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Autoresonance in a strongly nonlinear chain driven at one end
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This work examines the emergence of autoresonance (AR) in a one-dimensional chain of strongly nonlinear
oscillators subjected to a harmonic force with a slowly varying frequency applied at the end of the chain.
The dynamics of the chain is studied assuming 1:1 (fundamental) resonance, when the response of each
nonlinear oscillator has a dominant harmonic component with the frequency close to the frequency of the
external excitation. Explicit asymptotic equations describing the amplitudes and the phases of the oscillations
are derived. These equations demonstrate that, in contrast to the chain with a linear attachment, the strongly
nonlinear chain can be entirely captured into resonance provided that its structural and excitation parameters
exceed certain critical thresholds but the frequency detuning rate is small enough. It is shown that at large times
the amplitudes of all oscillators captured into AR converge to a common monotonically growing quasisteady
backbone curve. This implies asymptotic equipartition of energy between the oscillators under the condition of
AR. Numerical simulations have been performed for two-, four-, and 12-particle arrays with fixed forcing and
coupling parameters and different detuning rates. The obtained results demonstrate the existence of two intervals
of the rate’s values corresponding to AR and small-amplitude oscillations in the entire chain, respectively, and a
narrow gap between these two intervals, wherein each oscillator may escape from resonance individually or in
combination with neighboring particles. This implies a negligibly small interval of energy localization in a part
of the chain adjacent to the source of energy compared to the interval of the emergence of AR in the entire chain.
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I. INTRODUCTION

In this work we examine the emergence of autoresonance
(AR) in a one-dimensional strongly nonlinear chain. The
chain is driven by a harmonic force with a slowly varying
frequency applied to the first oscillator. We recall that a large
class of systems exhibits AR due to an intrinsic property of a
nonlinear oscillator to change both its amplitude and natural
frequency when the driving frequency changes. This means
that an oscillator may remain persistently captured into res-
onance with its drive if the driving frequency, being initially
close or equal to the natural frequency of the oscillator, varies
slowly in time to be consistent with the slowly changing
frequency of the oscillator. The ability of a nonlinear oscillator
to stay captured into resonance due to variance of its structural
or/and excitation parameters is known as autoresonance (AR).
It is important to note that AR leads to a persistently growing
mean amplitude of oscillations, and thus, this process may be
employed to attain the required energy level.

After first studies in the fields of particle acceleration [1–3]
and planetary dynamics [4,5], a large number of theoretical
approaches, experimental results, and applications of AR in
different fields of natural science have been reported in the
literature (e.g., [6–8], and references therein). The derived
methods and results further motivate the development of the
theory and experiments for more complicated processes, such
as excitations of plasma waves [9–11], particle transport in
a weak external field with the slowly changing frequency
[12,13], energy conversion [14], control of nanoparticles [15],
etc.

Since there are a small number of nonlinear equations for
which analytic solutions are available, most of the above-

mentioned results have been obtained with the help of numer-
ical or/and experimental modeling. In most of these studies,
AR in the forced oscillator was considered as an effective
tool for exciting high-energy oscillations in the entire system.
However, recent results [16–19] have shown that this principle
is not universal because capture into resonance of a multi-
particle chain is a much more complicated phenomenon than
a similar effect for a single oscillator, and the emergence of
AR in coupled oscillators directly depends on the structure of
the chain. The occurrence of AR in quasilinear Klein-Gordon
chains was investigated analytically and numerically in recent
works [18,19]. The purpose of this work is to investigate the
emergence of AR in a multiparticle strongly nonlinear chain
driven by a periodic force with slowly varying frequency
applied at one end of the chain. This study is motivated by
the results earlier obtained for a resonant anharmonic chain
driven by a periodic force with a constant frequency [20].

Although an anharmonic oscillator does not possess a
natural frequency independent of the energy of the oscilla-
tions, the most effective energy transport in the nonlinear
chain occurs due to 1:1 (fundamental) resonance, when the
response of the chain is approximately monochromatic with
the frequency close to the excitation frequency (see, e.g.,
[21]). This assumption allows the reduction of the original
nonlinear equations to the formally quasilinear system, with
further applications of the well-developed multiple-scale and
averaging procedures [22,23]. In this work, a similar approach
is extended to the analysis of AR in the chain driven by a
harmonic force with a slowly varying frequency.

