantum dynamics of such
systems can be reduced to a Floquet map, while in the classi-
cal limit, the dynamics can be reduced to a set of difference
equations. The quantum kicked top is a prominent member of
this class and it physically represents a repeating sequence of
free precession and state-dependent rotation (kick). For suffi-
ciently large kick strengths, the system displays chaotic classi-
cal dynamics. Several approaches to experimental realization
of quantum kicked top were suggested [1] and was attained
using a cloud of cold Cs atoms in the total hyperfine spin
of its ground state interacting with time-dependent magnetic
fields [2].

In the past two decades, kicked top was widely used to
study the interplay between chaotic dynamics and quantum
correlations in the context of continued interest in quantum
information and computation. The kicked top has a natural
representation in terms of spins or qubits and this makes it a
suitable choice for studies on entanglement. In this approach,
the number of spins tending to infinity represents the classical
limit of kicked top. Hence, this model continues to attract re-
search interest [3–8] for the study of entanglement [9–14] and
its relation to classical dynamics [15], signatures of bifurca-
tions on various quantum correlation measures [3], quantum-
classical correspondence in the vicinity of periodic orbits [4],
and quantum metrology [16]. Measures of quantum correla-
tions have been found to strongly correlate with the qualitative
nature of classical phase space, whether it is regular or chaotic
[3,7,9,14,17,18]. In general, as demonstrated extensively in
a series of papers using kicked tops [2,3,7,9,14,17–19], the
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qualitative nature and details of classical dynamics influences
entanglement. In addition, classical dynamical features such
as the bifurcation also affect the quantum correlation mea-
sures with interesting semiclassical consequences [3]. Similar
results have been obtained for other measures of quantum
correlations such as quantum discord and Mayer-Wallach Q

measure.
Unlike the earlier experimental effort [2] involving ma-

nipulation of atomic and nuclear spins, recently kicked top
was realized in a system of just three superconducting qubits
(“spins”) examining its behavior in the deep quantum regime
[19]. The latter experiment has verified the theoretically pre-
dicted connections [11–13] between chaotic dynamics and
bipartite entanglement. Quite remarkably, ergodic behavior
in this isolated quantum system was demonstrated [19]. Sur-
prisingly, a recent theoretical work has shown that even in
the deep quantum limit possible with just two qubits, the
system appears to take into account the nature of classical
dynamics in the vicinity of the phase-space coordinates where
the spin-coherent state is initially placed [7]. Further, this
work also hints that the entanglement entropy might display
(quasi-)periodic behavior in time and also as a function of
kick strength. This observation, if generalized, has important
implications for both experimental and theoretical work on
kicked tops. Let us consider a kicked top system with j

representing the total spins and k its kick strength. This
corresponds to 2j number of spin-1/2 particles. If a quantum
correlation measure, say A, for this kicked top displayed
periodic behavior, then for a given initial state we can expect
the following functional relations; A(t ; k, j ) = A(t + T ; k, j )
or A(t ; k, j ) = A(t ; k + κ, j ) representing periodic behaviour
in time t and kick strength k with periodicities, respectively,
T and κ .

This implies that for a fixed number of qubits quantum
correlations will repeat after a certain time period T or after
certain value kick strength κ . Thus, generally and crucially
in an experimental context, the choice of k and j indirectly
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sets the upper limit T and κ before repetitions begin to occur.
This argument can be turned around to derive another useful
information. If an experimental realization of the kicked top
is expected to maintain coherence for timescale τcoh, then the
question is about the values of k and j that must be used
to explore unique time evolution until time τcoh. The mean
coherence time τcoh is generally a function of experimental
(and environmental) parameters, and together with values of
j and k it will uniquely determine the relevant timescale for
the experiment to be min(τcoh, T ). Thus, the present study
of the periodicities in the kicked top will serve as a crucial
guide for experimental efforts to make the appropriate choice
of parameters.

In this work, we show exactly that the time variation of
quantum correlations of kicked top displays nontrivial peri-
odicity provided the total spin j = 1 and kick strength is of
the form k = rπ/s, r and s being integers. This includes the
special case of two qubits, j = 1, already reported in Ref. [7].
Further, it is also shown that for any j > 1, though quantum
correlations do not show temporal periodicity, they display
periodic behavior in kick strength k. Thus, this periodicity
holds good in the semiclassical limit of large j as well. The
structure of the paper is as follows: In Sec. II the measures
of quantum correlations are introduced. In Sec. III the kicked
top model is introduced. In Sec. IV analytical results on the
periodicity of quantum correlations as a function of chaos
parameter k are given. In Sec. V reflection symmetry of phase
space in k and its experimental consequences are discussed.
In Sec. VI analytical results on time periodicity for the case of
a two-qubit kicked top is studied.

II. MEASURES OF QUANTUM CORRELATIONS

A. von Neumann entropy

Let us consider a standard bipartite system A ⊗ B com-
posed of two smaller subsystems denoted as A and B, having
Hilbert spaces HA

(N ) and HB
(M ) (with dimensions N and

M), respectively. For simplicity, N � M can be assumed
and the full system belongs to the product Hilbert space
H(MN )

AB = HA
(N ) ⊗ HB

(M ). Consider a normalized pure state
|ψ〉 = ∑N

i=1

∑M
α=1 ci,α|i〉 ⊗ |α〉 of the full system A ⊗ B,

where |i〉 ⊗ |α〉 is the orthonormal basis of HAB . Its density
matrix is ρ = |ψ〉〈ψ | satisfying the Tr[ρ] = 1 condition. The
reduced density matrix of the subsystem A is obtained by
tracing out B, i.e., ρA = TrB[ρ] = ∑M

α=1〈α|ρ|α〉. Similarly,
the subsystem B is described by ρB = TrA[ρ]. The singular
value decomposition of the matrix ci,α gives the following
Schmidt decomposition form:

|ψ〉 =
N∑

i=1

√
λi

∣∣uA
i

〉 ⊗ ∣∣vB
i

〉
, (1)

where |uA
i 〉 and |vB

i 〉 are the eigenvectors of ρA and ρB ,
respectively, with the same eigenvalues λi . The eigenvalues
λi ∈ [0, 1] are such that

∑N
i=1 λi = 1. The remaining M − N

eigenvalues of ρB are identically equal to zero.
Given the Schmidt eigenvalues λi (i = 1 . . . N), entangle-

ment between A and B, where von Neumann entropy is used

as a measure, is given as follows:

SVN = −tr(ρA log ρA) = −
N∑

i=1

λi ln(λi ). (2)

This is a good measure of entanglement for a bipartite pure
state [20,21]. It satisfies 0 � SVN � ln(N ), where zero cor-
responds to a separable state and ln(N ) corresponds to a
maximally entangled state.

