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In the field of nonlinear dynamics, many methods have been proposed to tackle the issue of optimally
setting embedding dimension and lag in order to analyze sampled scalar signals. However, intrinsic statistical
uncertainties due to the finiteness of input sequences severely hinder a general solution to the problem. A more
achievable approach consists of assessing sets of dimension and lag pairs that are equivalently suitable to embed a
time series. Here we present a method to identify these sets of embedding pairs, under the hypothesis that the time
series of interest is generated by a chaotic, finite-dimensional dynamical system. We first introduce a “distance
gauge transformation” based on the analytical forms of correlation integrals corresponding to a Gaussian white
noise source. We show that in this new distance gauge, correlation integrals generated by chaotic, finite-
dimensional systems are characterized by distinctive features, whose absence is a marker of the unsuitability
of the underlying embedding choice. By means of a new estimator of the correlation dimension that relies on
the new distance gauge, sets of suitable embedding pairs are finally identified by looking at the uniformity of the
estimation. The method is completely automatic and was successfully tested on both synthetic and experimental
time series. It also provides a tool to estimate the redundance and irrelevance timescales of the system that
underlie the time series as well as a lower constraint to the sampling rate. The method is suitable for applications
in research fields where a chaotic behavior has to be identified, such as neuroscience, geophysics, and economics.
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I. INTRODUCTION

As a result of the pioneering works by Packard et al. [1]
and Takens [2], properties of a dynamical system can be
inferred by suitably embedding a sample, scalar time series
generated by the system itself (see also [3] for a recent review
on the topic). Embedding has since become an essential tool
to investigate the dynamical properties of a system, although a
definitive method to set optimal embedding dimension m and
lag L is still lacking [4].

The search for optimal embedding was traditionally con-
ceived as the assessment of an embedding pair (m,L) that
allows for the maximization of a given measure: above all, the
robustness to noise and the accuracy in the determination of
the maximum Lyapunov exponent (MLE). More recently, it
has been shown [5] that, especially for continuous dynamical
systems (flows), this goal is thwarted by intrinsic statistical
uncertainties due to the finiteness of the time series. A more
achievable goal consists of assessing a set of embedding pairs
that are statistically equivalent in order to optimize the chosen
measure.

Conventional optimal embedding techniques depend on
both “the time series and the applied measure” [4]. However,
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theory provides constraints that are independent of time series
and measures. So it is well known that embedding must
satisfy Takens’ requirement m > 2d, where d is the box-
counting dimension. The condition can be relaxed to m > ν

when the correlation dimension ν is to be evaluated [6,7]. In
addition it is widely accepted (see, for example, Kugiumtzis
[8]) that the embedding window (m − 1)L is constrained
by the necessity of avoiding, on the one side, redundance
and, on the other side, irrelevance [9,10]: this corresponds
to τR/T � (m − 1)L � τI /T , where T is the sampling time
while τR and τI represent the so-called redundance and irrel-
evance time, respectively. Furthermore, because a dynamical
system is characterized by fixed, embedding-independent ob-
servables like MLE and correlation dimension, pairs that are
suitable for embedding are to provide consistent estimates of
these observables.

The topic of the present paper is a method to identify sets
of embedding pairs that are possibly suitable to embed a time
series generated by a chaotic, finite-dimensional dynamical
system. This identification is carried out both by ruling out
pairs unfit to embedding and by assessing others that comply
with basic requirements posited by finite-dimensional chaos.
Our approach consists of four steps. First, upon determining
the correlation integral by using a Monte Carlo integration,
we transform it by means of a “distance gauge” based on the
analytical forms of the correlation integrals corresponding to
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a Gaussian white noise (GWN) source. The gauge transfor-
mation allows us to describe any correlation integral within
the square [0, 1] × [0, 1]. The second step consists of carrying
out a Kolmogorov-Smirnov (K-S) test [11] on a finite set of
embedding pairs, henceforth referred to as a lattice. If the
hypothesis of a non-GWN source holds, embedding pairs that
nevertheless generate correlation integrals compatible with
a GWN source are deemed to be unsuitable to embed the
time series. As far as the third step is concerned, we first
show that a divergent behavior of the correlation integral
at small scales in the new gauge is an efficient marker of
a chaotic, finite-dimensional system. Thereupon, we look at
embedding pairs in which such divergent behavior shows up.
Only these pairs are further dealt with in the fourth and final
step, in which the correlation dimension ν is evaluated—or
“mapped”—by means of a novel estimator in the new distance
gauge. Embedding pairs on which the correlation dimension is
essentially uniform are finally deemed to be suitable to embed
the time series.

Our method does not require any subjective evaluation of
parameters. By generating synthetic time series out of well
known attractors, we show that the values of the correlation
dimension ν estimated on sets of embedding-suitable pairs
are in good agreement with data reported in previous works.
In addition, our method provides estimates of the redundance
and irrelevance times τR , τI as well as of an upper constraint
to the sampling time T .

The paper is organized so that a section is devoted to
each of the steps outlined above. The determination of the
correlation integrals via Monte Carlo integration as well as the
distance gauge transformation based on the analytical form
of correlation integrals of a GWN source are the topic of
Sec. II. The K-S test carried out by analyzing the K-S statistic
between embedding-dependent correlation integrals built on
an input sequence and analytical GWN correlation integrals is
discussed in Sec. III. The behavior of the correlation integrals
at small scales in the new gauge and its making up a marker
of a finite-dimensional system is analyzed in Sec. IV. A new
estimator of the correlation dimension ν, the identification of
embedding regions in which this estimator is uniform, and
the consequences in terms of sampling time and embedding
are the topic of Sec. V. The application of our method to
synthetic and experimental time series is discussed in Sec. VI,
while Sec. VII is devoted to possible applications in different
research fields. Finally, the Appendix is devoted to the case of
quasiperiodic systems.

II. CORRELATION INTEGRALS AND GAUSSIAN NOISE
GAUGE TRANSFORMATION OF DISTANCE

A. Sample and asymptotic correlation integrals

A sample, scalar time series {xi}, consisting of � points and
henceforth referred to as a sequence, is given. Upon evalu-
ation of their sample mean x̄ and sample standard deviation
sx , the elements of an input sequence are standardized via
(xi − x̄)/sx → xi . The standardized sequence is then embed-
ded with dimension m and lag L; henceforth we refer to this
operation by saying that the sequence is embedded on the
pair (m,L). The embedding procedure produces a sequence

of vectors where the kth component (k = 0, . . . , m − 1) of
the ith vector Xi is given by xi+kL. The embedded sequence’s
length is � − (m − 1)L.