Section II introduces the equations of the chain dynam-
ics. The small parameter of the system is defined as the
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dimensionless coupling strength. Rearranging the equations
of motion to the form convenient for the analysis of 1:1
resonance and applying the multiple timescale formalism, we
obtain the averaged equations for the slowly varying ampli-
tudes and phases of resonant oscillations. Then we calculate
the quasisteady amplitudes, which can be interpreted as the
backbone curves of oscillators. Both analytical and numerical
simulations show that the quasisteady amplitudes converge
to a slowly increasing smooth backbone curve common for
all oscillators, and amplitudes of all particles fluctuate about
this curve. This effect demonstrates asymptotic equipartition
of energy between all oscillators under the condition of AR.

In Sec. III the derived averaged equations are used to deter-
mine the parametric domain, in which stable AR may occur.
Note that not only admissible coupling parameters and forcing
amplitudes but also the critical detuning rate is estimated
for a basic single oscillator. Examples of a single oscillator
and a pair of coupled oscillators [16,24] have demonstrated
that the critical detuning rate requires additional numerical
verification.

Numerical results in Sec. IV have been obtained for two-,
four-, and 12-particle arrays with admissible fixed coupling
and forcing parameters and different detuning rates. Numer-
ical results demonstrate the existence of two intervals of
the rate’s values corresponding to AR and small-amplitude
oscillations in the entire chain, respectively. The width of a
gap between these two intervals, in which each oscillator may
escape from resonance individually or in combination with
neighboring particles, is on the order of 0.1% of the length of
the first interval. Concluding remarks are collected together in
the last section.

II. MODEL

We examine the emergence of autoresonance (AR) in
a one-dimensional chain consisting of n identical weakly
linearly coupled cubic oscillators. The chain is driven by a
harmonic force with a slowly varying frequency applied to
the first oscillator. The chain dynamics is governed by the
equations

d2Ur

dt2
+ γU 3

r + k[ηr,r−1(Ur − Ur−1)

+ ηr,r+1(Ur − Ur+1)] = Ar sin θ,

dθ

dt
= ω + ζ (t ); ζ (t ) = kt, (1)

where Ur denotes the absolute displacement of the rth os-
cillator from its rest state, r ∈ [1, n]; γ is the cubic stiffness
coefficient; κ is the coefficient of linear coupling; all param-
eters are reduced to unit mass. The coefficients ηr,l = {1, l ∈
[1, n]; 0, l = 0, l = n + 1} indicate that the edge oscillators
are unilaterally coupled with the adjacent elements. Since the
harmonic excitation is applied only to the first oscillator, we
let A1 = A,Ar = 0 at r � 2. The chain is assumed to be
initially at rest; i.e., Ur = 0, Vr = dUr/dt = 0 at t = 0 for all
oscillators. Recall that the initial rest state determines the so-
called limiting phase trajectory (LPT) [25] corresponding to
maximum possible energy transfer from the source of energy
to the excited oscillator.

For further analysis, it is convenient to reduce (1) to the
dimensionless form, which has a simpler structure than (1).
Assuming weak coupling, we introduce the small parameter
of the system ε = κ/(2ω2) � 1, where κ/ω2 = 2ε is the
dimensionless coupling strength. The dimensionless variables
are defined as ur = α1/2Ur , where α = 3γ /4ω2; the dimen-
sionless fast and slow timescales are given by τ0 = ωt and
τ = ετ0, respectively. The forcing amplitude f and detuning
rate β are defined by formulas 2εf = α1/2A/ω2, ε2β = k/ω2.
Substituting the new variables and parameters into (1), we
obtain the following dimensionless equations:

d2ur

dτ 2
0

+ 4

3
u3

r + 2ε[ηr,r−1(ur − ur−1) + ηr,r+1(ur − ur+1)]