B. Quantum discord

Quantum discord measures all possible quantum correla-
tions including and those beyond entanglement in a quantum
state [22,23]. This method involves removing the classical
correlations from the total correlations of the system. Now the
procedure to evaluate discord will be given in detail [3]. For
a bipartite quantum system having density matrix ρAB , total
correlations are quantified by the quantum mutual information
given by

I (B : A) = H(B ) + H(A) − H(B,A). (3)

However, the classical mutual information, based on Baye’s
rule, is given by

I (B : A) = H (B ) − H (B|A), (4)

where H (B ) denotes the Shannon entropy of B. The con-
ditional entropy H (B|A) is defined as the average of the
Shannon entropies of system B conditioned on the values
of A. It can be thought of as the ignorance of B given the
information about A [24].

The quantum measurements on the subsystem A are repre-
sented by a set of positive-operator valued measure (POVM)
{�i}, such that the conditioned state of B for given outcome i

is equal to

ρB|i = TrA(�iρAB )/pi and pi = TrA,B (�iρAB ), (5)

and its entropy is H̃{�i }(B|A) = ∑
i piH(ρB|i ). In this case,

the quantum mutual information is equal to J{�i }(B : A) =
H(B ) − H̃{�i }(B|A). Maximizing this over all possible mea-
surement sets {�i} one obtains

J (B : A) = max{�i }
[
H(B ) − H̃{�i }(B|A)

]
= H(B ) − H̃(B|A), (6)

where H̃(B|A) = min{�i }H̃{�i }(B|A). The minimum value is
achieved using rank-one POVMs due to concave nature of
the conditional entropy over the set of convex POVMs [25].
By taking {�i} as rank-one POVMs, the quantum discord is
defined as D(B : A) = I (B : A) − J (B : A), such that

D(B : A) = H(A) − H(B,A) + min{�i }H̃{�i }(B|A). (7)

The quantum discord is shown to be nonnegative for all
quantum states [22,25,26] and is subadditive [27]. For the
bipartite pure state, the quantum discord is shown to be equal
to the von Neumann entropy [22,23].

C. Concurrence and the 3-tangle

Concurrence [28,29] is a measure of entanglement present
between two qubits. This measure was used to study phase
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transition in the Heisenberg chain [30]. Given two qubit
density matrix ρAB , firstly the spin-flipped state ρ̃AB = σy ⊗
σyρ

∗
ABσy ⊗ σy is calculated, where σy is the Pauli matrix

and the complex conjugation is done in the standard basis.
Then the eigenvalues of the non-Hermitian matrix ρABρ̃AB

are obtained, which are all real and nonnegative such that
λ4 � λ3 � λ2 � λ1. Then, the concurrence C12 = C(ρAB ) is
equal to

max (0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (8)

and 0 � C12 � 1. It is zero for separable state and one for
maximally entangled state. It is shown that the entanglement
of formation [31] of ρAB is a monotonic function of concur-
rence [28,32]. For the Bell state, concurrence is equal to one.

The 3-tangle is a pure multipartite entanglement measure
for pure as well as mixed three-qubit states [33]. For the case
of a three-qubit pure state, it is given by τ = C2

1(23)−C2
12−C2

13
[33], where Cij measures the concurrence between ith and
j th qubits. The quantity C1(23) is the concurrence between
qubit 1 and the pair of qubits 2 and 3. This is because in a
three-qubit pure state, the reduced density matrix of qubits 2
and 3 is of rank-2. The 3-tangle τ is permutationally invariant
and satisfies 0 � τ � 1 [33]. For given concurrence C12 the
maximum 3-tangle τ a three-qubit pure state can have has
been calculated [34]. States satisfying these limits have also
been evaluated.

D. Meyer and Wallach Q measure

This multipartite entanglement measure [35] was studied
earlier in the context of spin Hamiltonians [36–38], system of
spin-bosons [39], and how it is affected due to the classical
bifurcation in the kicked top model [3]. The geometric multi-
partite entanglement measure Q is shown to be related to one-
qubit purities [40], making its calculation and interpretation
straightforward. If ρi is the reduced density matrix of the ith
spin obtained by tracing out the rest of the spins in a N qubit
pure state then the Q measure is defined as follows:

Q(ψ ) = 2

[
1 − 1

N

N∑
i=1

Tr
(
ρ2

i

)]
. (9)

The relation in Eq. (9) between Q and the single spin reduced
density matrix purities has led to a generalization of Q mea-
sure to multiqudit states as well as for various other bipartite
splits [41].

III. KICKED TOP

The quantum kicked top is characterized by an angular
momentum vector J = (Jx, Jy, Jz) and its components obey
the standard algebra of angular momentum. Here, the Planck’s
constant has been set to unity. The Hamiltonian governing the
dynamics of the top is given by

H (t ) = pJy + k

2j
J 2

z

+∞∑
n=−∞

δ(t − n). (10)

The first term represents the free precession of the top around
y axis with angular frequency p while the second term is
periodic δ kicks applied to the top. Each kick gives a torsion

FIG. 1. Phase-space pictures of the classical kicked top for p =
π/2 and (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 6.

about the z axis by an angle (k/2j ) Jz. Here, k is called as the
chaos parameter or the kick strength. For k = 0 the classical
limit of Eq. (10) is integrable and for k > 0 it becomes
increasingly chaotic. The corresponding period-one Floquet
operator of the Hamiltonian in Eq. (10) is given as follows:

U = exp

(
−i

k

2j
J 2

z

)
exp(−ipJy ). (11)

The Hilbert space dimension is equal to 2j + 1 implies that
the dynamics can be explored without any truncation of the
Hilbert space. The kicked top has been realized in various
experimental test beds, in hyperfine levels of cold Cs atoms
and coupled superconducting qubits [2,19], in which p =
π/2. In Ref. [19], it was found that the time-averaged von
Neumann entropy showed the clear resemblance with the
corresponding classical phase space.

The quantum kicked top for given angular momentum j

can be considered equivalent to a quantum simulation of a
collection of N = 2j number of qubits (spin-half particles)
whose evolution is restricted to the subspace which is sym-
metric under the exchange of the qubits. The state vector
is restricted to a symmetric subspace spanned by the ba-
sis states {|j,m〉; (m = −j,−j + 1, ..., j )} where j = N/2.
The basis states satisfy the property Sz|j,m〉 = m|j,m〉 and
S±|j,m〉 = √

(j ∓ m)(j ± m + 1)|j,m ± 1〉, where Sz and
S± are collective spin operators [42,43]. The states {|j,m〉}
are also known as Dicke states. Thus, it is a multiqubit system
whose collective behavior is governed by the Hamiltonian in
Eq. (10) and the quantum correlations between any two qubits
can be studied.