Instead of evaluating the sample correlation integral via
the standard Grassberger-Procaccia sum [6], a Monte Carlo
integration is used. A number N of vector pairs Xi , Xj is
randomly chosen without replacement. To avoid artifactual
contributions from close points, the selected time indexes i,
j must satisfy the condition |i − j | � c0. Theiler [12] and
Albano et al. [11] suggest taking c0 equal to the first zero
of the autocorrelation function; Gao and Zheng [13] instead
suggest taking c0 equal to the embedding window (m − 1)L.
Here a more restrictive condition is applied: c0 is set to the
largest of the second zero of the autocorrelation function and
the product 2m(L + 1). To determine the distance di,j be-
tween the two vectors Xi , Xj , the Euclidean norm normalized
by

√
m is used:

di,j =
[

1

m

m−1∑
k=0

(xi+kL − xj+kL)2

]1/2

. (1)

The normalizing term is introduced to provide an m-
independent distance in the case L = 0. A sample correlation
integral Ĉm,L; N (r ) is finally computed as the empirical cumu-
lative distribution function of N sample distances:

Ĉm,L; N (r ) = 1

N

N∑
k=1

�
(
r − dik,jk

)
, (2)

where ik , jk are the time indexes of the kth pair, and �(x) is
the Heaviside step function. Because the number of available
pairs is of order �2/2 (provided that � � c0), a reliable inte-
gration requires �2/2 being at least 2–3 orders of magnitude
greater than N . In the present paper, the input sequences
consisted of � = 105 points and the maximum value of c0 that
occurred was of order 103. Thereupon, N was set to 4000.

Figure 1 shows examples of sample correlation integrals
built on a sequence generated by integrating the following
Lorenz attractor and taking the x component [14]:

dx

dt
= σ (y − x),

dy

dt
= x(r − z) − y, (3)

dz

dt
= xy − bz.

In these equations, σ = 10, r = 28, b = 8/3. Throughout
this work, integrations of differential equations were carried
out via a Runge-Kutta Prince-Dormand (8,9) algorithm, by
randomly setting the starting point; sampling times T were
taken equal to the integration times dt . In the case of Eqs. (3),
T = dt = 0.03.

As shown in the figure, the Monte Carlo approach used
in the present work correctly reproduces the small-distance
behavior of Ĉm,L; N (r ) as predicted by Grassberger and Pro-
caccia [6], thus underpinning the reliability of the method.

By virtue of the Glivenko-Cantelli theorem, if the number
N of pairs tends to infinity, a sample correlation integral
Ĉm,L; N (r ) tends to the asymptotic limit Cm,L(r ), henceforth
referred to as the “asymptotic correlation integral.”
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FIG. 1. Examples of sample correlation integrals evaluated by
randomly selecting N = 4000 vector pairs of a sequence generated
by sampling the x component of a Lorenz attractor. The sequence
was embedded on the pairs (3,3) (black solid), (4,5) (blue dashed),
(2,19) (red dash-dotted). For each embedding pair, two sample cor-
relation integrals are shown. The inset magnifies in log-log scale the
orange, diagonally patterned region at small distances. The linearity
of the graphs is a marker of the Grassberger-Procaccia scaling
relationship Cm(r ) ∝ rν , where ν is the correlation dimension [6]
(also commonly referred to as D2). The green, solid straight line cor-
responds to ν = 2.05, namely the accepted value for the correlation
dimension of the Lorenz attractor [14].

For most dynamical systems, it is virtually impossible to
analytically determine the shape of asymptotic correlation in-
tegrals. A remarkable exception is provided by GWN sources.
A GWN sequence is a set of independent elements, each
drawn from a normal probability density function N (μ, σ 2).
Because the sequence is discrete, the second zero of the
autocorrelation function occurs at a lag equal to 2. According
to the rule expressed above, c0 is then set to 2m(L + 1).
By virtue of the constraint |i − j | � c0, all x terms occur-
ring within Eq. (1) turn out to be independent, so that each
difference xi+kL − xj+kL is distributed as N (0, 2σ 2). Thus,
provided that L > 0, the square of the distance di,j is a
random variable distributed according to a χ2 distribution
with m degrees of freedom: d2

i,j ∼ (2σ 2/m) χ2
m. If L = 0,

because of the metric choice of Eq. (1), and independently
of m, one has d2

i,j ∼ 2σ 2χ2
1 . In the case of a GWN sequence,

the analytic form of the asymptotic correlation integral is then

CGWN ; m(r ) =
⎧⎨
⎩

1
�( m

2 ) γ
(

m
2 , mr2

4σ 2

)
, if L > 0,

1
�( 1

2 )
γ
(

1
2 , r2

4σ 2

)
, if L = 0, ∀m,

(4)

where γ (s, x) is the lower incomplete Gamma function.

B. Gaussian noise gauge transformation of distance

Equation (4) shows that a correlation integral for a GWN
source depends on the embedding dimension m. This m

dependence can be removed by means of a suitable “gauge”
transformation of distance. As a result, sample correlation
integrals that are built on GWN sequences turn out to be drawn

from the same distribution, independently of the embedding
used.

The gauge transformation consists of mapping the distance
di,j of Eq. (1) onto a new distance δi,j , as follows:

δi,j = CGWN ; m(di,j ; σ = 1). (5)

In this expression, the function CGWN ; m is the same as in
Eq. (4). The setting σ = 1 is coherent with the standardization
procedure that is applied to the input sequence.

Given the new metric, a sample correlation integral
Ĉ ′

m,L; N (ρ)—the prime indicates the new gauge—is evaluated
by replacing the distance di,j with the distance δi,j in the
correlation sum of Eq. (2):

Ĉ ′
m,L; N (ρ) = 1

N

N∑
k=1

�
(
ρ − δik,jk

)
. (6)

As a result of Eqs. (2), (5), (6) and of the strict monotonicity
of the CGWN ; m functions, setting

ρ = CGWN ; m(r; σ = 1) (7)

implies

Ĉ ′
m,L; N (ρ) = Ĉm,L; N (r ). (8)

Because CGWN ; m is a cumulative distribution function, the
former d domain given by R�0 is squeezed into the new one
[0, 1]. Therefore, any correlation integral can be now plotted
within the unitary square [0, 1] × [0, 1].

The probability integral transform theorem [15] states
that if a random variable x has a cumulative distribution
function Fx (x), then the random variable y = Fx (x) is uni-
formly distributed in the interval [0, 1] and therefore has a
cumulative distribution Fy (y) given by ξ (y) ≡ y (y ∈ [0, 1]).
Consequently, under the gauge transformation, an asymptotic
correlation integral C ′

GWN ; m,L(ρ) that is computed on an
infinitely long GWN time series turns out to be given by ξ (ρ)
independently of the embedding choice. If the GWN sequence
is instead finite, the sample correlation integral Ĉ ′

m,L; N (ρ) of
Eq. (6) is expected to be statistically compatible with ξ (ρ)
according to the K-S test. The K-S statistic K̂m,L; N , given by

K̂m,L; N = sup
ρ∈[0,1]

|Ĉ ′
m,L; N (ρ) − ρ|, (9)

is expected to be drawn from the following cumulative distri-
bution function (see for example [16]):

F (K ) = 1 − 2
∞∑

k=1

(−1)k−1 exp(−2k2N ′K2),

where N ′ ≡ (
√

N + 0.12 + 0.11/
√

N )2. We note that the
population mean and standard deviation of the distribution are

μK =
√

π

2N ′ ln 2, (10a)

σK =
√

π

2N ′

√
π

6
− ln2 2 � 0.3μK. (10b)

Both parameters asymptotically tend to zero.
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FIG. 2. Correlation bridges B̂m,L; N (ρ ) [see Eq. (11)] evaluated
by means of the gauge-transformed vector distance ρ and using
N = 4000 vector pairs. The black solid, blue dashed, and red dash-
dotted pairs of graphs correspond to the standard sample correlation
integrals Ĉm,L; N (ρ ) shown in Fig. 1 and built on a Lorenz sequence
embedded on the pairs (3,3), (4,5), (2,19), respectively. The two gray
dash-double-dotted lines represent the Brownian bridges generated
out of a GWN source. The K-S statistic K̂ , i.e., the gap from noise,
for these last two sequences is well within the inner diagonally
patterned region bounded by the K̂ values that correspond to the
α = 0.05 significance level. On the other hand, the Lorenz-based
sample correlation bridges embedded on the pairs (3,3), (4,5) exceed
the outer diagonally patterned region, bounded by the K̂ values that
correspond to the α = 10−9 significance level. The Lorenz sequence
embedded on the pair (2,19) yields a sample correlation bridge that
only slightly overcomes the 0.05 significance level.