= 2εfr sin θ,
dθ

dτ0
= 1 + εζ0(τ ), ζ0(τ ) = βτ, (2)

where the amplitude fr of the driving force is nonzero only
at r = 1 but fr = 0 at r ∈ [2, n]. Although the generating
nonlinear system d2ur

dτ 2
0

+ 4
3u3

r = 0 does not possess a spectrum
independent of the energy of the oscillations, intense energy
transport in (2) is studied under the assumption of 1:1 (funda-
mental) resonance, i.e., under the condition that the response
of each oscillator in the chain has a dominant harmonic com-
ponent with the frequency close to the excitation frequency.
Under this assumption, the equations of resonant oscillations
are rewritten as

d2ur

dτ 2
0

+ ur + 2ε

[
σ

(
4

3
u3

r − ur

)
+ ηr,r−1(ur − ur−1)

+ ηr,r+1(ur − ur+1)

]
= 2εfr sin θ,

dθ

dτ0
= 1 + εζ0(τ ),

(3)

where 2εσ = 1. Since the equations in system (3) are formally
quasilinear, the earlier developed methods [18,19] can be ap-
plied to the study of the resonant behavior of the anharmonic
chain. To this end, the following complex-valued envelopes
are introduced:

ψr =
(

dur

dτ0
+ iur

)
e−iθ , ψ∗

r =
(

dur

dτ0
− iur

)
eiθ . (4)

It follows from (4) that the real-valued dimensionless am-
plitudes and phases of oscillations are expressed as ãr = |ψr |
and �̃r = argψr , respectively. Substituting (4) into (3), we
derive the following (still exact) equations for the envelopes
ψr :

dψr

dτ0
= iε[σ (|ψr |2 − 1)ψr − ζ0(τ )ψr + ηr,r−1(ψr − ψr−1)

+ ηr,r+1(ψr − ψr+1) − fr + Gr ] (5)

and similar equations for the complex-conjugate variables ψ∗
r ,

r ∈ [1, n]. The system is initially at rest, that is, ψr (0) =
ψ∗

r (0) = 0. The coefficients Gr include higher harmonics in
θ with coefficients depending on the components of the fast
vectors ψ and ψ∗. As shown in [18,19], explicit expressions
of these coefficients are insignificant for further analysis.
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The multiple timescale approach [22] is employed to con-
struct asymptotic approximations to the solutions of (5). To
this end, the following asymptotic decomposition is intro-
duced:

ψr (τ0, τ, ε) = ψ (0)
r (τ ) + εψ (1)

r (τ0, τ ) + O(ε2). (6)

The straightforward averaging of (5) with respect to the fast
time τ0 yields the following equations for the leading-order
slow terms ψ (0)

r (τ ):

dψ (0)
r

dτ
= i

[
σ
(∣∣ψ (0)

r

∣∣2 − 1
)
ψ (0)

r − ζ0(τ )ψ (0)
r

+ηr,r−1

(
ψ (0)

r −ψ
(0)
r−1

)
+ ηr,r+1

(
ψ (0)

r −ψ
(0)
r+1

)
−fr

]
(7)

and similar equations for the complex-conjugate variables.
Note that, in contrast to Eq. (5), the averaged equations do
not contain the periodic in θ coefficients, and the solution
of system (7) represents the slowly varying vector function
ψ (0)(τ ) with components ψ (0)

r (τ ).
Finally, the change of variables,

ψ (0)
r = are

i�r , ar = ∣∣ψ (0)
r

∣∣, �r = argψ (0)
r , (8)

transforms (7) into the following equations:

dar

dτ
= [ηr,r−1ar−1 sin (�r−1 − �r )

+ ηr,r+1ar+1 sin (�r+1 − �r )] − fr sin �r ,

ar

d�r

dτ
= σ

(
a2

r − 1
)
ar − ζ0(τ )ar

+{ηr,r−1[ar − ar−1 cos(�r−1 − �r )]

+ ηr,r+1[ar − ar+1 cos (�r+1 − �r )]} − fr cos �r ,

(9)

with initial amplitudes ar (0) = 0 and uncertain initial phases
�r (0), r ∈ [1, n]. To overcome this uncertainty, one needs to
solve the nonsingular complex-valued equations in system (7)
with fixed initial conditions and then calculate the real-valued
amplitudes and phases by the formulas in Eq. (8).