The classical phase space is displayed in Fig. 1 as a func-
tion of coordinates θ and φ. To explore quantum dynamics in
the kicked top, spin-coherent states [44–47] pointing along the
direction of θ0 and φ0 are constructed and are evolved under
the action of the Floquet operator. The classical map for the
kicked top is given as follows [44,48]:

X′ = (X cos p + Z sin p) cos [k(Z cos p − X sin p)]

−Y sin (k(Z cos p − X sin p)), (12a)
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FIG. 2. Phase-space pictures of the classical kicked top for k =
3π/5 and (a) p = π and (b) p = 2π . Same for p = π/2 and (c)
k = −2 and (d) k = −3.

Y ′ = (X cos p + Z sin p) sin [k(Z cos p − X sin p)]

+Y cos [k(Z cos p − X sin p)], (12b)

Z′ = −X sin p + Z cos p. (12c)

Here, the dynamical variables (X, Y,Z) satisfy the constraint
X2 + Y 2 + Z2 = 1, i.e., they are restricted to be on the unit
sphere. Thus, it is possible to parametrize them in terms
of the polar angle θ and the azimuthal angle φ as X =
sin θ cos φ, Y = sin θ sin φ and Z = cos θ . First, the map in
Eq. (12) is evolved and then the values of (θ, φ) are deter-
mined using the inverse relations, which are not shown here.

Another feature of this map is that under the transformation
k → −k the phase space is reflected about θ = π/2. This
is because k → −k is equivalent to the transformation X →
−X and Z → −Z in Eq. (12). This implies Z′ → −Z′ which
results in θ → π − θ . Thus, the phase space corresponding to
k and −k are isomorphic to each other. This can be seen from
Figs. 1(b) and 2(c), as well as from Figs. 1(c) and 2(d). This
has experimental implications which will be discussed in later
part of the paper.

1. Classical map for various values of p In this work,
the model is studied for various values of p. Thus, it will
be helpful to study the corresponding map equations and
the phase space. First, the case of p = π/2 is considered.
In this case, due to additional symmetries, a simpler clas-
sical map can be obtained and was studied in detail in
Refs. [2–4,14,17,19,44]. In this case, the map given in Eq. (12)
reduces to

X′ = Z cos (kX) + Y sin (kX),

Y ′ = Y cos (kX) − Z sin (kX), (13)

Z′ = −X.

The phase space obtained using these equations is displayed
in Fig. 1. It can be seen that for k = 1 and k = 2 the phase
space is mostly covered by regular orbits. The trivial fixed
points at (θ, φ) = (π/2,±π/2) can be seen in Figs. 1(a) and
1(b) becomes unstable at k = 2. As k is increased further

the chaotic regions are increased. At k = 6 the phase space
is covered mostly by the chaotic sea with very tiny regular
islands.

The map for p = 3π/2 can be obtained from that of p =
π/2 by the transformation X′ → −X′ and Z′ → −Z′. This
implies φ → −φ and θ → π − θ which are reflections about
φ = 0 and θ = π/2. Thus, the phase space, as well as other
properties, can be obtained by taking these reflections.

Now consider the case of p = π . In this case using Eq. (12)
the classical map is obtained as follows:

X′ = Y sin (kZ) − X cos (kZ),

Y ′ = Y cos (kZ) − X sin (kZ), (14)

Z′ = −Z.

The phase space is plotted in Fig. 2(a). It can be seen that
there is no fully developed chaos since for given initial Z

the angle θ oscillates between cos−1 Z and π − cos−1 Z. Both
these values are reflection about π/2 which can also be seen
in the figure.

For the case p = 2π the map equations are

X′ = X cos (kZ) − Y sin (kZ),

Y ′ = X sin (kZ) + Y cos (kZ), (15)

Z′ = Z.

The phase space is plotted in Fig. 2(b). In this case too there
is no fully developed chaos and for given initial Z the angle θ

remains fixed at cos−1 Z.

IV. PERIODICITY OF QUANTUM CORRELATIONS AS A
FUNCTION OF CHAOS PARAMETER

In this section, it will be shown analytically and through
numerical simulations that the quantum correlations display
periodicity as a function of kick strength k. In particular, it
will be shown that for a fixed value of j and for a given
initial state, the quantum correlations are periodic in k, with
κ = 2jπ being its periodicity.

1. j = 1 case

Let us consider the simplest case of j = 1 which
is equivalent to two qubits. Then, the basis states are
|1,−1〉, |1, 0〉 and |1, 1〉. The standard two qubit basis states
are {|0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, |1〉1|1〉2} (subscripts label
qubits) such that σz|0〉 = −|0〉 and σz|1〉 = |1〉. Both the basis
states are related to each other by |1,−1〉 = |0〉1|0〉2, |1, 1〉 =
|1〉1|1〉2 and |1, 0〉 = (|0〉1|1〉2 + |1〉1|0〉2)/

√
2.

Setting j = 1 in Eq. (11), the corresponding Floquet
operator is

U = exp

(
−i

k

2
J 2

z

)
exp(−ipJy ). (16)

It can be seen that when k → k + 2π one obtains

U → Ô U where Ô = exp
( − iπJ 2

z

)
. (17)

Thus, U |ψj 〉 → Ô U |ψj 〉 where |ψj 〉 is any vector in the
|j,m〉 basis. For j = 1 case, denoting the vector U |ψ1〉 =
[a, b, c]T . Operator Ô is diagonal in {|j = 1,m〉} basis, i.e.,
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FIG. 3. The von Neumann entropy (SVN) is displayed for a two-
qubit (j = 1) kicked top with parameters p = π/2 and k = rπ/40
(r = 0 . . . 160). The color bar by the side represents the color code
for the von Neumann entropy values. Note the 2π periodicity in kick
strength k as well as the periodicity in time evident in this picture.