C. Correlation bridges and gap from noise

For the purposes of the following discussion, it is worth
defining a “sample correlation bridge” B̂m,L; N (ρ) as the de-
viation of the sample correlation integral Ĉ ′

m,L; N (ρ) from the
“reference line” ξ (ρ):

B̂m,L; N (ρ) ≡ Ĉ ′
m,L; N (ρ) − ξ (ρ). (11)

Each correlation bridge is then a function defined in [0,1],
with codomain [−1, 1] and tied to 0 in ρ = 0, 1. Similarly
to the asymptotic correlation integral, the “asymptotic corre-
lation bridge” Bm,L(ρ) is the limit for N → ∞ of the sample
correlation bridge B̂m,L; N (ρ).

With this notation, a sample correlation bridge B̂m,L(ρ)
computed on a finite GWN sequence turns out to be a
Brownian bridge, which becomes identically zero in the case
of an infinitely long time series. Furthermore, independently
of the input sequence, the K-S statistic of Eq. (9), is simply
given by

K̂m,L; N = sup
ρ∈[0,1]

|B̂m,L; N (ρ)|.

Henceforth, K̂m,L; N (K̂m,L if N → ∞) is referred to as the
sample (asymptotic) “gap from noise” for the input sequence.

Figure 2 shows the result of the gauge transformation for
the six sample correlation integrals of Fig. 1 and for two GWN
sequences.

III. TESTING A GWN SOURCE NULL HYPOTHESIS

Given a sequence originating from a generic
dynamical system, as well as a “lattice” of embedding
pairs {(m,L) | m ∈ [2,mmax], L ∈ [1, Lmax]}, we start
evaluating a sample correlation bridge on each pair
of the lattice. Thereupon, a “map” of the gap from
noise on the given lattice is determined, namely a set
{K̂m,L; N | m ∈ [2,mmax], L ∈ [1, Lmax]}. In the present
work mmax = Lmax = 20. By repeating a number M times
the generation of a sample correlation bridge and the
subsequent evaluation of the related gap from noise, and by
averaging the results, a map of the averaged gap from noise
is obtained: {〈K̂〉m,L; N | m ∈ [2,mmax], L ∈ [1, Lmax]}. It
is worth noting that maps of different figures of merit and
built on an embedding lattice were also recently used by
Krakovská et al. [17] in order to test a modification of the
false-nearest-neighbor method.

Under a null hypothesis H0,GWN that the elements of the
input sequence are independent and drawn from the same
Gaussian distribution and provided that M � 1, each sample
mean 〈K̂〉m,L; N is approximately distributed as N (μK, σK√

M
)

as a consequence of the central limit theorem, with μK ,
σK given by Eq. (10). The p value corresponding to each
averaged gap from noise can be then evaluated by using the
z distribution.

The gauge transformation thus provides a straightforward
method to assess the compatibility of a sample sequence with
a GWN source. As an example, Fig. 3 shows the maps of the
p value that, under H0,GWN, corresponds to the gap from noise
evaluated out of four different sequences: a GWN sequence;
a GWN sequence filtered by means of a first-order low-pass
filter with cutoff frequency 0.05T −1; a sequence generated by
sampling the y component of the Ueda oscillator [18],

dx

dt
= y,

dy

dt
= −x3 − ky + A sin(t ),

where A = 7.5, k = 0.05, T = dt = 0.5 [14]; a sequence
generated by the Lorenz attractor of Eq. (3). In the case of the
GWN sequence, the gap from noise is always so small that
the corresponding p value largely overcomes the Bonferroni-
corrected 0.01 significance level, i.e., 0.01/380 (380 being
the number of embedding pairs shown within each map).
With regard to the filtered GWN sequence, the p value map’s
pairs with L � 7 are incompatible with a pure GWN source,
while the contrary occurs for pairs with L � 6. The map
corresponding to the Ueda oscillator—obtained with M = 10
rather than the value 100 used for the other sequences—
shows most embedding pairs leading to a violation of the null
hypothesis H0,GWN, and only a few embedding pairs on which
H0,GWN is accepted. Finally, the Lorenz sequence generated a
violation of H0,GWN in each point of the lattice.

In the case of an unknown source of the sequence, a
behavior similar to the filtered GWN sequence as well as the
Ueda and Lorenz systems is to be interpreted as being due to
a non-GWN source because of the presence of incompatible
embedding pairs. Apparently compatible embedding pairs are
then to be deemed as unsuitable to embedding and therefore
excluded from any further evaluation. In the examples of
Fig. 3, such pairs are marked with a cross.
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FIG. 3. Maps of p value evaluated, under H0,GWN, out of the averaged gap from noise for four different sequences: (a) GWN sequence;
(b) filtered GWN sequence (first-order low-pass filter with f3dB = 0.05T −1); (c) Ueda oscillator; (d) Lorenz attractor. The color (gray scale)
corresponding to the p = 0.01 significance level, Bonferroni-corrected to αB = 0.01/380 to keep into account all displayed embedding pairs,
is highlighted in the palette. Pairs whose gap from noise overcomes the significance threshold, and are thus compatible with H0,GWN but not
with the hypothesis of a chaotic, finite-dimensional dynamical system, are marked with a cross. Using M = 100 also for the Ueda oscillator
would lead to a map like the Lorenz one.

IV. SMALL-SCALE BEHAVIOR
OF CORRELATION BRIDGES

The GWN gauge transformation of distances provides a
way to investigate the chaoticity and dimensionality of the
dynamical system that underlies an input sequence by evaluat-
ing the behavior at small distances of the correlation bridges.
An example is shown in Fig. 2, in which the correlation
bridges built out of a sequence generated by a Lorenz sys-
tem grow in the region ρ � 1 up to a local maximum (not
necessarily corresponding to the gap from noise). The goal
of the following discussion is to show that this behavior is
typical of any chaotic, finite-dimensional dynamical system.
Henceforth, the hypothesis that the dynamical system under
investigation is chaotic and finite-dimensional, and has in
addition a correlation dimension ν, is referred to as H0,cfd(ν).

The derivative of the asymptotic correlation bridge
Bm,L(ρ) can be expressed as follows:

dBm,L(ρ)

dρ
= dC ′

m,L(ρ)

dρ
− 1 = ∂Cm,L(r )

∂r

dr (ρ)

dρ
− 1, (12)

where r = r (ρ) is the inverse of the function ρ = ρ(r ) defined
in Eq. (7), and the asymptotic limits of both Eq. (8) and
Eq. (11) were used. By applying the inverse function theorem

and using Eq. (4), the derivative dr (ρ)
dρ

can be expressed as
(henceforth we assume m > 1)

dr (ρ)

dρ
=

(
dρ

dr

)−1

= 1

2
�

(
m

2

)(
m

4σ 2

)− m
2

exp

(
mr2

4σ 2

)
r1−m.