Numerical results presented below have been obtained
from the regular equations in (7). We note that Eqs. (7) and
(9) at ζ0(τ ) = 0 coincide with similar equations for the slow
envelopes in the system driven by a harmonic excitation with
a constant frequency [20].

It was recently demonstrated [18,19] that the AR ampli-
tudes in the quasilinear chain can be depicted as the su-
perposition of fast oscillations on the adiabatically varying
backbone curves. We show that this result remains valid for
the anharmonic system. The quasisteady solutions ār , �̄r of
(9) satisfy the equations

Pr = dar

dτ
= 0, Qr = d�r

dτ
= 0, r ∈ [1, n]. (10)

The equality Pn = 0 implies that sin(�n − �n−1) = 0.
Substituting the latter equality into the condition Pn−1 = 0 we
then have sin(�n−1 − �n−2) = 0. Repeating this procedure
for each equation Pr = 0, we obtain sin(�r − �r−1) = 0,
sin �1 = 0. This means that either �r = 0 (mod 2π ) or

�r = −π (mod 2π ), r ∈ [1, n]. The analysis of the varia-
tional equations linearized near ār , �r proves that, in analogy
to a single oscillator, the phases �r = 0 (mod 2π ) correspond
to the stable AR. Quasisteady amplitudes ār corresponding to
AR in the entire chain are defined by the following equations:

σ
(
a2

1 − 1
)
a1 − ζ0(τ )a1 + (a1 − a2) − f = 0,

σ
(
a2

r − 1
)
ar − ζ0(τ )ar + (2ar − ar−1 − ar+1) = 0,

r ∈ [2, n − 1],

σ
(
a2

n − 1
)
an − ζ0(τ )an + (an − an−1) = 0, (11)

with the solutions

ā1(τ ) = ρε(τ ) + ε

(
f

ρ2
ε (τ )

)
+ ε2O

[
f

ρ5
ε (τ )

]
,

ār (τ ) = ρε(τ ) + εrO

[
f

ρ2r
ε (τ )

]
, r ∈ [2, n − 1], (12)

where the leading-order term ρε(τ ) = [1 + 2εζ0(τ )]1/2 ap-
proximates the backbone curve identical for all oscillators.
Since ρε(τ ) → ∞ as τ → ∞, it follows from (12) that the
higher-order corrections may be ignored, and ār (τ ) → ρε(τ )
at large times (see Fig. 2). This implies that energy initially
placed in the first oscillator approaches equipartition among
all particles at large times. This conclusion is illustrated below
by the results of numerical simulations.

III. CRITICAL PARAMETERS

In this section we demonstrate that, in contrast to the array
with a linear attachment [17], a proper choice of the structural
and excitation parameters guarantees the emergence of AR
in the anharmonic chain. Since the coupling response acts
as an external excitation with respect to the attachment, the
emergence of AR in the forced oscillator can be considered
as a necessary condition of capture into resonance of the
entire chain. This means that the threshold values of the
parameters ε and f can be found assuming small oscillations
of the attachment. This means that the problem can be reduced
to the analysis of (7) under the conditions |ψ1| ∼ O(1) but
|ψr | ∼ o(1), r ∈ [2, n]. Under this assumption, the equations
of the excited oscillator are approximated as follows:

da1

dτ
= −f sin �1,

a1
d�1

dτ
= σ

(
a2

1 − 1
)
a1 − ζ0(τ )a1 + a1 − f cos �1. (13)