Ô = diag[−1, 1,−1]. However, in the standard two-qubit
basis it becomes

Ô =

⎛⎜⎝−1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 −1

⎞⎟⎠. (18)

Thus, it can be seen that even though Ô is unitary in {|j =
1,m〉} basis, it is not so in the standard two-qubit basis. This
implies that Ô is not a local unitary but it will seen now that its
action on any state in {|j = 1,m〉} basis does not change the
quantum correlations among the qubits. Thus, in {|j,m〉} basis
[a, b, c]T → Ô[a, b, c]T = [−a, b,−c]T . It can be shown
easily that in the standard two qubit basis states, [a, b, c]T

becomes |χ1〉 = [a, b/
√

2, b/
√

2, c]T , whereas [−a, b,−c]T

becomes |χ1〉′ = [−a, b/
√

2, b/
√

2,−c]T . Thus, we have

|χ1〉 = a|1〉1|1〉2 + (b/
√

2)(|1〉1|0〉2 + |0〉1|1〉2)

+ c|0〉1|0〉2 and

|χ1〉′ = − a|1〉1|1〉2 + (b/
√

2)(|1〉1|0〉2 + |0〉1|1〉2)

− c|0〉1|0〉2. (19)

It is seen that |χ1〉 and |χ1〉′ are related to each other by a local
unitary transformation, i.e., |χ1〉′ = −σz ⊗ σz|χ1〉. Quantum
correlation measures by definition are invariant under local
unitary operations [49]. Using concurrence for two-qubit pure
state [29] it can be seen to be equal to 2|b2/2 − ac| for both
the states. These imply that the correlations are invariant under
the transformation k → k + 2π . This can be seen in Fig. 3
where von Neumann entropy shows a periodicity of 2π as a
function of chaos parameter k.

2. General j case

Let us consider the case of general j , beginning with
even integer value for j . Here, the corresponding operator
Ô = exp (−iπJ 2

z ) is diagonal matrix of order 2j + 1 in
{|j,m〉} basis, i.e., Ô = diag[1,−1, . . . ,−1, 1]. The trans-
formation k → k + 2jπ gives U → Ô U . The operator Ô is
diagonal matrix of dimension 2j + 1 in {|j,m〉} basis, i.e.,
Ô = diag[1,−1, . . . ,−1, 1]. Now, the basis {|j,m〉} will be
written in the standard basis of qubits. For given value of
m there are ( 2j

j + m) basis states superposed equally to form
|j,m〉 where each of the basis state is such that j + m/2
qubits are in up-state |1〉 and remaining j − m/2 qubits are
in down-state |0〉. In this paper, such a basis state will be
called as m-particle state since it is an eigenvector of the
total spin operator Sz with eigenvalue m. Thus, there are
( 2j

j + m) m-particle states and the normalization constant after

superposing all such m-particle states is 1/

√
( 2j

j + m). For ex-
ample, |j, 1〉 = (|1〉1|0〉2 . . . |0〉2j + |0〉1|1〉2 . . . |0〉2j + . . . +
|0〉1|0〉2 . . . |1〉2j )/

√
(2j

1 ).

It is easily evident that Ô is a block-diagonal matrix in
{|j,m〉} basis and can be denoted as diag[Ô0, Ô1, . . . , Ô2j ].
Similar to the j = 1 case, Ô is unitary in {|j,m〉} basis but it
is no longer unitary when written in the standard 2j + 1 qubit
basis. Thus, Ô is not a local unitary. But, we will now show
that the quantum correlations remains invariant after Ô acts on
any state in the {|j,m〉} basis. Here, each Ôn (n = 0, 1, . . . 2j )
is a square matrix of dimension (2j

n ) and each element in it

is equal to exp (−iπn2)/(2j

n ), where n = j + m takes values

in the range 0 . . . 2j . It should be noted that each Ôn is
written in the set of all n-particle states. The vector U |ψj 〉, in
the {|j,m〉} basis, is denoted as [c0, c1, c2, . . . , c2j−1, c2j ]T .
The same vector in the m-particle basis, m = −j to j , be-
comes |χj 〉 = [c′

0, c
′
1, c

′
1, . . . , c

′
2j−1, c

′
2j−1, c

′
2j ]T . In this, c′

n =
cn/

√
( 2j

j+m
) and each c′

n occurs (2j

n ) times in a sequence. Thus,

Ô|χj 〉 = diag[Ô0, Ô1, . . . , Ô2j ][c′
0, c

′
1, c

′
1, . . . , c

′
2j ]T .

Thus, it is seen that the matrix Ô0 having dimension one
gets multiplied by the column vector of dimention one con-
taining c′

0, the matrix Ô1 having dimention (2j

1 ) gets multiplied

by the column vector of dimention (2j

1 ) having c′
1 as its

element at all the rows and so on. Thus, in general the matrix
Ôn of order (2j

n ) gets multiplied by the column vector of length

(2j

n ) having c′
n as its element at all the rows.

Let us denote this (unnormalized) column vector by |ξn
j 〉 =

[c′
n, c

′
n, . . . , c

′
n]T . As pointed out earlier, Ôn is square matrix

of order (2j

n ) with matrix elements exp (−iπn2)/(2j

n ). This
leads to

Ôn

∣∣ξn
j

〉 = exp(−iπn2)[c′
n, c

′
n, . . . , c

′
n]T . (20)

Thus, the final product becomes

Ô|χj 〉 = [c′
0,−c′

1,−c′
1, . . . ,−c′

2j−1,−c′
2j−1, c

′
2j ]T . (21)

052228-5



UDAYSINH T. BHOSALE AND M. S. SANTHANAM PHYSICAL REVIEW E 98, 052228 (2018)

When transformed to {|j,m〉} basis, it becomes
[c′

0,−c′
1, c

′
2, . . . ,−c′

2j−1, c
′
2j ]T . It can also be written as∑2j

n=0(−1)nc′
n|j, j − n〉. Here j is even and using the

properties of |j, j − n〉 it becomes(
2j∏
i=1

⊗σ i
z

)
|j, j − n〉 = (−1)n|j, j − n〉, (22)

where the superscript denotes the qubit position. Thus,
2j∑

n=0

(−1)nc′
n|j, j − n〉 =

(
2j∏
i=1

⊗σ i
z

)
2j∑

n=0

c′
n|j, j − n〉

=
(

2j∏
i=1

⊗σ i
z

)
[c′

0, c
′
1, c

′
1, . . . , c

′
2j−1, c

′
2j−1, c

′
2j ]T

=
(

2j∏
i=1

⊗σ i
z

)
|χj 〉.

Hence,

Ô|χj 〉 =
(

2j∏
i=1

⊗σ i
z

)
|χj 〉, (23)

which implies

ÔU |ψj 〉 =
(

2j∏
i=1

⊗σ i
z

)
U |ψj 〉. (24)

Clearly, for the case of even j as well, the two states
are related to each other by local unitary operations. Relying
on the invariance of the quantum correlation measures under
local unitary operations [49], which in this context implies
invariance under k → k + 2jπ , it is inferred that the quantum
correlations are periodic as a function of k with period 2jπ .
It must emphasized that the quantum correlations are periodic
in k even for large value j , i.e., in the semiclassical limit as
well. Similar result can be proved for the case of odd and
half-integer values of j . This can be seen in the simulation
results displayed in Figs. 4, 5, 6, and 7, where various quantum
correlations show periodicity of 2jπ as a function of chaos
parameter k. Here, the initial coherent state is positioned
at θ = 2.5 and φ = 1.1 for all values of k. It should be
emphasized here that this result is valid only for any initial
state |ψj 〉 in the symmetric subspace spanned by the basis
states {|j,m〉} which may or may not be an eigenstate of
Jz. It should also be noticed from Eq. (23) that the operator
Ô is nonunitary in the qubit basis while

∏2j

i=1 ⊗σ i
z a local

unitary operator in the same basis. However, the results of
their actions on the state |ψj 〉 are equal.