(13)

Under H0,cfd(ν) and in the limit r → 0, according to the
seminal work by Grassberger and Procaccia [6] the correla-
tion integral Cm,L(r ) is characterized by a power-law scaling
Cm,L(r ) = βm,Lrν , where βm,L is an embedding-dependent
constant. Consequently, in the small-scale regime we have

dCm,L(r )

dr
= νβm,Lrν−1 = ν

r
Cm,L(r ). (14)

By replacing both Eq. (13) and Eq. (14) into Eq. (12) it follows

dBm,L(ρ)

dρ
= νβm,L

2
�

(
m

2

)(
m

4σ 2

)− m
2

exp

(
mr2

4σ 2

)
rν−m − 1.

(15)

The last expression shows that, under H0,cfd(ν), the derivative
dBm,L(ρ)

dρ
has to diverge to +∞ as ρ, r → 0 and m > ν. The

previous expression and statement are valid provided that m is
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FIG. 4. Maps of the probability given by Eq. (16) for (a) GWN sequence; (b) filtered GWN sequence (first-order low-pass filter with
f3dB = 0.05T −1); (c) Ueda oscillator (with M = 100 instead of M = 10 as in Fig. 3); (d) Lorenz attractor. Pairs for which the small-scale
behavior of the corresponding correlation bridges is not divergent, and are thus incompatible with the null hypothesis H0,cfd(ν ), are marked
with a plus (+) sign. Pairs in which H0,GWN holds are marked with a cross and lead, as expected, to a rejection of H0,cfd(ν ).

less than the irrelevance-dependent embedding dimension mI ,
which can be estimated as mI ≈ τI /(LT ). Consequently, due
to the boundary condition Bm,L(0) = 0, in a neighborhood
of the origin and in the case ν < m < mI , each correlation
bridge has to be positive and growing, and its first stationary
point thus has to be a maximum point.

To sum up, the simultaneous fulfillment of three
conditions—validity of H0,cfd(ν), ν < m, m � τI /(LT )—
makes up a sufficient condition to observe a divergent behav-
ior of the correlation bridges at small distance, though not a
necessary one (see examples at the end of this section). On the
contrary, if no divergent behavior is observed, either H0,cfd(ν)
does not hold, or ν > m, or m > τI/(LT ); this last situation
might, for example, occur if too a large value of L is chosen.
In the last two cases, the embedding pair is clearly unsuitable,
whereas in the first one it is useless. Divergent behavior of the
correlation bridges can be therefore used as an additional tool
to rule out unsuitable embedding pairs.

The argument above holds for an asymptotic correlation
bridge. The assessment of the divergent behavior at small dis-
tances in a sample correlation bridge built on N samples and
for a given embedding pair relies on the following statistical
approach. First, the number N must be large enough so that
the minimum sampled distance r1 lays within the Grassberger-
Procaccia power-law regime. Let then ρ1 be the correspond-

ing, gauge-transformed distance. The sample distance ρ1 pro-
vides an estimate of a sample correlation integral in the GWN
gauge, namely Ĉ ′

m,L; N (ρ1) = 1/N , and thus of a sample
correlation bridge, namely b1 ≡ B̂m,L; N (ρ1) = 1/N − ρ1.

By determining a number M of correlation bridges and
thereupon a set of size M of b1 values, we assume a divergent
behavior being immediately disproved if a single vanishing or
negative value of b1 occurs. The probability that a divergent
behavior exists also if all M samples are positive can be
determined by using Chebyshev’s inequality. Although other
approaches, like extreme value analysis [19], might provide
a more precise assessment, the chosen approach is the safest
one, because Chebyshev’s inequality provides an upper limit
to the p value. Let b̄1, sb1 be the sample mean and sample
standard deviation of the M values of b1, respectively. If M

is large enough, these two statistics can be taken as estimates
of the respective population parameters. By virtue of Cheby-
shev’s inequality, it follows

P (b1 � b̄1 − ksb1 ) � P (|b1 − b̄1| � ksb1 ) � 1

k2
,

where k is a positive number. By setting k = b̄1/sb1 and
assuming b̄1 to be positive (otherwise, a divergent behavior
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FIG. 5. Analysis of the estimated correlation dimension ν̂ given
by Eq. (18) and computed out of a Lorenz sequence. (a) Map of ν̂

estimated on the embedding pairs that exhibit compatibility with the
null hypothesis H0,cfd(ν ) (see Fig. 4). Embedding pairs incompatible
with the null hypothesis H0,cfd(ν ) are marked with a + sign. The
black, bold line bounds the plateau made of the embedding pairs
whose ν̂ lies within the range ν̂ = 2.0 ± 0.2 (see histogram below).
The red, dashed line bounds the set of embedding pairs whose
estimated MLE λ̂ lies within the range 0.8 ± 0.1 (see inset below).
The two black, dash-dotted lines correspond to hyperbolae approxi-
matively enclosing the ν̂ plateau and described by L = 20/(m − 1),
L = 80/(m − 1). (b) Histogram of the number of embedding pairs
whose ν̂ falls within 0.2 wide bins. Inset: Histogram of the number
of embedding pairs whose estimated MLE λ̂ falls within 0.05 wide
bins. In both histograms, bin heights and error bars correspond to the
sample mean and sample standard deviation, respectively, evaluated
on a set of four calculations.

would be trivially disproved), one gets

P (b1 � 0) �
(

sb1

b̄1

)2

. (16)

Assuming H0,cfd(ν) to hold, we conservatively consider the
cases in which (sb1/b̄1)2 overcomes the significance level of
0.01 as disproving the divergent behavior and thus assessing
the unsuitability of the corresponding embedding pair. Due to
the mutual exclusiveness of H0,cfd(ν) and H0,GWN, if H0,GWN

holds, H0,cfd(ν) is rejected. Consequently, the divergent be-
havior is a more stringent marker than the GWN compatibility
in order to identify a suitable embedding pair.

Figure 4 shows the maps of the probability given by
Eq. (16) for the four sequences used to generate Fig. 3. The
maps show the suitable embedding pairs for each one of the
input sequences: in the case of the GWN sequence, no such
pair is available.

V. ESTIMATING THE CORRELATION DIMENSION AND
ITS UNIFORMITY WITHIN AN EMBEDDING LATTICE

A. Estimator of the correlation dimension
ν in the Gaussian noise gauge

In this section we show that, under H0,cfd(ν) and provided
that a small-scale divergent behavior is assessed, the corre-
lation dimension ν can be estimated out of the position and
the amplitude of the first maximum of a correlation bridge.
This approach requires that the small-scale power-law scaling
survives at sufficiently large values of r and thus of ρ. How-
ever, by noting that the diverging behavior of the derivative
dBm,L(ρ)

dρ
at the origin increases with m, and knowing that any

correlation bridge cannot overcome the boundaries ±1 and
must eventually end up in 0 (at ρ = 1), we can assume that
the larger m, the smaller the position of the first maximum
(see, for example, Fig. 2). Consequently, the requirement of
a small-scale power-law regime can be satisfied by taking a
sufficiently large value of m.