It was shown in earlier work [24] that the envelope a1(τ )
for sufficiently small τ is very close to the LPT of a similar
time-independent system with ζ0(τ ) = 0. Thus the first step
towards analyzing AR is the study of the transition from small
to large oscillations in the underlying system with a constant
excitation frequency. The equations of the excited oscillator at
ζ0 = 0 are given by

da1

dτ
= −f sin �1,

a1
d�1

dτ
= σ

(
a2

1 − 1
)
a1 + a1 − f cos �1, (14)
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FIG. 1. Parametric boundaries (15) and (16): all particles with
parameters (ε, f ) ∈ D execute small oscillations; the entire chain
with parameters (ε, f ) ∈ D0 is captured into resonance; if (ε, f ) ∈
D1, then the forced oscillator is captured into resonance but the
dynamics of the attachment should be investigated separately.

with initial condition a1(0) = 0, � = −π/2 corresponding to
the LPT of the oscillator (14). Note that the truncated model,
which ignores the effect of the entire attachment including
the connection with the second oscillator, was investigated in
[26]. Equation (14) gives a more adequate approximation for
the resonant dynamics of the excited oscillator regarding the
effect of the attachment.

It was shown [25] that the transition from small to large
oscillations in the system being initially at rest occurs due to
the loss of stability of the LPT of small oscillations at a critical
value f = f1ε of the forcing amplitude. The domain of large
oscillations is defined as

f > f1ε =
√

(1 − 2ε)3/54ε2. (15)

[Inequality (15) is derived in the Appendix.] It is clearly seen
that the threshold f1ε decreases with increasing values of the
parameter ε.

The next step is to define the admissible values of the
parameter ε, which yield the coupling response sufficient to
sustain resonance in the rth oscillator under the condition of
resonance in the previous oscillator and small oscillations of
the subsequent oscillator. Reproducing the arguments from
[20], we derive the constraint,

ε > εcr = 0.125. (16)

Conditions (15) and (16) are presented in Fig. 1. It was
recently shown [20] that the particles with parameters (e,f ) ∈
D perform small oscillations; the entire chain with parame-
ters (e, f ) ∈ D0 is captured into resonance. If (e, f ) ∈ D1,
then the forced oscillator is captured into resonance but the
dynamics of the attachment should be investigated separately.
Recall that conditions (15) and (16) adequately describe a
parametric boundary between small and large oscillations in
the system with constant excitation frequency [20]. In this
paper, we show that these results cannot be directly extended
to the arrays with a slowly varying excitation frequency,
whose dynamics depends on the detuning rate β.

The emergence of AR also depends on the critical detuning
rate β∗, at which the transition from bounded to unbounded

0 1 2 3 4 5 6 7 88
0

0.5

1

1.5

a 1

 

 

 =0
 = 0.04
 =0.08

0
*= 0.066

T*

FIG. 2. Response amplitudes of oscillators (13), (14), and (17)
with parameters (ε = 0.13, f = 0.7) ∈ D0 and different detuning
rates β. The inflection point T ∗ ≈ 1.65 for the LPT of oscillator (14)
(solid line) is close to the inflection point for the adiabatic system
(13) at β = 0.04 (dotted line).

oscillations takes place. The response amplitudes of oscil-
lators (13) and (14) with parameters (ε = 0.13 > εcr, f =
0.7) ∈ D0 and different detuning rates β are presented in
Fig. 2. For comparison, Fig. 2 also depicts the response
amplitude of the time-invariant oscillator with the “frozen”
detuning:

da1

dτ
= −f sin �1,

a1
d�1

dτ
= σ

(
a2

1 − 1
)
a1 − ζ ∗

0 a1 + a1 − f cos �1, (17)

with the constant parameter ζ ∗
0 = βT ∗, where T ∗ is an

instant of inflection for the LPT of the basic oscillator (14)
(Fig. 2). It is seen in Fig. 2 that the LPT of oscillator (14)
has a noticeable inflection at τ = T ∗, and the transitions from
small to large oscillations in the adiabatic system (13) also
take place at τ ≈ T ∗, despite the significant divergence of the
solutions at τ > T ∗.