V. REFLECTION SYMMETRY IN k AND
EXPERIMENTAL CONSEQUENCES

Now, consider two different values of chaos parameters k1

and k2 such that 0 � k1 � jπ and jπ � k2 � 2jπ . Further,
they are related by k2 = 2jπ − k1 representing a reflection
symmetry about jπ . As the quantum correlations are periodic
in k with a period of 2jπ , the time evolution of quantum
correlations at k = k2 is identical to that at k = −k1. As
mentioned in Sec. III, the phase space for k and −k are
isomorphic to each other and are related by the transformation

FIG. 4. (top) von Neumann entropy (SVN) of kicked top which
is partitioned as a single qubit and two qubits, (bottom) quantum
discord (D) between any two qubits. Both are plotted as function
of kick strenght k and time. In this, j = 3/2. The values of von
Neumann entropy and discord are color coded using the color map
shown by the side.

θ → π − θ . This implies that if an initial state is evolved for
k = k2 then it is equivalent to the evolution of initial state
for k1 = 2jπ − k2 provided the initial positions of both the
coherent states are related by θ → π − θ . We will call this a
signature of phase space.

Thus, the combination of 2jπ periodicity and symmetry in
k results in quantum correlations that are symmetric about k =
jπ . In other words, for fixed value of j , the maximum value
of chaos parameter kmax for which the phase-space effects
are unique is jπ . Beyond k = kmax, the observed structure
repeats itself. The maximum chaos parameter k = kmax for
the given number of qubits in the top is shown in Fig. 8.
This result has implications for kicked top experiments. If two
qubits are used to represent the kicked top, i.e. j = 1, then one
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FIG. 5. (top) Concurrence (C12) between any two qubits, (bot-
tom) 3-tangle (τ ). Both are plotted as function of kick strength k and
time. In this, j = 3/2. The concurrence and 3-tangle values are color
coded using the color map shown by the side.

can observe the unique signatures of the phase space only up
to k = π . If three qubits are used, as done in the case of a
recent experimental realization reported in Ref. [19], one can
observe the unique signatures of the phase space only up to
k = 3π/2 ≈ 4.71 and so on.

VI. TIME PERIODICITY OF QUANTUM CORRELATIONS
FOR j = 1

It can be seen from Fig. 3 that the von Neumann entropy
also exhibits periodicity in time for certain values of k. A
similar effect, quasiperiodicity of entanglement, was also
observed in Refs. [7,10]. The quantum discord between any
two qubits was numerically shown to display quasi-periodic
modulations for initial states localized in the regular regions
[17]. It was also pointed out that all the quantum expectation

FIG. 6. Same as Fig. 4 for j = 2.

values are quasiperiodic in in time due to the discreteness of
the spectrum of Floquet operator [48].

In this section, the j = 1 case is considered and it is
shown analytically that when k is a rational multiple of π ,
and p takes value from the set {0, π/2, π, 3π/2, 2π}, the
quantum correlations show periodic nature. We note that in
the experiments reported in Refs. [2,19], p = π/2 is used.
In Fig. 3 the von Neumann entropy is plotted for p = π/2
and k = rπ/40 such that r = 0, 1, . . . , 160. This gives the
time period as 160. This section is devoted to explaining this
observation. Starting from Eq. (16) the matrix elements of
the corresponding Floquet operator can be determined and
assembled in matrix form.

A. Case of p = π/2

If p = π/2, then the Floquet operator reduces to

U =

⎛⎜⎜⎝
e−ik/2

2
−e−ik/2√

2
e−ik/2

2

1/
√

2 0 −1/
√

2
e−ik/2

2
e−ik/2√

2
e−ik/2

2

⎞⎟⎟⎠. (25)
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Its eigenvalues are {e−ik/2,−i e−ik/4, i e−ik/4} and the
corresponding eigenvectors are [1/

√
2, 0, 1/

√
2]T ,

[−1/2,−i eik/4/
√

2, 1/2]T , and [−1/2, i eik/4/
√

2, 1/2]T ,

respectively. Using these the Floquet operator
for nth time can be obtained, which is given as
follows:

Un = 1

4

⎛⎜⎜⎝
2 e−ikn/2 + (−ie−ik/4)n + (ie−ik/4)n (−ie−ik/4 )n−(ie−ik/4 )n

i 2−1/2 eik/4 2 e−ikn/2 − (−ie−ik/4)n − (ie−ik/4)n

(−ie−ik/4 )n−(ie−ik/4 )n

−i 2−1/2 e−ik/4 2[(−ie−ik/4)n − (ie−ik/4)n] (−ie−ik/4 )n−(ie−ik/4 )n

i 2−1/2 e−ik/4

2 e−ikn/2 − (−ie−ik/4)n − (ie−ik/4)n (−ie−ik/4 )n−(ie−ik/4 )n

−i 2−1/2 eik/4 2 e−ikn/2 + (−ie−ik/4)n + (ie−ik/4)n

⎞⎟⎟⎠. (26)

Now, we will consider the case of k = rπ/s, for various
choices of integral values of r and s. It will be proved that if r

is odd then the time period of quantum correlations is T = 4s,
otherwise it is T = 2s.

FIG. 7. (top) Concurrence (C12) between any two qubits and
(bottom) Meyer and Wallach Q measure for j = 2. It is color coded
using the color map shown by the side.

Odd r: If r is odd integer and time n = 4s, Eq. (26)
simplifies to

U 4s =
⎛⎝0 0 1

0 −1 0
1 0 0

⎞⎠. (27)

Thus, U 4s[a, b, c]T = [c,−b, a]T . In the two-qubit basis, this
becomes

c|1〉1|1〉2 − (b/
√

2)(|1〉1|0〉2 + |0〉1|1〉2) + a|0〉1|0〉2. (28)

Now, this can be rewritten in the following form:

(σz ⊗ σz)(σx ⊗ σx )(a|1〉1|1〉2

+(b/
√

2)(|1〉1|0〉2 + |0〉1|1〉2) + c|0〉1|0〉2). (29)

Hence, [c,−b, a]T = (σz ⊗ σz)(σx ⊗ σx )[a, b, c]T implying
that the two states are related to each other by local unitary
transformation supporting the claim for the periodicity of
quantum correlations.