Let ρ0 be the position of the first zero of the derivative of
the asymptotic correlation bridge Bm,L(ρ), given by Eq. (15),
and r0 the corresponding Euclidean distance normalized by
m. By again exploiting the inverse function theorem, it is
straightforward to show that imposing ρ0 to be a zero of the
derivative of Eq. (15), and thus of Eq. (12), is equivalent to
state that r0 satisfies the following equation in r:

dρ(r )

dr
= dCm,L(r )

dr
. (17)

The ratio between the amplitude Bm,L(ρ0) of the first
maximum of the correlation bridge and its position ρ0 is
given by

Bm,L(ρ0)

ρ0
= C ′

m,L(ρ0)

ρ0
− 1 = Cm,L(r0)

ρ0
− 1.

However, by exploiting Eq. (14) to express Cm,L(r0) as
r0
ν

dCm,L(r0 )
dr

, and subsequently using Eq. (17), the previous
expression can be rewritten as

Bm,L(ρ0)

ρ0
= 1

ν

r0

ρ0

dρ(r0)

dr
− 1.

By defining the variable x ≡ mr2

4σ 2 and the related constant

x0 ≡ mr2
0

4σ 2 , we get

Bm,L(ρ0)

ρ0
= 2

ν

x0

ρ0

dρ(x0)

dx
− 1.

Finally, by knowing the GWN gauge transformation
for m > 1, namely ρ = γ ( m

2 , x)/�( m
2 ), and that

dγ (s,x)
dx

= xs−1e−x , the ratio Bm,L(ρ0 )
ρ0

can be expressed as
follows:

Bm,L(ρ0)

ρ0
= 2

νρ0

x
m/2
0 e−x0

�
(

m
2

) − 1,
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FIG. 6. Analysis of the estimated correlation dimension ν̂ given by Eq. (18) and computed out of a Ueda sequence. (a) Map of ν̂ estimated
on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ) (see Fig. 4), for the sequence sampled with T = 0.5. (b)
Histogram of the number of embedding pairs whose ν̂ falls within 0.2 wide bins. No significant inner peak can be identified (for the peak at
ν̂ = 5, see main text). (c) Map of ν̂ estimated on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ), for the Ueda
sequence sampled 10 times faster, i.e., with T = 0.05. The black, bold line bounds the embedding pairs that make up the peak at ν̂ = 2.5 ± 0.2
appearing in the histogram below. The two black, dash-dotted lines correspond to hyperbolae approximatively enclosing the ν̂ plateau and
described by L = 70/(m − 1), L = 150/(m − 1). (d) Histogram of the number of embedding pairs whose ν̂ falls within 0.2 wide bins. In both
maps, embedding pairs incompatible with the null hypothesis H0,cfd(ν ) are marked with a + sign, while, in both histograms, bin heights and
error bars correspond to the sample mean and sample standard deviation, respectively, evaluated on a set of four calculations.

By inverting the previous expression we get

ν = 2

Bm,L(ρ0) + ρ0

x
m/2
0 e−x0

�
(

m
2

) . (18)

Equation (18) is valid in the asymptotic limit N → ∞. How-
ever, it is reasonable to assume that, in the case of a sample
correlation bridge with finite N , replacing in Eq. (18) the three
parameters x0, ρ0, and Bm,L(ρ0) with the respective sample
values provides an estimate ν̂ of the correlation dimension.

It is worth remarking that although the first maximum is
a local characteristic of the correlation bridge, its value is
made up by all preceding bridge points that are constrained,
in the small-scale regime, to build up a growing curve. Con-
sequently, the estimator of Eq. (18) relies on contributions
integrated on the whole small-scale region, and therefore has
an intrinsically global character.

B. Uniformity of the estimated correlation dimension
within an embedding lattice

As mentioned in Sec. I, the estimated correlation dimen-
sion ν̂ is expected not to depend on the embedding pair (m,L)

provided that the null hypothesis H0,cfd(ν) holds and

τR/T � (m − 1)L � τI /T . (19)

Accordingly, the set of suitable embedding pairs identified
via the analysis discussed in Secs. III, IV can be further
purified by assessing sets of embedding pairs on which ν̂

shows uniformity, and ruling out the others. On a ν̂ map, a
similar set is expected to correspond to a ν̂ plateau, bound by
two right hyperbolae.

Figure 5(a) shows the map of ν̂ for the same Lorenz
sequence used above. Here and henceforth, ν̂ corresponds to
the sample mean of M = 100 calculations. The evaluation
of ν̂ regards only the points that show a divergent behavior
compatible with the null hypothesis H0,cfd(ν). Figure 5(b)
shows the histogram of the number of embedding pairs whose
ν̂ falls within 0.2 wide bins. The histogram has a peak at
2.0 ± 0.2. As highlighted in Fig. 5(a) by means of a black,
bold boundary, the corresponding embedding pairs form a ν̂

plateau. As a consequence of the expected uniformity of the
estimates of an embedding-independent observable on a set
of suitable embedding pairs, this ν̂ plateau can be deemed as
a possible optimal set to embed the input sequence. Remark-
ably, the plateau level of 2.0 ± 0.2 is in agreement with the
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FIG. 7. Analysis of the estimated correlation dimension ν̂ given by Eq. (18) and computed out of a filtered GWN sequence. (a) Map of
ν̂ estimated on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ) (see Fig. 4), for the sequence sampled at
fs = 1 kHz. (b) Histogram of the number of embedding pairs whose ν̂ falls within 0.2 wide bins. No significant peak can be identified. (c)
Map of ν̂ estimated on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ), for the sequence sampled 10 times
faster, i.e., at fs = 10 kHz. (d) Histogram of the number of embedding pairs whose ν̂ falls within 0.2 wide bins. Again, no significant peak
can be identified. In both maps, embedding pairs compatible with H0,GWN are marked with a cross while those incompatible with the null
hypothesis H0,cfd(ν ) are marked with a + sign. In both histograms, bin heights and error bars correspond to the sample mean and sample
standard deviation, respectively, evaluated on a set of four calculations.

accepted value of 2.05 for the Lorenz attractor’s correlation
dimension [14].

Figure 5(b) also shows the histogram of the estimated
MLE λ̂ calculated via the divergence rate method [13,20–22].
Despite the statistical noise, the histogram shows a local
maximum at 0.8 ± 0.1 superimposed on a slowly decreasing
distribution. The set of points corresponding to the maximum
is highlighted in the map by means of a red, dashed boundary.
Approximately half of the points belonging to this set lie
within the ν̂ plateau. Again, this behavior reflects the expected
uniformity of estimates of an embedding-independent observ-
able. In addition, the observed MLE value of 0.8 ± 0.1 is in
agreement with the value 0.9057(8) for the Lorenz attractor
of Eq. (3) obtained by using the standard method [23,24].
However, due to the fact that the divergence rate method
tends to underestimate λ̂ especially in unsuitable embedding
pairs—which accounts for the shape of the leftover part of the
histogram—the λ̂ plateau is less regular than the ν̂ plateau.
Consequently, to select an optimal set of embedding pairs the
correlation dimension ν̂ of Eq. (18) appears to be more appro-
priate than the MLE estimated via divergence rate method.