From Fig. 2, it is seen that the response amplitude of the
examined oscillator (13) (dotted line) lies between the LPTs of
the time-invariant oscillators (14) (solid line) and (17) (dashed
line). This implies that capture into resonance of the model
(17) with the frozen detuning may be considered as a sufficient
condition of the emergence of AR in the original system (13).
Considering ζ0(T ∗) = βT ∗ as a frozen parameter and using
the results from [25], we obtain the following condition of the
emergence of AR in the adiabatic oscillator:

2εβT ∗ < (1 − 2ε)[(f/f1ε )2/3 − 1]. (18)

It follows from (18) that the critical detuning rate β∗ is
given by

β∗ = (1 − 2ε)[(f/f1ε )2/3 − 1]/(2εT ∗). (19)

The condition β < β∗ admits the emergence of AR in the
oscillator (13). An analytical estimate of the inflection time
T ∗ may be obtained in the same way as in [25].
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FIG. 3. Emergence of AR and escape from resonance for a pair of coupled oscillators with parameters (ε = 0.13, f = 0.7) ∈ D0 and
different detuning rate: (a) stable in-phase AR in the entire array at β = 0.02; (b) AR in the excited oscillator and escape from resonance of the
attached oscillator at β = 0.020 550 4; (c) small-amplitude oscillations of both oscillators at β = 0.023. Bold solid lines in plots (a,b) depict
the backbone curves.

Formulas (15), (18), and (19) are derived in the Appendix.
In particular, it is shown that dβ∗/dε > 0 if ε < 1/(

√
2f ).

This means that the critical rate β∗ increases with increasing
coupling strength for sufficiently small values of ε. An exam-
ple is discussed in the Appendix.

Recall that the examination of AR in a single oscillator
and a pair of coupled oscillators [16,24] has shown that the
critical detuning rate requires additional numerical verifica-
tion. To improve the correctness of numerical results for
multiparticle arrays, in practical problems it is convenient to
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FIG. 4. Emergence of AR and escape from resonance in the four-particle chain with parameters (ε = 0.07, f = 2) ∈ D1: (a) AR in the
entire chain at β = 0.056; (b) escape from resonance of the fourth oscillator at β = 0.056 06; (c) escape from resonance of the last two
oscillators at β = 0.0561; (d) AR in the excited oscillator and escape from AR of the three-particle attachment at β = 0.0562; (e) nonresonant
oscillations in the entire chain at β = 0.0563. Bold solid lines in plots (a–d) denote the segments of the backbone curves.
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FIG. 5. Emergence of AR and escape from resonance in the 12-particle chains with parameters (ε = 0.07, f = 2) ∈ D1 and different
detuning rate: (a) AR in the entire chain at β = 0.0172; (b) escape from resonance of the last oscillator at β = 0.017 223; (c) nonresonant
oscillations in the entire chain at β = 0.017 223 4. Bold solid line in plot (a) depicts the backbone curve.

employ the numerically found values of the parameters T ∗
and β∗.

IV. NUMERICAL RESULTS

In this section we present numerical results that help us
understand the influence of the detuning rate on the formation
and sustenance of AR.

A. Two-particle arrays

For brevity, the influence of parameters on the resonant
behavior is studied in detail only for a two-particle chain with
parameter ε = 0.13, f = 0.7, and different detuning rates. It
is easy to check that the parameters (ε, f ) ∈ D0, and a similar
chain at β = 0 is captured into resonance. The emergence of
AR and escape from resonance for the pair of coupled oscilla-
tors with parameters (ε = 0.13, f = 0.7) ∈ D0 and different
detuning is illustrated in Fig. 3.

Numerical simulation illustrates the three types of steady
responses: in-phase AR in both oscillators at β = 0.2; escape
from resonance of the passive attachment at β = 0.205 504;
small-amplitude oscillations of both particles at β = 0.23.