Even r: In the case of even r , using Eq. (26), one obtains

U 2s =

⎛⎜⎜⎝
1−(−1)r/2

2 0 1+(−1)r/2

2

0 −(−1)r/2 0
1+(−1)r/2

2 0 1−(−1)r/2

2

⎞⎟⎟⎠. (30)

There are two cases depending on the value of r . If r is odd
multiple of two, then

U 2s =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, (31)

0 5 10 15 20
j

20

40

60

k m
ax

FIG. 8. Maximum value of chaos parameter kmax = jπ such that
phase-space effects on quantum correlations is unique as a function
of number of qubits j .
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which is an identity matrix implying the periodicity of quan-
tum correlations. If r is even multiple of two, then

U 2s =
⎛⎝0 0 1

0 −1 0
1 0 0

⎞⎠. (32)

Thus, U 2s[a, b, c]T = [c,−b, a]T . In the two-qubit ba-
sis [c,−b, a]T is equal to c|1〉1|1〉2 − (b/

√
2)(|1〉1|0〉2 +

|0〉1|1〉2) + a|0〉1|0〉2. Again using the formula for concur-
rence for two-qubit pure state [29] one obtains 2|b2/2 − ac|
for both the states, thus proving the claimed periodicity of
quantum correlations. It can be shown that the same results
hold true for p = 3π/2.

B. Case of p = π

For p = π the Floquet operator reduces to⎛⎝ 0 0 e−ik/2

0 −1
e−ik/2 0 0

⎞⎠. (33)

Its eigenvalues and eigenvectors are, re-
spectively, given as {−e−ik/2, e−ik/2,−1},
[−1/

√
2, 0, 1/

√
2]T , [1/

√
2, 0, 1/

√
2]T , and [0, 1, 0]T .

Thus, using them the Floquet operator for nth time can be
obtained and is given as follows:

Un = 1

2

⎛⎝α 0 β

0 (−1)n 0
β 0 α

⎞⎠, (34)

where α = (−e−ik/2)
n + (e−ik/2)

n
and β = −(−e−ik/2)

n +
(e−ik/2)

n
. Consider the case of chaos parameter k = rπ/s. It

will be proved that if r is odd then the time period of quantum
correlations is T = 2s, otherwise, it is T = s.

Odd r: In this case using Eq. (34), one obtains

U 2s =
⎛⎝−1 0 0

0 1 0
0 0 −1

⎞⎠. (35)

It can be seen that U 2s is a diagonal matrix and it is shown
in an identical case in Sec. IV that quantum correlations
are invariant under its action. Apart from this periodicity of
2s additional temporal periodicity is also found. For initial
separable state the quantum correlations at times t = s + l

and t = s − l are same for 1 � l � s − 1. This argument can
be extended to t > 2s. Details of the derivation of this result
are given in Appendix A.

Even r: Consider the case of even r which implies odd s.
It will be now shown that the period is s. Using Eq. (34), one
obtains

Us =
⎛⎝0 0 ir

0 −1 0
ir 0 0

⎞⎠. (36)

Thus, if r is odd multiple of 2 then Us[a, b, c]T =
[−c,−b,−a] otherwise Us[a, b, c]T = [c,−b, a]. It can be
seen easily that the concurrence for both the state is 2|b2/2 −
ac| proving the claimed periodicity.

In this case, apart from this periodicity of s, additional
temporal periodicity is found. For the initial separable
state the quantum correlations at times (s − 2l − 1)/2 and
(s + 2l + 1)/2 are same for 1 � l � (s − 3)/2. Details of
the derivation of this result are given in Appendix B. It can
be shown that the same results holds true for p = 0 and 2π .
It should be pointed here that no such time periodicity was
observed for j > 1 (as also shown in Fig. 4, 5, 6, and 7) even
if t 
 1. It should also be pointed that these periodicities in
k, and that of time for the case j = 1, of quantum correlations
are of purely quantum origin and are independent of the
underlying classical phase space.

VII. SUMMARY

Quantum kicked top is a fundamental model of Hamilto-
nian chaos and has been realized experimentally in various
distinct test-beds, namely, the hyperfine states of cold atoms,
coupled superconducting qubits and recently in a two-qubit
system using Nuclear Magnetic Resonance techniques [50].
This model advantage that it can be represented in terms
of qubits and lends itself naturally to theoretical studies
on the connections between quantum correlation measures
and classical dynamical properties. With increasing interest
in the experimental results using quantum kicked top [4,5],
this paper presents new results on the periodic behavior of
quantum correlation measures (using j spins to represent
the kicked top) as a function of either time or kick strength
when certain conditions are satisfied. Due to the periodicity
of quantum correlations, experimentally it is sufficient to
explore the parameter space corresponding to the basic unit.
This work provides an upper bound on the parameter values
corresponding to this basic unit.

In particular, it is shown analytically as well as demon-
strated numerically that, for a given initial quantum state, the
quantum correlations are periodic in kick strength k with a
period given by κ = 2jπ . A special case of this result was re-
ported in Ref. [7]. Since this is valid for large j , periodicity in
k is seen in the semiclassical limit as well. This has also been
verified through numerical simulations for bipartite measures
of entanglement like the von Neumann entropy, quantum
discord and concurrence. Similar numerical results have also
been obtained for the multipartite entanglement measures
such as 3-tangle and Meyer and Wallah Q measure. The phase
space of the kicked top for any given value of k is isomorphic
to that at −k. This observation, when combined with the
periodicity of κ = 2jπ shows that the unique signatures of
phase space are obtained only in the range [0, jπ ]. This can
guide experimental implementations of the kicked top on the
appropriate choice of parameters, given the value of j .

Temporal periodicity of quantum correlations are analyti-
cally shown to arise for j = 1 (two qubit case) if k = rπ/s,
where r and s are integers if the angular frequency p can take
any of the values from the set {0, π/2, π, 3π/2, 2π}. In the
case of p = π/2, the period is shown to be T = 4s for odd
r otherwise it is T = 2s, whereas for p = π the period is
shown to be T = 2s for odd r otherwise it is T = s. In the
case of p = π (same results hold true for p = 2π ) additional
temporal periodicity are proved. If the initial state is separable
then for odd r it is shown that quantum correlations are same
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at t = s + l and t = s − l such that 1 � l � s − 1. Whereas
the same is true for even values of r at times (s − 2l − 1)/2
and (s + 2l + 1)/2 such that 1 � l � (s − 3)/2. These results
can be extended for times longer than the respective time
periods T .