Crucially, the shape of the ν̂ plateau resulting from
Fig. 5(a) appears to be bounded by two hyperbolae, in agree-
ment with the constraints of Eq. (19). The two hyperbolae dis-
played in the figure correspond to τR/T ≈ 20 and τI /T ≈ 80,

or equivalently τR ≈ 0.6, τI ≈ 2.4. Moreover, the fact that
the two hyperbolae are sufficiently separated suggests that the
sampling time T was correctly chosen: besides aliasing, too a
long time T leads to a compression of the ν̂ plateau towards
the axes. This compression is visible in Fig. 6(a), which shows
the map of ν̂ for the Ueda sequence used above.

Considering the histogram of ν̂ in Fig. 6(b), a growing
profile appears, which can be due to two alternative mech-
anisms: a peak—and thus a plateau on the map—at ν̂ val-
ues higher than those accessible by the current analysis and
whose resolution would require wider lattices; alternatively,
m overcoming the boundary set by the irrelevance time, so
that the sequence becomes noiselike and thus, apparently,
very high-dimensional. (The fact that the histogram contains
two occupied bins beyond the peak at ν̂ = 5 is due to the
variability intrinsic in the evaluation of ν̂, which, in terms
of sample standard deviation on the M = 100 calculations,
ranges from 0.1 to 0.4.) While tackling the first mechanism
is computationally demanding, the second one can be con-
veniently addressed by increasing, if possible, the sampling
frequency. Figure 6(c) shows the map of ν̂ for a sequence
generated by the same Ueda oscillator as above, but with a 10
times higher sampling frequency. The resulting ν̂ histogram,
shown in Fig. 6(d), reveals a peak at ν̂ = 2.5 ± 0.2, and the
corresponding plateau is shown in the map by means of a

052226-9



ALESSIO PERINELLI AND LEONARDO RICCI PHYSICAL REVIEW E 98, 052226 (2018)

5

 10

 15

 20

2 4 6 8  10  12  14  16  18  20(a)

L

m

5

 10

 15

 20

2 4 6 8  10  12  14  16  18  20
0

1

2

3

4

5

6

5

 10

 15

 20

2 4 6 8  10  12  14  16  18  20(a)

L

m

5

 10

 15

 20

2 4 6 8  10  12  14  16  18  20
0

1

2

3

4

5

6

0
1
2
3
4
5
6
7
8
9

 10

0 1 2 3 4 5 6(b) 〉

N
um

be
r 

of
 e

m
be

dd
in

g 
pa

irs

ν

0
1
2
3
4
5
6
7
8
9

 10

0 1 2 3 4 5 6

FIG. 8. Analysis of the estimated correlation dimension ν̂ given
by Eq. (18) and computed out of a surrogate sequence of the Lorenz
sequence analyzed in the paper. (a) Map of ν̂ estimated on the
embedding pairs that exhibit compatibility with the null hypothesis
H0,cfd(ν ). Embedding pairs compatible with H0,GWN are marked with
a cross while those incompatible with the null hypothesis H0,cfd(ν )
are marked with a + sign. (b) Histogram of the number of embedding
pairs whose ν̂ falls within 0.2 wide bins. Bin heights and error
bars correspond to the sample mean and sample standard deviation,
respectively, evaluated on a set of four calculations. No significant
peak can be identified.

black boundary. Two hyperbolae, corresponding to τR ≈ 3.5,
τI ≈ 7.5 and approximately enclosing the ν̂ plateau, are also
shown. The estimated correlation dimension is in agreement
with the value reported in the literature for the same system
[14], namely ν = 2.68 ± 0.13.

In the case of the filtered GWN sequence, the increase
of the sampling frequency leads to no significant results, as
displayed in Fig. 7. The left part of the figure shows the map
and the related histogram evaluated for the same sequence
used above and sampled with fs = 1 kHz, while the right
part shows the map and histogram in the case of a sequence
sampled with fs = 10 kHz. Besides an obvious expansion of
the lattice region that contains, according to the gap from
noise and small-scale behavior, suitable embedding pairs and
a related increase in the population of the histogram, there is
no significant change in the morphology of both the region
and the histogram.

VI. APPLICATION OF THE METHOD TO SYNTHETIC
AND EXPERIMENTAL SEQUENCES

In this section, the method discussed above is applied to
several synthetic and experimental sequences. The goal is to
highlight both its reliability and possible weaknesses.

Figure 8 shows the result of the analysis carried out on a
Fourier-based surrogate of the Lorenz sequence used in the
previous sections. In compliance with a standard procedure
[25] (see also [26] for a more recent review on this topic)
the surrogate was generated by randomizing the phase of
the Fourier components while conserving the power spectral
density and thus the autocorrelation. The resulting map is
similar to that obtained by using a filtered GWN sequence:
in the set of embedding pairs that are compatible with the
null hypothesis H0,cfd(ν) no plateau structure is present. This
result provides evidence of the reliability of the method to
distinguish between a true finite-dimensional chaotic source
and a surrogate, noisy one.

Figure 9 shows the results of the analysis carried out on
both a sequence generated by integrating a Rössler attractor
and a related Fourier-based surrogate. The equations describ-
ing the attractor are [27]

dx

dt
= −y − z,

dy

dt
= x + ay,

dz

dt
= b + z(x − c),

where a = b = 0.2, c = 5.7, namely the archetypical setting
by Rössler, and T = dt = 0.125. The sequence corresponds
to the x component. The two histograms show pronounced
peaks at 1.6 ± 0.1 and 1.9 ± 0.1, respectively. However, the
corresponding ν̂ plateaus are definitely not bounded by any
pairs of hyperbolae. While in the case of the surrogate se-
quence this lack of evidence of a finite-dimensional chaotic
behavior is expected and welcome, the same is not true for the
original Rössler sequence, as the attractor is known to have a
correlation dimension of 1.99 ± 0.08 [14].

The failure in the identification of the source of the se-
quence as a finite-dimensional chaotic system reflects well-
known difficulties to deal with the Rössler attractor, both
with regard to the determination of the correlation dimension
[14] and in terms of a relative insensitivity towards optimal
embedding approaches [4,5]. A main reason of this failure is
the quasiperiodic behavior of the Rössler attractor [28] that
entails an extremely long autocorrelation time. As discussed
in the Appendix, the ν̂ plateau of Fig. 9(a), which corresponds
to a rectangular region defined by m � 10, is typical of
such behavior. Besides showing that the Rössler system is
similar to a quasiperiodic system, the analysis discussed in the
Appendix also provides an estimate of a signal-to-noise
(SNR) ratio characteristic of the Rössler system: on the basis
of the plateau value of 1.55 ± 0.05 this SNR can be estimated
to be 2.1 ± 0.2. Remarkably, this estimate very well matches
an SNR value estimated by looking at the Fourier spectrum
of a Rössler sequence and singling out the fundamental fre-
quency and its harmonics.