B. Four-particle arrays

Figure 4 illustrates the influence of detuning on the dy-
namical behavior of the four-particle chain with parameters
(ε = 0.07, f = 2) ∈ D1. Figure 4(a) demonstrates stable AR
at small detuning rate; further increase of rate β leads to the
sequential escape from AR of every oscillator in the chain
[Figs. 4(b)–4(e)]. For clarity, the initial interval of irregular
motion is shown only in Fig. 4(e). For the same purpose,
the development of AR and escape from AR are illustrated
in relatively short time intervals, wherein slow variations of
the amplitudes are poorly pronounced but the shape of the
amplitudes and the tendency to in-phase oscillations become
clear. It is important to note that AR emerges in the entire
chain at any rate β � 0.056 but it fails rapidly after the rate
has exceeded a critical threshold.

C. Twelve-particle arrays

Figure 5 illustrates the behavior of the 12-particle chain
with parameters (ε = 0.07, f = 2) ∈ D1 and different detun-
ing rates. For clarity, Figs. 5(a) and 5(b) depict only the
amplitudes of the first and last of the oscillators captured into
resonance. As in the previous example, the initial interval
of irregular motion is shown only for small oscillations in
Fig. 5(c). Note that AR emerges in the entire chain at any rate
β � 0.0172 but all oscillators escape from resonance at β �
0.017 223 4. Escape from resonance of each oscillator individ-
ually or in combination with neighboring particles is defined
by a greater number of decimal places (cf. Figs. 3 and 4).

Figures 3–5 demonstrate a narrow gap between the rate
values which enable either AR or small-amplitude oscillations
in the entire chain. This implies that the interval of the rates
corresponding to escape from resonance of an individual
oscillator is small compared to the interval of energy equipar-
tition in the entire chain, and energy localization cannot be
considered as a dominant factor in the chain dynamics.

V. CONCLUSIONS

In this work, we investigate the emergence and stability
of autoresonance in a strongly nonlinear chain driven at one
end. The chain comprises n identical weakly linearly coupled
cubic oscillators; an external harmonic force with a slowly
increasing frequency is applied to the first oscillator. The
dynamics of the chain is studied under the assumption of
1:1 (fundamental) resonance, i.e., under the condition that
the response of each nonlinear oscillator has a dominant
harmonic component with a frequency close to the excitation
frequency. This implies that the strongly nonlinear resonant
system allows an approximate single-frequency solution with
slowly varying amplitudes and phases. The equations for
the slow variables have been obtained with the help of the
multiple-scale and averaging procedures.

Since the coupling response acts as an external excitation
with respect to the attachment, the emergence of AR in the
forced oscillator can be considered as a necessary condition
of capture into resonance of the entire chain. On the other
hand, the coupling strength should be sufficient to sustain
resonance in a chosen oscillator under the conditions of
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resonance in the previous oscillator. The approximate solution
has demonstrated that the strongly nonlinear chain can be en-
tirely captured into resonance provided that its structural and
excitation parameters exceed certain critical thresholds. Fur-
thermore, the amplitudes of all resonant oscillators converge
to a common monotonically growing quasisteady backbone
curve at large times, thus demonstrating asymptotic equiparti-
tion of energy between the resonant oscillators. If both forcing
and coupling parameters are beyond the admissible domain,
all particles in the chain perform small-amplitude oscillations.
In the intermediate case, when only the coupling strength is
below the critical value, the forced oscillator remains captured
into resonance but the dynamics of the attachment should be
investigated separately. Note that these effects are observed
only in the array with adiabatically varying forcing frequency.
Numerical simulations reveal two intervals of the rate’s values
corresponding to either AR or small-amplitude oscillations in
the entire chain. In a narrow gap between these two intervals
each oscillator may escape from resonance individually or in
combination with neighboring particles.
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APPENDIX

In this Appendix, we derive conditions (15) and (19). It
can be easily verified that Eq. (17) subjected to the initial
condition a1(0) = 0 possesses the integral of motion

H = a1

(
σa3

1 − s

2
a1 − f cos �1

)
= 0, (A1)

where s = σ − 1 + ζ ∗
0 . Equality (A1) determines the LPT of

system (17) on the phase plane (�1, a1). Besides, Eq. (A1)
demonstrates the existence of the two branches of the LPT:
The first branch is a1 ≡ 0; the second branch a1(�1) satisfies

the cubic equation

σa3
1 − s

2
a1 − f cos �1 = 0. (A2)

It follows from (A2) that cos �1(0) = 0 at a1(0) = 0.
Assuming da1/dτ > 0 at τ = 0 we obtain the initial phase
of the LPT as �1(0) = −π/2 at a1(0) = 0.