The case of j = 1 has one more experimental implication.
Kicked top experiments are limited by the coherence time τcoh,
which is typically not large. The entire experiment including
the readout should be completed by this timescale. If k =
rπ/s and p is chosen from the set {0, π/2, π, 3π/2, 2π},
then the period T of quantum correlations as a function of
time is known from the results obtained in this work. Thus,
the relevant timescale for the experiments is min(τcoh, T ).
This implies that in some cases T can be made smaller than
τcoh effectively improving the reliability of the experimental
results.
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APPENDIX A: DERIVATION OF ADDITIONAL
TEMPORAL PERIODICITY FOR p = π AND ODD r

In this Appendix additional temporal periodicity for p = π

and for odd r in the value of k = rπ/s will be proved. It will
be proved that if the initial state [a, b, c]T is separable then the
quantum correlations at time t = s + l and t = s − l are same
for 1 � l � s − 1. We will restrict ourselves to time interval
[0, 2s] and the argument can be extended to t > 2s. Consider
the case of odd l. Then, s ± l will be odd. Thus, using Eq. (34)
one obtains

Us±l =

⎛⎜⎝ 0 0 e−ir (s±l)π/2s

0 −1 0

e−ir (s±l)π/2s 0 0

⎞⎟⎠. (A1)

This implies

Us±l[a, b, c]T = [c e−ir (s±l)π/2s ,−b, a e−ir (s±l)π/2s]. (A2)

This can be written in the two-qubit basis as follows:

c e−ir (s±l)π/2s |1〉1|1〉2 − (b/
√

2)(|1〉1|0〉2 + |0〉1|1〉2)

+ a e−ir (s±l)π/2s |0〉1|0〉2. (A3)

Concurrences for 2-qubit pure states in Eq. (A3) are
2|b2/2 − a c e−i r (s±l)π/s |. Since the initial state [a, b, c]T is
separable the concurrence formula gives ac = b2/2, the con-
currence becomes

2|ac| |1 − e−ir (s±l)π/s | = 2|ac|
√

2[1 − cos (rπ ± rlπ/s)].

(A4)

The cosines of both these angles are same since they are
reflection of each other about x axis. Similarly, it can be
shown for even l that the quantum correlations at times t =
s + l and t = s − l are same.

APPENDIX B: DERIVATION OF ADDITIONAL
TEMPORAL PERIODICITY FOR p = π AND EVEN r

In this Appendix additional temporal periodicity for p = π

and for even r in the value of k = rπ/s will be proved. It
will be proved that if the initial state [a, b, c]T is separable
then the quantum correlations at times (s − 2l − 1)/2 and
(s + 2l + 1)/2 are same for 1 � l � (s − 3)/2. Consider the
case of even (s − 2l − 1)/2 which implies (s + 2l + 1)/2 is
odd since the difference between them is 2l + 1. Thus, using
Eq. (34), one obtains

U (s−2l−1)/2 =
⎛⎝e−ir (s−2l−1)π/(4s) 0 0

0 1 0
0 0 e−ir (s−2l−1)π/(4s)

⎞⎠,

(B1)

whereas

U (s+2l+1)/2 =
⎛⎝ 0 0 e−ir (s+2l+1)π/(4s)

0 −1 0
e−ir (s+2l+1)π/(4s) 0 0

⎞⎠.

(B2)

This gives

U (s−2l−1)/2[a, b, c]T

= [a e−ir (s−2l−1)π/(4s), b, c e−ir (s−2l−1)π/(4s)]T , (B3)

while

U (s+2l+1)/2[a, b, c]T

= [c e−ir (s+2l+1)π/(4s),−b, a e−ir (s+2l+1)π/(4s)]T . (B4)

The concurrence for these states are then

2|b2/2 − a c e−ir (s−2l−1)π/(2s)| and

2|b2/2 − a c e−ir (s+2l+1)π/(2s)|,

respectively. Since the initial state [a, b, c]T is separable
implies ac = b2/2. Then the concurrences becomes

2|ac| |1 − e−ir (s−2l−1)π/(2s)| and

2|ac| |1 − e−ir (s+2l+1)π/(2s)|,

respectively, which can be written as

2
√

2|ac| |1 − cos [r (s − 2l − 1)π/(2s)]| and

2
√

2|ac| |1 − cos [r (s + 2l + 1)π/(2s)]|,

respectively. It can be seen that for r even
cos [r (s − 2l − 1)π/(2s)] and cos [r (s + 2l + 1)π/(2s)]
are equal since the angles are reflection of each other
about x axis. Similarly, this result can be proved for odd
(s − 2l − 1)/2.

052228-10



PERIODICITY OF QUANTUM CORRELATIONS IN THE … PHYSICAL REVIEW E 98, 052228 (2018)

[1] F. Haake, J. Mod. Opt. 47, 2883 (2000).
[2] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S.

Jessen, Nature 461, 768 (2009).
[3] U. T. Bhosale and M. S. Santhanam, Phys. Rev. E 95, 012216

(2017).
[4] M. Kumari and S. Ghose, Phys. Rev. E 97, 052209 (2018).
[5] V. Madhok, S. Dogra, and A. Lakshminarayan, Opt. Commun.

420, 189 (2018).
[6] S. Dogra, V. Madhok, and A. Lakshminarayan,

arXiv:1808.07741 (2018).
[7] J. B. Ruebeck, J. Lin, and A. K. Pattanayak, Phys. Rev. E 95,

062222 (2017).
[8] A. Piga, M. Lewenstein, and J. Q. Quach, arXiv:1804.10543

(2018).
[9] M. Lombardi and A. Matzkin, Phys. Rev. E 83, 016207 (2011).

[10] S. Ghose, R. Stock, P. Jessen, R. Lal, and A. Silberfarb, Phys.
Rev. A 78, 042318 (2008).

[11] P. A. Miller and S. Sarkar, Phys. Rev. E 60, 1542 (1999).
[12] A. Lakshminarayan, Phys. Rev. E 64, 036207 (2001).
[13] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. Lett.

89, 060402 (2002).
[14] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. E 69,

016201 (2004).
[15] G. Stamatiou and D. P. K. Ghikas, Phys. Lett. A 368, 206

(2007).
[16] L. J. Fiderer and D. Braun, Nat. Commun. 9, 1351 (2018).
[17] V. Madhok, V. Gupta, D.-A. Trottier, and S. Ghose, Phys. Rev.

E 91, 032906 (2015).
[18] H. Fujisaki, T. Miyadera, and A. Tanaka, Phys. Rev. E 67,

066201 (2003).
[19] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.

Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al.,
Nat. Phys. 12, 1037 (2016).

[20] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Phys. Rev. A 53, 2046 (1996).