Further evidence of the sensitivity of the method to the
autocorrelation and thus the spectral properties of the underly-
ing dynamical system is provided by the analysis carried out
on a sequence generated by integrating the Rössler attractor
with the parameter setting a = 0.343, b = 1.82, c = 9.75,
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FIG. 9. Analysis of the estimated correlation dimension ν̂ given by Eq. (18) and computed out of a Rössler sequence and a related surrogate
sequence. (a) Map of ν̂ estimated on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ) in the case of the Rössler
sequence. The black, bold line bounds the embedding pairs that make up the peak at ν̂ = 1.55 ± 0.05 appearing in the histogram below. (b)
Histogram of the number of embedding pairs whose ν̂ falls within 0.05 wide bins. (c) Map of ν̂ estimated on the embedding pairs that exhibit
compatibility with the null hypothesis H0,cfd(ν ) in the case of a surrogate sequence. The black, bold line bounds the embedding pairs that
make up the peak at ν̂ = 1.9 ± 0.1 appearing in the histogram below. (d) Histogram of the number of embedding pairs whose ν̂ falls within
0.05 wide bins. In both maps, embedding pairs incompatible with the null hypothesis H0,cfd(ν ) are marked with a + sign. In both histograms,
bin heights and error bars correspond to the sample mean and sample standard deviation, respectively, evaluated on a set of four calculations.
Despite the peaks in the histograms, the two ν̂ plateaus do not correspond to any region bounded by fixed values of the embedding window
and therefore by any pairs of hyperbolae.

with T = dt = 0.05. This choice of the parameters a, b, c

corresponds to the so-called funnel attractor [29], which is
known to yield time series with a smoother spectrum than
the archetypical choice a = b = 0.2, c = 5.7 used above. The
results are shown in Fig. 10. While no significant ν̂ plateau
shows up in the case of the Fourier-based surrogate, in the case
of the Rössler sequence the ν̂ histogram of Fig. 10(b) reveals a
peak at ν̂ = 1.7 ± 0.2. The related plateau, shown in the map
of Fig. 10(a) by means of a black boundary, is approximately
enclosed by two hyperbolae corresponding to τR ≈ 1, τI ≈ 4.

The method was finally applied to the analysis of an
experimental sequence, namely the intensity data of an 81.5
μm NH3 laser [30], which is publicly available at [31]. The
results are shown in Fig. 11. A first selection of suitable
embedding pairs was identified assuming the null hypothesis
H0,cfd(ν) and analyzing the gap from noise (see Sec. III) and
the small-scale divergent behavior (see Sec. IV). Thereupon
the correlation dimension was evaluated via the estimator of
Eq. (18). The resulting map of Fig. 11(a) shows a ν̂ plateau
whose level can be clearly identified by means of the ν̂

histogram of Fig. 11(b). The plateau level of ν̂ = 2.0 ± 0.2 is
in agreement with results of a previous work [32] concerning
the same sequence. The redundance and the irrelevance times
are estimated to be τR/T ≈ 10, τI /T ≈ 40, respectively.

Finally, the MLE of the 81.5 μm NH3 laser system
was evaluated on the 72 embedding pairs belonging to
the ν̂ plateau shown in Fig. 11(a) by using the diver-
gence rate method [5]. By considering the 48 embedding
pairs on which the divergence rate method provided a
nonzero value and averaging the corresponding results we got
λ̂ = (0.025 ± 0.007)T −1. This result is in agreement with the
assessment by Kantz and Schreiber [28].

VII. DISCUSSION

In this paper we discussed an approach to tackle the
enduring issue of determining optimal parameters to embed
time series generated by unknown dynamical systems. The
method relies on statistically testing the hypothesis that a
given sequence originates from a Gaussian white noise source
and, provided that the previous hypothesis is discarded, on
the assessment of features that are typical of chaotic, finite-
dimensional systems. These features, above all the correlation
dimension, are mapped on a lattice of embedding pairs. Rather
than assigning a specific pair of the embedding dimension
and lag—as generally purported by conventional embedding
methods—our method delivers a set of suitable pairs. In this
sense, our method is not alternative to—or even competitive
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FIG. 10. Analysis of the estimated correlation dimension ν̂ given by Eq. (18) and computed out of a Rössler sequence generated by
setting the flow parameters so as to yield a funnel attractor. (a) Map of ν̂ estimated on the embedding pairs that exhibit compatibility with
the null hypothesis H0,cfd(ν ) in the case of the Rössler sequence. The black, bold line bounds the embedding pairs that make up the peak at
ν̂ = 1.7 ± 0.2 appearing in the histogram below. (b) Histogram of the number of embedding pairs whose ν̂ falls within 0.1 wide bins. (c)
Map of ν̂ estimated on the embedding pairs that exhibit compatibility with the null hypothesis H0,cfd(ν ) in the case of a surrogate sequence.
(d) Histogram of the number of embedding pairs whose ν̂ falls within 0.1 wide bins. No significant peak can be identified. In both maps,
embedding pairs incompatible with the null hypothesis H0,cfd(ν ) are marked with a + sign. In both histograms, bin heights and error bars
correspond to the sample mean and sample standard deviation, respectively, evaluated on a set of four calculations. While the surrogate case
does not show any significant ν̂ plateau, the peak in the histogram shown in (b) corresponds to a ν̂ plateau bounded by the pair of hyperbolae
described by L = 25/(m − 1), L = 80/(m − 1).

towards—conventional approaches but provides a comple-
mentary tool to be used together with, rather than instead
of, existing methods. In addition, our approach is in line
with previous findings [5] concerning the intrinsic statistical
uncertainty of the embedding parameters. The method also
provides estimates for the irrelevance and the redundance
times, as well as indications on the suitability of the sampling
rate.

The method was tested on both synthetic and experimental
sequences. Similarly to other approaches described in the
scientific literature, our method is vulnerable when applied
to sequences originating from quasiperiodic or intermittent
systems like the Rössler attractor. However, our approach
allows us to recognize systems of this kind on the basis of
a characteristic feature of the maps of the estimated correla-
tion dimension. In all other cases taken into account in the
present work, also in the case of relatively short sequences,
the results are in very good agreement with data reported in
the scientific literature. Our method correctly distinguishes
a sequence generated by a finite-dimensional chaotic source
from a surrogate one that has the same power spectrum as the
original sequence and randomly chosen phases. This feature
can be particularly useful in experimental investigations that

implement surrogate time series analysis, for example in
neuroscience and geoscience [33–36].

Our method can be also useful in research fields where
a chaotic behavior has to be identified and characterized. In
physiology studies, for example, the assessment of different
dynamical regimes by relying on recorded signals such as
heart rate variability can help improving clinical diagnostics
[37]. In geophysics, the possible role of low-dimensional
chaotic sources or stochastic ones in the generation of seismic
sequences is still debated [38,39]. Similar issues are also
investigated in economics with regard to the analysis of stock
exchange time series [40,41]. Finally, lasers and photonic
systems exhibiting a chaotic behavior are receiving increasing
attention, due to applications that range from secure commu-
nications [42] to random number generation [43] (see [44]
for a recent review on the topic). Also within this research
framework, our method can deliver useful information for a
correct sampling and embedding of experimentally recorded
time series.

An improved identification of the plateaulike regions
bounded by hyperbolae within maps of the estimated corre-
lation dimension makes up a possible, further development of
the method described in this work.
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FIG. 11. Analysis of the estimated correlation dimension ν̂ given
by Eq. (18) and computed out of the experimental sequence corre-
sponding to the intensity of a 81.5 μm NH3 laser. (a) Map of ν̂ esti-
mated on the embedding pairs that exhibit compatibility with the null
hypothesis H0,cfd(ν ). Embedding pairs incompatible with the null
hypothesis H0,cfd(ν ) are marked with a + sign. The black, bold line
bounds the embedding pairs that make up the peak between ν̂ = 1.8
and ν̂ = 2.2 appearing in the histogram below. The two black, dash-
dotted lines correspond to hyperbolae approximatively enclosing the
ν̂ plateau and described by L = 10/(m − 1), L = 40/(m − 1). (b)
Histogram of the number of embedding pairs whose ν̂ falls within
0.2 wide bins. Bin heights and error bars correspond to the sample
mean and sample standard deviation, respectively, evaluated on a set
of four calculations.