It follows from the condition of stationarity, da1/dτ = 0,
that the steady phase �̄1 satisfies the equation sin �1 = 0;
that is, �̄1 = 0 or �1 = −π . It was shown in earlier work
[25] that there exists a parametric threshold f = f ∗

1 such
that at f < f ∗

1 the LPT represents an outer boundary for a
set of small-amplitude trajectories encircling the stable center
on the axis �1 = −π , while at f > f ∗

1 the LPT depicts an
outer boundary for large-amplitude trajectories encircling the
stable center on the axis �1 = 0 (Fig. 6). The threshold f ∗

1
is determined through the properties of the discriminant D

corresponding to Eq. (A2) at � = 0 [27]:

D = 36

σ 2

(
f 2 − 2s3

27σ

)
. (A3)

If D < 0, Eq. (A2) has three different real roots; if D > 0,
Eq. (A2) has a single real and two complex-conjugate roots; if
D = 0, two real roots merge [27]. The latter condition yields
the critical value of the forcing amplitude f :

f ∗
1 = (2s3/27σ )1/2 (A4)

(cf. [25]). If the amplitude f is fixed, condition D = 0 deter-
mines the critical value of the parameter s:

s∗ = 3(σf 2/2)1/3. (A5)

The system exhibits small-amplitude oscillations at s > s∗
and large-amplitude resonant oscillations at s < s∗. Substi-
tuting the expressions s = σ + ζ ∗

0 − 1, σ = 1/2ε, ζ ∗
0 = βT ∗

into (A4) and (A5), we obtain the following critical parame-
ters:

f1ε =
√

(1 − 2ε)3/54ε2 at β= 0 (A6)
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FIG. 6. Phase plots of oscillator (17): (a) f = 0.7, T ∗ = 1.65, ε = 0.129; (b) f = 0.7, T ∗ = 1.65, ε = 0.13. The encircling curves starting
at a1 = 0 depict the LPTs. The stable centers on the axes �1 = 0 and �1 = −π are denoted as C+ and C−, respectively. At β = 0.05, the
oscillator performs small oscillations at ε = 0.129 and large oscillations at ε = 0.13.
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and

β∗ = (1 − 2ε)[(f/f1ε )2/3 − 1]/(2εT ∗), β �= 0. (A7)

It was indicated in Sec. III that the condition f > f1ε

determines the domain of large oscillations for the time-
invariant oscillator (14), while the condition β < β∗ admits
the emergence of AR in the adiabatically varying system (13).

It follows from (A5) and (A7) that dζ ∗
0 /dε =

2ε2[1 − (2ε2f 2)1/3], dζ ∗
0 /dε > 0 at 2ε2f 2 < 1. This implies

that the critical detuning rate β∗ increases with an increase of
the coupling parameter ε provided that ε is small enough.

The numerical results depicted in Fig. 6 indicate that the
shape of the LPT in the frozen model (17) slightly depends on
β but the critical value β∗ is very sensitive to the change of the
coupling parameter ε. Figure 6 demonstrates the phase plots
of oscillators (17) with parameters ε = 0.13, f = 0.7 [plot
(a)] and ε = 0.129, f = 0.7 [plot (b)]. The encircling curves
starting at a1 = 0 depict the LPTs. Formula (A5) determines
the following critical parameters: β∗ = 0.044 at ε = 0.129,
β∗ = 0.058 at ε = 0.13. In both cases, the systems exhibit
small-amplitude oscillations at β > β∗ and large-amplitude
resonance at β < β∗ (Fig. 6). For example, at β = 0.05
the oscillator performs small-amplitude oscillations at ε =
0.129 [Fig. 6(a)] and large-amplitude oscillations at ε = 0.13
[Fig. 6(b)].
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