[21] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement (Cambridge Univer-
sity Press, Cambridge, 2006).

[22] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
(2001).

[23] L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34, 6899
(2001).

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2000).

[25] A. Datta, Ph.D. thesis, The University of New Mexico, 2008,
arXiv:0807.4490; arXiv:1003.5256 (2010).

[26] W. H. Zurek, Ann. Phys. (Berlin) 9, 855 (2000).
[27] V. Madhok and A. Datta, Phys. Rev. A 83, 032323 (2011).
[28] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[29] W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).
[30] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.

80, 517 (2008).
[31] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[32] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022

(1997).
[33] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 (2000).
[34] U. T. Bhosale and A. Lakshminarayan, Phys. Rev. A 94, 022344

(2016).
[35] D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273

(2002).
[36] A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71,

062334 (2005).
[37] J. Karthik, A. Sharma, and A. Lakshminarayan, Phys. Rev. A

75, 022304 (2007).
[38] W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola, Phys.

Rev. E 77, 021106 (2008).
[39] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. A 71, 053804

(2005).
[40] G. K. Brennen, Quantum Inf. Comput. 3, 619 (2003).
[41] A. J. Scott, Phys. Rev. A 69, 052330 (2004).
[42] D. J. Griffiths, Introduction to Quantum Mechanics (Cambridge,

India, 2016).
[43] H. Ming-Liang and X. Xiao-Qiang, Chin. Phys. B 17, 3559

(2008).
[44] F. Haake, M. Kus, and R. Scharf, Z. Phys. B 65, 381

(1987).
[45] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.

Rev. A 6, 2211 (1972).
[46] R. J. Glauber and F. Haake, Phys. Rev. A 13, 357 (1976).
[47] R. R. Puri, Mathematical Methods of Quantum Optics (Springer,

Berlin, 2001).
[48] F. Haake, Quantum Signatures of Chaos, 3rd ed. (Springer,

Berlin, 2010).
[49] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[50] V. R. Krithika, V. S. Anjusha, U. T. Bhosale, and T. S. Mahesh,

arXiv:1810.11963 (2018).

052228-11

https://doi.org/10.1080/09500340008232203
https://doi.org/10.1080/09500340008232203
https://doi.org/10.1080/09500340008232203
https://doi.org/10.1080/09500340008232203
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1103/PhysRevE.95.012216
https://doi.org/10.1103/PhysRevE.95.012216
https://doi.org/10.1103/PhysRevE.95.012216
https://doi.org/10.1103/PhysRevE.95.012216
https://doi.org/10.1103/PhysRevE.97.052209
https://doi.org/10.1103/PhysRevE.97.052209
https://doi.org/10.1103/PhysRevE.97.052209
https://doi.org/10.1103/PhysRevE.97.052209
https://doi.org/10.1016/j.optcom.2018.03.069
https://doi.org/10.1016/j.optcom.2018.03.069
https://doi.org/10.1016/j.optcom.2018.03.069
https://doi.org/10.1016/j.optcom.2018.03.069
http://arxiv.org/abs/arXiv:1808.07741
https://doi.org/10.1103/PhysRevE.95.062222
https://doi.org/10.1103/PhysRevE.95.062222
https://doi.org/10.1103/PhysRevE.95.062222
https://doi.org/10.1103/PhysRevE.95.062222
http://arxiv.org/abs/arXiv:1804.10543
https://doi.org/10.1103/PhysRevE.83.016207
https://doi.org/10.1103/PhysRevE.83.016207
https://doi.org/10.1103/PhysRevE.83.016207
https://doi.org/10.1103/PhysRevE.83.016207
https://doi.org/10.1103/PhysRevA.78.042318
https://doi.org/10.1103/PhysRevA.78.042318
https://doi.org/10.1103/PhysRevA.78.042318
https://doi.org/10.1103/PhysRevA.78.042318
https://doi.org/10.1103/PhysRevE.60.1542
https://doi.org/10.1103/PhysRevE.60.1542
https://doi.org/10.1103/PhysRevE.60.1542
https://doi.org/10.1103/PhysRevE.60.1542
https://doi.org/10.1103/PhysRevE.64.036207
https://doi.org/10.1103/PhysRevE.64.036207
https://doi.org/10.1103/PhysRevE.64.036207
https://doi.org/10.1103/PhysRevE.64.036207
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1016/j.physleta.2007.04.003
https://doi.org/10.1016/j.physleta.2007.04.003
https://doi.org/10.1016/j.physleta.2007.04.003
https://doi.org/10.1016/j.physleta.2007.04.003
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1103/PhysRevE.91.032906
https://doi.org/10.1103/PhysRevE.91.032906
https://doi.org/10.1103/PhysRevE.91.032906
https://doi.org/10.1103/PhysRevE.91.032906
https://doi.org/10.1103/PhysRevE.67.066201
https://doi.org/10.1103/PhysRevE.67.066201
https://doi.org/10.1103/PhysRevE.67.066201
https://doi.org/10.1103/PhysRevE.67.066201
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
http://arxiv.org/abs/arXiv:0807.4490
http://arxiv.org/abs/arXiv:1003.5256
https://doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K
https://doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K
https://doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K
https://doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K
https://doi.org/10.1103/PhysRevA.83.032323
https://doi.org/10.1103/PhysRevA.83.032323
https://doi.org/10.1103/PhysRevA.83.032323
https://doi.org/10.1103/PhysRevA.83.032323
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://dl.acm.org/citation.cfm?id=2011326.2011329
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.94.022344
https://doi.org/10.1103/PhysRevA.94.022344
https://doi.org/10.1103/PhysRevA.94.022344
https://doi.org/10.1103/PhysRevA.94.022344
https://doi.org/10.1063/1.1497700
https://doi.org/10.1063/1.1497700
https://doi.org/10.1063/1.1497700
https://doi.org/10.1063/1.1497700
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevA.75.022304
https://doi.org/10.1103/PhysRevA.75.022304
https://doi.org/10.1103/PhysRevA.75.022304
https://doi.org/10.1103/PhysRevA.75.022304
https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevA.71.053804
https://doi.org/10.1103/PhysRevA.71.053804
https://doi.org/10.1103/PhysRevA.71.053804
https://doi.org/10.1103/PhysRevA.71.053804
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1007/BF01303727
https://doi.org/10.1007/BF01303727
https://doi.org/10.1007/BF01303727
https://doi.org/10.1007/BF01303727
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.13.357
https://doi.org/10.1103/PhysRevA.13.357
https://doi.org/10.1103/PhysRevA.13.357
https://doi.org/10.1103/PhysRevA.13.357
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
http://arxiv.org/abs/arXiv:1810.11963