APPENDIX: ESTIMATED CORRELATION DIMENSION
IN THE CASE OF NOISY, PERIODIC SIGNALS

The goal of this appendix is to investigate the behavior of
the correlation dimension, estimated by means of the method
of Sec. V, in the case of quasiperiodic systems. As a model we
consider here a sinusoidal signal affected by an additive noise
component.

Let the sequence {xi} be given by

xi = sin (φ0i) + ηi√
2
, (A1)

where the terms ηi are supposed to be i.i.d. and to have
vanishing mean and standard deviation η. By virtue of the
factor 1/

√
2, the standard deviation η corresponds to the

reciprocal of the signal-to-noise ratio.

Inserting the sequence of Eq. (A1) into Eq. (1) yields

d2
i,j = 1

m

m−1∑
k=0

{
2 cos

[(
i + j

2
+ kL

)
φ0

]

× sin

(
i − j

2
φ0

)
+ ηi+kL − ηj+kL√

2

}2

.

The previous expression can be written as the sum of three
contributions:

d2
i,j = 4 sin2

(
i − j

2
φ0

)
1

m

m−1∑
k=0

cos2

[(
i + j

2
+ kL

)
φ0

]

+ 2
√

2 sin

(
i − j

2
φ0

)
1

m

m−1∑
k=0

(ηi+kL − ηj+kL)

× cos

[(
i+j

2
+kL

)
φ0

]
+ 1

2m

m−1∑
k=0

(ηi+kL − ηj+kL)2.

(A2)

With regard to the first, noise-free contribution, which is
henceforth referred to as y, provided that m is sufficiently
large—namely, larger than a suitable value m0—the probabil-
ity that all the cosine terms within the sum are simultaneously
small is negligible. Consequently, small-scale contributions to
the correlation integral primarily occur through the squared
sine term external to the sum, when the argument is close to
an integer multiple of π . The fact that the indexes i, j are
uniformly distributed has two consequences: first, the sum
of the squared cosines turns out to be approximately 1/2;
second, the noise-free contribution y is distributed according

to the cumulative distribution Cy (y) = 2
π

arcsin
√

y

2 . Hence-

forth the terms ηi are assumed to be normally distributed,
i.e., ηi ∼ N (0, η2). The second contribution is therefore also
normally distributed and can be expressed as 2zη/

√
m with

z ∼ N (0, 1). In addition, the third contribution is distributed
as a χ2 variable with m degrees of freedom, i.e., as η2χ2

m/m.
In the limit m → ∞, the second, normal contribution of

Eq. (A2) becomes negligible because of the factor 1/
√

m.
In the same limit, the third contribution tends to a constant
because the expected value of χ2

m/m tends to 1 and its
standard deviation to 0. Consequently, in the limit of large
m, the squared distances d2

i,j can be written as the sum of the
noise-free contributions y and the noise variance, i.e.,

d2
i,j � y + η2.

The cumulative distribution of the distance di,j —or, as in
Sec. II, r = di,j —is then given by

C(r ) = 2

π
arcsin

√
r2 − η2

2
.

According to the method discussed in Sec. V, the cor-
responding estimated correlation dimension ν is given
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by

ν = d ln[C(r )]

d ln r

∣∣∣∣
r=r0

= r2
0√

r2
0 − η2

√
2 + η2 − r2

0 arcsin
√

r2
0 −η2

2

, (A3)

where r0 is the value r such that ρ0 = ρ(r0) corresponds to
the first maximum of the correlation bridge [see Eq. (17)].
In the limit m → ∞, r0 can be estimated as follows. The
gauge transformation ρ = ρ(r ) corresponds to the cumulative
distribution of the χ2

m-distributed random variable mr2

2σ 2 [see
Eq. (4)]. By virtue of the central limit theorem, this cumulative
distribution can be approximated by a normal cumulative
distribution, namely

ρ(r ) = 1

�
(

m
2

)γ

(
m

2
,

1

2

mr2

2σ 2

)
≈ �

(
mr2

2σ 2 − m√
2m

)

= �

(
r2 − 2σ 2

2σ 2
√

2/m

)
, (A4)

where �(z) is the cumulative standard normal distribution.
The term r2 − 2σ 2 can be expanded as (r − √

2σ )(r + √
2σ )

and, because the distribution is significantly larger than zero
only for r ≈ √

2σ , it can be replaced by 2
√

2σ (r − √
2σ ).

Consequently, Eq. (A4) can be further approximated
as

ρ(r ) ≈ �

(
r − σ

√
2

2σ 2
√

2/m
2
√

2σ

)
= �

(
r − σ

√
2

σ/
√

m

)
.

In the limit m → ∞, the previous expression becomes a step
function centered in σ

√
2 while its derivative becomes a Dirac

delta function, i.e.,

dρ

dr
≈ δ(r − σ

√
2). (A5)

Finally, if m → ∞, the root r0 of Eq. (17) is σ
√

2 indepen-
dently of the shape of the correlation integral Cm,L(r ).

In the case of the sinusoidal signal affected by an additive
noise component as described by Eq. (A1), due to the contri-
butions of both the sine and the superimposed noise, the se-
quence variance is given by σ 2 = (1 + η2)/2. In combination

1

 1.2

 1.4

 1.6
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2

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

ν

Noise η

FIG. 12. Estimated ν as a function of the inverse signal-to-noise
ratio η for sinusoidal sequences with superimposed Gaussian white
noise as in Eq. (A1). Data points and the corresponding error bars
are obtained as the sample mean and the sample standard deviation
of a set of 11 ν̂ values estimated by setting m = 5000 and with L

varying from 5 to 15. The red, solid line is the curve corresponding to
Eq. (A6), i.e., the asymptotic prediction for m → ∞ of the estimated
ν. The blue, dashed line is the result of a fitting procedure described
in the main text.

with Eq. (A5), this result leads to r2
0 = 1 + η2. By inserting

this value within Eq. (A3), the estimated ν becomes

ν = 4

π
(1 + η2) (as m → ∞). (A6)

This last expression provides the height of a rectangular ν̂

plateau that spans any value of L and sufficiently large values
of m (m > m0). Because of the central limit theorem, Eq. (A6)
is valid not only for a Gaussian noise but for any kind of noise
having vanishing mean and variance η2.

Figure 12 shows the numerical results of ν estimations
computed by applying the method of Sec. V to synthetic
time series described by Eq. (A1) and for different values
of η. For each single value η, the point and the related
error bar respectively correspond to the sample mean and the
sample standard deviation of a set of 11 ν̂ values computed
by setting m = 5000 and with L varying from 5 to 15. The
red, solid line is the analytical curve of Eq. (A6). The blue,
dashed line is the curve resulting from fitting the parabola
ν(η) = (4/π )(a + bη2) to the data points. The best-fit pa-
rameters are a = 0.985 ± 0.006 and b = 1.02 ± 0.03, thus
proving the reliability of the model described above.
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